Численные характеристики случайной функции. Понятие о случайной функции

Мы имели много случаев убедиться в том, какое большое значение в теории вероятностей имеют основные числовые характеристики случайных величин: математическое ожидание и дисперсия - для одной случайной величины, математические ожидания и корреляционная матрица - для системы случайных величин. Искусство пользоваться числовыми характеристиками, оставляя по возможности в стороне законы распределения, - основа прикладной теории вероятностей. Аппарат числовых характеристик представляет собой весьма гибкий и мощный аппарат, позволяющий сравнительно просто решать многие практические задачи.

Совершенно аналогичным аппаратом пользуются и в теории случайных функций. Для случайных функций также вводятся простейшие основные характеристики, аналогичные числовым характеристикам случайных величин, и устанавливаются правила действий с этими характеристиками. Такой аппарат оказывается достаточным для решения многих практических задач.

В отличие от числовых характеристик случайных величин, предоставляющих собой определенные числа, характеристики случайных функций представляют собой в общем случае не числа, а функции.

Математическое ожидание случайной функции определяется следующим образом. Рассмотрим сечение случайной функции при фиксированном . В этом сечении мы имеем обычную случайную величину; определим ее математическое ожидание. Очевидно, в общем случае оно зависит от , т. е. представляет собой некоторую функцию :

. (15.3.1)

Таким образом, математическим ожиданием случайной функции называется неслучайная функция , которая при каждом значении аргумента равна математическому ожиданию соответствующего сечения случайной функции.

По смыслу математическое ожидание случайной функции есть некоторая средняя функция, около которой различным образом варьируются конкретные реализации случайной функции.

На рис. 15.3.1 тонкими линиями показаны реализации случайной функции, жирной линией - ее математическое ожидание.

Аналогичным образом определяется дисперсия случайной функции.

Дисперсией случайной функции называется неслучайная функция , значение которой для каждого равно дисперсии соответствующего сечения случайной функции:

. (15.3.2)

Дисперсия случайной функции при каждом характеризует разброс возможных реализаций случайной функции относительно среднего, иными словами, «степень случайности» случайной функции.

Очевидно, есть неотрицательная функция. Извлекая из нее квадратный корень, получим функцию - среднее квадратическое отклонение случайной функции:

. (15.3.3)

Математическое ожидание и дисперсия представляют собой весьма важные характеристики случайной функции; однако для описания основных особенностей случайной функции этих характеристик недостаточно. Чтобы убедиться в этом, рассмотрим две случайные функции и , наглядно изображенные семействами реализаций на рис. 15.3.2 и 15.3.3.

У случайных функций и примерно одинаковые математические ожидания и дисперсии; однако характер этих случайных функций резко различен. Для случайной функции (рис. 15.3.2) характерно плавное, постепенное изменение. Если, например, в точке случайная функция приняла значение, заметно превышающее среднее, то весьма вероятно, что и в точке она также примет значение больше среднего. Для случайной функции характерна ярко выраженная зависимость между ее значениями при различных . Напротив, случайная функция (рис. 15.3.3) имеет резко колебательный характер с неправильными, беспорядочными колебаниями. Для такой случайной функции характерно быстрое затухание зависимости между ее значениями по мере увеличения расстояния по между ними.

Очевидно, внутренняя структура обоих случайных процессов совершенно различна, но это различие не улавливается ни математическим ожиданием, ни дисперсией; для его описания необходимо вести специальную характеристику. Эта характеристика называется корреляционной функцией (иначе - автокорреляционной функцией). Корреляционная функция характеризует степень зависимости между сечениями случайной функции, относящимися к различным .

Пусть имеется случайная функция (рис. 15.3.4); рассмотрим два ее сечения, относящихся к различным моментам: и , т. е. две случайные величины и . Очевидно, что при близких значениях и величины и связаны тесной зависимостью: если величина приняла какое-то значение, то и величина с большой вероятностью примет значение, близкое к нему. Очевидно также, что при увеличении интервала между сечениями , зависимость величин и вообще должна убывать.

Степень зависимости величин и может быть в значительной мере охарактеризована их корреляционным моментом; очевидно, он является функцией двух аргументов и . Эта функция и называется корреляционной функцией.

Таким образом, корреляционной функцией случайной функции называется неслучайная функция двух аргументов , которая при каждой паре значений , равна корреляционному моменту соответствующих сечений случайной функции:

, (15.3.4)

, .

