Как определить момент количества движения материальной точки. Задачи на тему теорема об изменении количества движения и момента движения материальной точки. Мощность пары сил

Хотя до сих пор. мы рассматривали только специальный случай твердого тела, свойства момента и его математическое выражение интересны даже тогда, когда тело не твердое. Можно доказать очень интересную теорему: подобно тому как внешняя сила равна скорости изменения величины р, которая называется полным импульсом системы частиц, так и момент силы равен скорости изменения некоторой величины L , называемой моментом количества движения, или угловым моментом группы частиц.
Чтобы доказать это, рассмотрим систему частиц, на которую действуют силы, и посмотрим, что произойдет с системой в результате действия вращающих моментов, созданных этими силами. Для начала давайте возьмем только одну частицу. Такая частица с массой m и осью О изображена на фиг. 18.3. Она не обязательно должна вращаться по окружности вокруг оси О, а может двигаться и по эллипсу, подобно планете вокруг Солнца, или по какой-нибудь другой кривой.

Главное то, что она движется, что на нее действует сила, которая ускоряет ее в соответствии с обычными законами: x -компонента силы равна массе, умноженной на х-компоненту ускорения, и т. д. Но посмотрим теперь, как действует момент силы. Он, как вы знаете, равен xF y - yF x , а х- и y -компоненты силы в свою очередь равны массе, умноженной соответственно на х- и y -компоненту ускорения, так что

Хотя сразу и не_видно, что это выражение является производной от какой-то простой величины, но на самом деле оно

равно производной от xm(dy/ dt)-ym(dx/ dt)\ Действительно,

Оказывается, таким образом, что момент силы равен скорости изменения со временем некоторой величины! Давайте обратим внимание на эту величину и прежде всего дадим ей имя. Она будет называться моментом количества движения, или угловым моментом, и обозначаться буквой L

Хотя во всех наших рассмотрениях мы не принимали в расчет теорию относительности, тем не менее второе выражение для L верно и при учете ее. Итак, мы нашли, что у обычного импульса также существует вращательный ана- лог - угловой момент, который связан с компонентами импульса точно так же, как и момент силы связан с компонентами силы! Так что если мы хотим вычислить момент количества движения относительно какой-то оси, то должны взять тангенциальную составляющую импульса и умножить ее на радиус. Другими словами, угловой момент показывает, насколько быстро движется частица вокруг какого-то центра, ведь он учитывает только тангенциальную часть импульса. Более того, чем дальше от центра удалена линия, по которой направлен импульс, тем больше будет угловой момент. Точно так же, поскольку геометрия в этом случае та же, что и в случае момента силы, существует плечо импульса (оно, разумеется, не совпадает с плечом силы, действующей на частицу), которое равно расстоянию линии импульса от оси. Таким образом, угловой момент равен просто величине импульса, умноженного на его плечо. Точно так же, как и для момента силы, для углового момента мы можем написать следующие три формулы:

Момент количества движения, как и момент силы, зависит от положения оси, относительно которой он вычисляется.
Прежде чем перейти к рассмотрению более чем одной частицы, применим полученные выше результаты к движению планеты вокруг Солнца. В каком направления действует сила? Конечно, по направлению к Солнцу. А какой при этом будет момент силы? Разумеется, все зависит от того, в каком месте мы выберем ось, однако результат получится совсем простым, если в качестве точки вращения выбрать само Солнце. Поскольку момент силы равен силе, умноженной на ее плечо, или компоненте силы, перпендикулярной к радиусу r , умноженной на r , то в этом случае нет никакой тангенциальной составляющей силы, а поэтому момент силы относительно оси, проходящей через Солнце, равен нулю. Следовательно, момент количества движения должен оставаться постоянным. Давайте-ка посмотрим, что это означает. Произведение тангенциальной компоненты скорости на массу и радиус, будучи моментом количества движения, должно оставаться постоянным, потому что скорость его изменения есть момент силы, который в нашем случае равен нулю. Это означает что остается постоянным произведение тангенциальной компоненты скорости на радиус, поскольку масса-то уж, конечно, не изменяется. Но такая величина, характеризующая движение планеты, уже вычислялась нами раньше. Предположим, что мы взяли маленький промежуток времени ∆ t. Какое расстояние пройдет планета при своем движении из точки Р в толку Q (фиг. 18.3)? Как велика площадь той области, которую «заметает» прямая, соединяющая планету с Солнцем? Пренебрегая площадью QQ’P, которая очень мала по сравнению с OPQ, находим, что площадь этой области равна половине основания PQ, умноженного на высоту OR. Другими словами, «заметенная» площадь равна половине произведения скорости на ее плечо. Так что скорость изменения этой площади пропорциональна моменту количества движения, который остается постоянным. Итак, мы получим, что закон Кеплера о равных площадях за равные промежутки времени является просто словесным описанием закона сохранения момента количества движения, когда моменты внешних сил отсутствуют.