Вернемся к примерам случайных функций и (рис. 15.3.2 и 15.3.3). Мы видим теперь, что при одинаковых математических ожиданиях и дисперсиях случайные функции и имеют совершенно различные корреляционные функции. Корреляционная функция случайной функции медленно убывает по мере увеличения промежутка ; напротив, корреляционная функция случайной функции быстро убывает с увеличением этого промежутка.

Выясним, во что обращается корреляционная функция , когда ее аргументы совпадают. Полагая , имеем:

, (15.3.5)

т. е. при корреляционная функция обращается в дисперсию случайной функции.

Таким образом, необходимость в дисперсии как отдельной характеристике случайной функции отпадает: в качестве основных характеристик случайной функции достаточно рассматривать ее математическое ожидание и корреляционную функцию.

Так как корреляционный момент двух случайных величин и не зависит от последовательности, в которой эти величины рассматриваются, то корреляционная функция симметрична относительно своих аргументов, т. е. не меняется при перемене аргументов местами:

. (15.3.6)

Если изобразить корреляционную функцию в виде поверхности, то эта поверхность будет симметрична относительно вертикальной плоскости , проходящей через биссектрису угла (рис. 15.3.5).

Заметим, что свойства корреляционной функции естественно вытекают из свойств корреляционной матрицы системы случайных величин. Действительно, заменим приближенно случайную функцию системой случайных величин . При увеличении и соответственном уменьшении промежутков между аргументами корреляционная матрица системы, представляющая собой таблицу о двух входах, в пределе переходит в функцию двух непрерывно изменяющихся аргументов, обладающую аналогичными свойствами. Свойство симметричности корреляционной матрицы относительно главной диагонали переходит в свойство симметричности корреляционной функции (15.3.6). По главной диагонали корреляционной матрицы стоят дисперсии случайных величин; аналогично при корреляционная функция обращается в дисперсию .

На практике, если требуется построить корреляционную функцию случайной функции , обычно поступают следующим образом: задаются рядом равноотстоящих значений аргумента и строят корреляционную матрицу полученной системы случайных величин. Эта матрица есть не что иное, как таблица значений корреляционной функции для прямоугольной сетки значений аргументов на плоскости . Далее, путем интерполирования или аппроксимации можно построить функцию двух аргументов .

Вместо корреляционной функции можно пользоваться нормированной корреляционной функцией:

, (15.3.7)

которая представляет собой коэффициент корреляции величин , . Нормированная корреляционная функция аналогична нормированной корреляционной матрице системы случайных величин. При нормированная корреляционная функция равна единице.

Во всех предыдущих параграфах этой главы предполагалось, что управляющие и возмущающие воздействия являются определенными функциями времени. Однако для систем автоматического управления, работающих в реальных условиях, характерно, что эти воздействия носят случайный характер и принципиально непредсказуемы.

Рассмотрим, например, работу следящей системы, управляющей антенной радиолокатора. Для этой системы управляющим воздействием является положение цели, а возмущающими воздействиями можно считать ветровые нагрузки на антенну, отклонения луча от направления на цель из-за рефракции в атмосфере, собственные шумы в усилительном тракте системы, помехи от источников питания и т. п. Все эти процессы обусловлены множеством взаимодействующих причин и носят настолько сложный характер, что их нельзя представить какой-либо заданной функцией времени. То же самое можно сказать и относительно управляющего воздействия. На практике его нельзя считать типовым, например ступенчатым, линейно-растущим, синусоидальным или каким-либо регулярным сигналом. Реально цель маневрирует, поэтому ее положение в любой последующий момент не может быть точно предсказано. На этом маневрирование накладывается постоянное блуждание отражающей точки по корпусу цели.

Таким образом, сигналы управления и возмущения в реальных условиях являются случайными процессами. Случайным, или стохастическим процессом

называют такую функцию времени которая при каждом значении аргумента является случайной величиной. Если вместо времени употребляют другую независимую переменную, то используют термин случайная функция. При многократном воспроизведении условий протекания случайного процесса последний принимает каждый раз различные конкретные значения. Эти значения как функции времени называют реализациями случайного процесса. Типичный вид нескольких реализаций стохастического процесса ошибки угловой координаты цели, отслеживаемой радиолокационной станцией, представлен на рис. XIII. 14.

Математическое описание случайного процесса. При фиксированном значении аргумента случайный процесс является случайной величиной, полное описание которой дает функция распределения

т. е. вероятность того, что в данный момент случайная величина примет значение, меньшее Как известно из теории вероятностей, вместо функции распределения часто удобнее пользоваться плотностью вероятности, являющейся ее производной (в обобщенном смысле):

Если зафиксировать два момента времени то значения случайного процесса образуют систему двух случайных величин или двумерный случайный вектор. Для его полного описания требуется знать двумерную функцию распределения

Рис. ХIII.14. Стохастический процесс ошибки измерения угловой координаты цели, отслеживаемой радиолокационной станцией

или двумерную плотность

которые зависят от как от параметров.

Для более подробного описания случайного процесса в произвольные моменты времени аналогично вводятся функции распределения и плотности более высоких порядков. Таким образом, полное статистическое описание случайной функции (процесса) даетесконечная последовательность ее функций распределения:

или последовательность их производных

Каждый из членов этих последовательностей имеет обычные свойства функций распределения или соответственно плотностей. Кроме того, каждый следующий член последовательности определяет все предыдущие. Например, если положить то

аналогичные формулы имеем и для любых других моментов времени.

Это условие называют условием согласованности семейства функций распределения. Справедливо также условие симметрии:

В общем случае плотности или функции распределения более высокого порядка не определяются плотностями или функциями более низких порядков.

Однако часто полезно рассматривать так называемый абсолютно случайный процесс, значения которого независимы в совокупности для любых Для такого процесса плотность распределения любого порядка определяется через одномерную:

Такой процесс является математическим упрощением, поскольку при достаточно близких значениях значения любого реального процесса близки, и, следовательно, зависимы. Другим крайним случаем является вырожденный, или сингулярный процесс, определяемый одной или несколькими случайными величинами; например,

где - случайная величина; - известные константы. Такой процесс становится полностью известным, если можно измерить его в какой-либо момент времени. В более общем случае сингулярный случайный процесс характеризуется совокупностью случайных величин например,

где - обычные (детерминированные функции времени).

Рис. XIII.15. Возможные реализации двух случайных функций: а - с высокочастотными составляющими; б - с низкочастотными составляющими

Моментные функции. В практических задачах обычно пользуются более простыми характеристиками случайных процессов - моментными функциями. Моментом первого порядка или математическим ожиданием процесса называют выражение

Если эту функцию рассматривать в зависимости от то около среднего значения функции будут группироваться все реализации случайного процесса (рис. XIII.15).

Математические ожидания более высоких степеней носятназвания начальных моментов порядка

Случайная функция имеет нулевое среднее значение и называется центрированной. Центральным моментом -порядка процесса называется математическое ожидание степени центрированного процесса

Меру рассеяния значений случайного процесса относительно математического ожидания его определяет момент второго порядка, называемый чаще дисперсией:

Однако характеристики случайного процесса, основанные на первой плотности не отражают изменения реализаций во времени. Например, два процесса с одной и той же первой плотностью (рис. XIII. 15, а и б) различаются по скорости изменения реализаций, т. е. по степени взаимосвязи между двумя значениями, принимаемыми в одной реализации в различные моменты времени. Для описания временной внутренней структуры случайных процессов используют корреляционную функцию

Эту функцию часто называют также автокорреляционной, или ковариацией, она играет основную роль в теории случайных процессов.

Легко показать, что корреляционная функция симметрична относительно своих аргументов а при ее значение равно дисперсии случайного процесса . В самом деле,

Для характеристики точности систем автоматического регулирования удобно использовать нецентрированную корреляционную функцию:

называемую также вторым начальным моментом процесса.

Связь между устанавливается следующими преобразованиями:

При средний квадрат процесса будет

В системах автоматического регулирования часто действует несколько случайных возмущающих или управляющих сигналов, независимых или взаимосвязанных. Мерой взаимосвязи двух случайных процессов служит взаимная корреляционная функция

где - совместная плотность вероятности для независимых процессов

Для взаимной корреляционной функции справедливо равенство

Теория случайных процессов, в которой используются лишь моменты первого и второго порядков называется корреляционной теорией. Она была создана основополагающими работами А. Н. Колмогорова , Д. Я. Хинчина , Н. Вииера. Большой вклад в ее развитие внесли советские ученые В. С. Пугачев , В. В. Солодовников и др.

Стационарные случайные процессы. При рассмотрении различных случайных процессов выделяют группу процессов, статистические свойства которых не изменяются при сдвиге во времени. Такие процессы называются стационарными. Рассматривая множество реализаций случайного процесса, приведенного на рис. XIII. 14, можно предположить, что в данном случае начало отсчета времени может быть выбрано произвольно, т. е. налицо стационарный процесс. Напротив, на рис. XIII. 15, очевидно, имеем примеры нестационарных процессов.

Исследование систем, случайные процессы в которых стационарны, значительно проще, чем исследование систем с нестационарными процессами. Однако процессы во многих системах регулирования можно приближенно рассматривать как стационарные. Это имеет большое прикладное значение в теории стационарных случайных процессов.

По определению стационарного случайного процесса его математическое ожидание должно быть постоянно при сдвиге аргумента на любой тервал Т:

а корреляционная функция удовлетворяет соотношению

Полагая находим, что корреляционная функция стационарного процесса зависит только от разности отсчетов

Эргодические свойства случайных процессов. Если мы имеем совокупность, или, как говорят, ансамбль реализаций, то математическое ожидание и корреляционная функция получаются усреднением по ансамблю реализаций случайного процесса, т. е. «поперек» процесса в одном или соответственно двух его сечениях. Интересно рассмотреть также результаты усреднения реализаций стационарного процесса по времени вдоль оси на интервале , определив эту операцию естественным образом:

Эта величина различна для разных реализаций случайного процесса и сама является случайной. Можно показать, что ее математическое ожидание для стационарного процесса равно . В то же время дисперсия этой величины, как показывают непосредственные расчеты,

Рис. XIII.16. Структурная схема коррелятора

Условия эргодичности процесса по , сформулированные В. С. Пугачевым , содержат более высокие моменты случайного процесса и здесь не приводятся.

Свойства эргодичности случайных процессов позволяют заменить усреднение по множеству реализаций, практически редко осуществимое, усреднением по времени, взятым по одной реализации, когда Т велико..

Не все стационарные процессы имеют эргодические свойства. Например, процесс, все реализации которого есть случайные величины, не изменяющиеся во времени, как легко убедиться, неэргодичен. Отсюда следует, что физический смысл эргодичности заключается в «хорошей перемешиваемости» реализаций случайного процесса. Поскольку это имеет место практически во всех приложениях, в дальнейшем будем предполагать рассматриваемые процессы эргодическими.

Для таких процессов можно экспериментально определить среднее значение и корреляционную функцию процесса с помощью специальных приборов - корреляторов. Принцип действия корреляторов ясен из рис. XIII.16.

Подавая на вход коррелятора единичный сигнал, на его выходе при достаточно большом времени интегрирования Т будем иметь среднее значение процесса х, приблизительно совпадающее с его математическим ожиданием Если же то в результате будем иметь второй начальный момент по которому легко определить и корреляционную функцию.

СЕВАСТОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

М.М. Гхашим, Т.В.Чернэуцану

СЛУЧАЙНЫЕ ФУНКЦИИ

Учебное пособие

Утверждено

ученым советом института

Севастополь


Гхашим М.М., Т.В.Чернэуцану

Случайные функции: учеб.-метод. пособие. – Севастополь: СевГУ, 2015.

В данном пособии рассмотрены три основных раздела: « », « », « ». Каждый из разделов включает в себя основные вопросы теории, разбор типовых примеров, задания для самостоятельной работы с ответами к ним.

предназначено для студентов третьего курса при изучении темы « ».

Рецензенты:

к.ф.-м..,

к.т.н, доцент

нк.ф.-м.н доцент

© Издание СевГУ, 2015

§ 1. Понятие о случайной функции……………………………………

§ 2. Характеристики случайных функций……………………………

§ 3. Оператор динамической системы……………………………….

§ 4. Линейные преобразования случайных функций………………

§ 5. Стационарные случайные процессы ……………………

§ 6. Спектральное разложение стационарной случайной функции………

§ 7. Эргодическое свойство стационарных случайных функций………….

Решение типовых задач………………………………………………..

Задачи для самостоятельного решения………………………………

ЛИТЕРАТУРА………………………………………………………………

Случайные функции

Понятие о случайной функции.

В курсе теории вероятностей основным предметом исследования были случайные величины, которые характеризовались тем, что в результате опыта принимали некоторое одно, заранее неизвестное, но единственное значение. Т.е., случайные явления изучались как бы в «статике», в каких-то фиксированных постоянных условиях отдельного опыта. Однако на практике часто приходится иметь дело со случайными величинами, непрерывно изменяющимися в процессе опыта. Например, угол упреждения при непрерывном прицеливании по движущейся цели; отклонение траектории управляемого снаряда от теоретической в процессе управления или самонаведения, и т.д. В принципе, любые системы с автоматизированным управлением предъявляют определенные требования к соответствующей теоретической базе – теории автоматического управления. Развитие этой теории невозможно без анализа ошибок, неизбежно сопровождающих процессы управления, которые всегда протекают в условиях непрерывно действующих случайных возмущений или «помех». Эти возмущения по своей природе являются случайными функциями. Итак:



Определение . Случайной функцией X (t ) называют функцию неслучайного аргумента t , которая при каждом фиксированном значении аргумента является случайной величиной.

Конкретный вид, принимаемый случайной функцией X (t ) в результате опыта, называется реализацией случайной функции.

Пример . Самолет на воздушном курсе имеет теоретически постоянную воздушную скорость V . Фактически его скорость колеблется около этого среднего номинального значения и представляет собой случайную функцию времени. Полет можно рассматривать как опыт, в котором случайная функция V (t ) принимает определенную реализацию (Рис.1).


От опыта к опыту вид реализации меняется. Если на самолете установлен самописец, то он в каждом полете запишет новую, отличную от других, реализацию случайной функции. В результате нескольких полетов можно получить семейство реализаций случайной функции V (t ) (Рис.2).

На практике встречаются случайные функции, зависящие не от одного аргумента, а от нескольких, например, состояние атмосферы (температура, давление, ветер, осадки). В данном курсе мы будем рассматривать только случайные функции одного аргумента. Так как этим аргументом чаще всего является время, будем обозначать его буквой t . Кроме того, условимся обозначать случайные функции большими буквами (X (t ), Y (t ), …) в отличие от неслучайных функций (x (t ), y (t ), …).

Рассмотрим некоторую случайную функцию X (t ). Предположим, что над ней произведено n независимых опытов, в результате которых получено n реализаций, которые мы обозначим соответственно номерам опытов x 1 (t ), x 2 (t ), …, x n (t ). Очевидно, каждая реализация есть обычная (не случайная) функция. Таким образом, в результате каждого опыта случайная функция X (t ) превращается в не случайную функцию.

Зафиксируем теперь некоторое значение аргумента t . В этом случае случайная функция X (t ) превратится в случайную величину.

Определение. Сечением случайной функции X (t ) называют случайную величину, соответствующую фиксированному значению аргумента случайной функции.

Мы видим, что случайная функция совмещает в себе черты случайной величины и функции. В дальнейшем часто будем попеременно рассматривать одну и ту же функцию X (t ) то как случайную функцию, то как случайную величину, в зависимости от того, рассматривается ли она на всем диапазоне изменения t или при его фиксированном значении.

Рассмотрим случайную величину X (t ) – сечение случайной функции в момент t . Эта случайная величина, очевидно, обладает законом распределения, который в общем случае зависит от t . Обозначим его f (x , t ). Функция f (x , t ) называется одномерным законом распределения случайной функции X (t ).

Очевидно, функция f (x , t ) не является полной, исчерпывающей характеристикой случайной функции X (t ), т.к. она характеризует только закон распределения X (t ) для данного, хотя и произвольного t и не отвечает на вопрос о зависимости случайных величин X (t ) при различных t . С этой точки зрения более полной характеристикой случайной функции X (t ) является так называемый двумерный закон распределения : f (x 1 , x 2 ; t 1 , t 2). Это – закон распределения системы двух случайных величин X (t 1), X (t 2), т.е. двух произвольных сечений случайной функции X (t ). Но и эта характеристика в общем случае не является исчерпывающей. Очевидно, теоретически можно неограниченно увеличивать число аргументов и получать все более полную характеристику случайной функции, но оперировать столь громоздкими характеристиками, зависящими от многих аргументов, крайне затруднительно. В пределах данного курса мы вообще не будем пользоваться законами распределения, а ограничимся рассмотрением простейших характеристик случайных функций, аналогичных числовым характеристикам случайных величин.

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj(4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.

1. ПОНЯТИЕ СЛУЧАЙНОЙ ФУНКЦИИ

До определенных пор теория вероятностей ограничивалась понятием случайных величин. Их использование позволяет выполнять статические расчеты, учитывающие случайные факторы. Однако механические системы подвергаются также разнообразным динамическим, то есть изменяющимся во времени воздействиям случайного характера. К ним относятся, в частности, вибрационные и ударные воздействия при движении транспортных средств, аэродинамические силы, вызванные атмосферной турбулентностью, сейсмические силы, нагрузки, обусловленные случайными отклонениями от номинальных режимов работы машин.

Случайные динамические явления изучаются при анализе тенденций в экономике (например, изменения курса акций или валюты). Работа в условиях случайных возмущений характерна для систем управления разнообразными динамическими объектами.

Для анализа подобных явлений используется понятие случайной функции . Случайной функцией X (t ) называется такая функция аргумента t , значение которой при любом t является случайной величиной. Если аргумент принимает дискретные значения t 1 , t 2 , …, t k то говорят о случайной последовательности X 1 , X 2 ,…, X k , где X i = X (t i ).

Во многих практических задачах неслучайный аргумент t имеет смысл времени, при этом случайную функцию называют случайным процессом , а случайную последовательностьвременным рядом . Вместе с тем, аргумент случайной функции может иметь и иной смысл. Например, речь может идти о рельефе местности Z (x , y ), где аргументами являются координаты местности x и y , а роль случайной функции играет высота над уровнем моря z. В дальнейшем, для определенности, имея в виду приложения случайных функций к исследованию динамических систем, будем говорить о случайных процессах.

Предположим, что при исследовании случайного процесса X (t ) произведено n независимых опытов, и получены реализации

представляющие собой n детерминированных функций. Соответствующее семейство кривых в определенной мере характеризует свойства случайного процесса. Так, на рис.1.1а представлены реализации случайного процесса с постоянными средним уровнем и разбросом значений возле среднего, на рис. 1.1б – реализации случайного процесса с постоянным средним и изменяющимся разбросом, на рис. 1.1в – реализации случайного процесса с изменяющимися во времени средним и разбросом.



Рис.1.1. Типичные реализации случайных процессов

На рис. 1.2 показаны реализации двух случайных процессов, имеющих одинаковый средний уровень и разброс, но различающихся плавностью. Реализации случайного процесса на рис. 1.2а имеют высокочастотный характер, а на рис. 1.2б – низкочастотный.

Рис. 1.2. Высокочастотный и низкочастотный случайные процессы

Таким образом, X (t ) можно рассматривать и как совокупность всевозможных реализаций, которая подчиняется определенным вероятностным закономерностям. Как и для случайных величин, исчерпывающую характеристику этих закономерностей дают функции или плотности распределения. Случайный процесс считается заданным, если заданы все многомерные законы распределения случайных величин X (t i ), X (t 2 ), …, X (t n ) для любых значений t 1 , t 2 , …, t n из области изменения аргумента t . Речь идет, в частности, об одномерной плотности распределения , двумерной плотности распределения и т.д. .

Для упрощения анализа в большинстве случаев ограничиваются моментными характеристиками, причем чаще всего используют моменты первого и второго порядков. Для характеристики среднего уровня случайного процесса служит математическое ожидание

. (1.1)

Для характеристики амплитуды отклонений случайного процесса от среднего уровня служит дисперсия

Для характеристики изменчивости (плавности) случайного процесса служит корреляционная (автокорреляционная) функция

(1.3)

Как следует из (1.3), корреляционная функция представляет собой ковариацию случайных величин X (t 1) и X (t 2). Ковариация же, как известно из курса теории вероятностей, характеризует взаимозависимость между X (t 1) и X (t 2).

В рамках корреляционной теории случайных функций, которая оперирует лишь моментами первого и второго порядков, могут быть решены многие технические задачи. В частности, могут быть определены априорная, а также условная вероятности выхода случайного процесса за пределы заданных границ. Вместе с тем, некоторые важные в практическом плане задачи не решаются средствами корреляционной теории и требуют использования многомерных плотностей распределения. К таким задачам относится, например, расчет среднего времени нахождения случайного процесса выше или ниже заданной границы.

2. ТИПЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

2.1. Квазидетерминированные случайные процессы