Динамика:
Динамика материальной точки
§ 28. Теорема об изменении количества движения материальной точки. Теорема об изменении момента количества движения материальной точки

Задачи с решениями

28.1 Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути. При торможении развивается сила сопротивления, равная 0,1 веса поезда. В момент начала торможения скорость поезда равняется 20 м/с. Найти время торможения и тормозной путь.
РЕШЕНИЕ

28.2 По шероховатой наклонной плоскости, составляющей с горизонтом угол α=30°, спускается тяжелое тело без начальной скорости. Определить, в течение какого времени T тело пройдет путь длины l=39,2 м, если коэффициент трения f=0,2.
РЕШЕНИЕ

28.3 Поезд массы 4*10^5 кг входит на подъем i=tg α=0,006 (где α угол подъема) со скоростью 15 м/с. Коэффициент трения (коэффициент суммарного сопротивления) при движении поезда равен 0,005. Через 50 с после входа поезда на подъем его скорость падает до 12,5 м/с. Найти силу тяги тепловоза.
РЕШЕНИЕ

28.4 Гирька М привязана к концу нерастяжимой нити MOA, часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая 120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1, при которой гирька описывает окружность радиусом R/2. Сколько оборотов в минуту делает гирька по этой окружности?
РЕШЕНИЕ

28.5 Для определения массы груженого железнодорожного состава между тепловозами и вагонами установили динамометр. Среднее показание динамометра за 2 мин оказалось 10^6 Н. За то же время состав набрал скорость 16 м/с (вначале состав стоял на месте). Найти массу состава, если коэффициент трения f=0,02.
РЕШЕНИЕ

28.6 Каков должен быть коэффициент трения f колес заторможенного автомобиля о дорогу, если при скорости езды v=20 м/с он останавливается через 6 с после начала торможения.
РЕШЕНИЕ

28.7 Пуля массы 20 г вылетает из ствола винтовки со скоростью v=650 м/с, пробегая канал ствола за время t=0,00095 c. Определить среднюю величину давления газов, выбрасывающих пулю, если площадь сечения канала σ=150 мм^2.
РЕШЕНИЕ

28.8 Точка M движется вокруг неподвижного центра под действием силы притяжения к этому центру. Найти скорость v2 в наиболее удаленной от центра точке траектории, если скорость точки в наиболее близком к нему положении v1=30 см/с, а r2 в пять раз больше r1.
РЕШЕНИЕ

28.9 Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение М. Дано: v0=500 м/с; α0=60°; v1=200 м/с; масса снаряда 100 кг.
РЕШЕНИЕ

28.10 Два астероида М1 и М2 описывают один и тот же эллипс, в фокусе которого S находится Солнце. Расстояние между ними настолько мало, что дугу М1М2 эллипса можно считать отрезком прямой. Известно, что длина дуги М1М2 равнялась a, когда середина ее находилась в перигелии P. Предполагая, что астероиды движутся с равными секториальными скоростями, определить длину дуги М1М2, когда середина ее будет проходить через афелий A, если известно, что SP=R1 и SA=R2.
РЕШЕНИЕ

28.11 Мальчик массы 40 кг стоит на полозьях спортивных саней, масса которых равна 20 кг, и делает каждую секунду толчок с импульсом 20 Н*с. Найти скорость, приобретаемую санями за 15 c, если коэффициент трения f=0,01.
РЕШЕНИЕ

28.12 Точка совершает равномерное движение по окружности со скоростью v=0,2 м/с, делая полный оборот за время T=4 c. Найти импульс S сил, действующих на точку, за время одного полупериода, если масса точки m=5 кг. Определить среднее значение силы F.
РЕШЕНИЕ

28.13 Два математических маятника, подвешенных на нитях длин l1 и l2 (l1>l2), совершают колебания одинаковой амплитуды. Оба маятника одновременно начали двигаться в одном направлении из своих крайних отклоненных положений. Найти условие, которому должны удовлетворять длины l1 и l2 для того, чтобы маятники по истечении некоторого промежутка времени одновременно вернулись в положение равновесия. Определить наименьший промежуток времени T.
РЕШЕНИЕ

28.14 Шарик массы m, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью a в отверстие, сделанное на плоскости. Определить движение шарика и натяжение нити T, если известно, что в начальный момент нить расположена по прямой, расстояние между шариком и отверстием равно R, а проекция начальной скорости шарика на перпендикуляр к направлению нити равна v0.
РЕШЕНИЕ

28.15 Определить массу M Солнца, имея следующие данные: радиус Земли R=6,37*106 м, средняя плотность 5,5 т/м3, большая полуось земной орбиты a=1,49*10^11 м, время обращения Земли вокруг Солнца T=365,25 сут. Силу всемирного тяготения между двумя массами, равными 1 кг, на расстоянии 1 м считаем равной gR2/m Н, где m масса Земли; из законов Кеплера следует, что сила притяжения Земли Солнцем равна 4π2a3m/(T2r2), где r расстояние Земли от Солнца.
РЕШЕНИЕ

28.16 Точка массы m, подверженная действию центральной силы F, описывает лемнискату r2=a cos 2φ, где a величина постоянная, r расстояние точки от силового центра; в начальный момент r=r0, скорость точки равна v0 и составляет угол α с прямой, соединяющей точку с силовым центром. Определить величину силы F, зная, что она зависит только от расстояния r. По формуле Бине F =-(mc2/r2)(d2(1/r)/dφ2+1/r), где c удвоенная секторная скорость точки.
РЕШЕНИЕ

28.17 Точка M, масса которой m, движется около неподвижного центра O под влиянием силы F, исходящей из этого центра и зависящей только от расстояния MO=r. Зная, что скорость точки v=a/r, где a величина постоянная, найти величину силы F и траекторию точки.
РЕШЕНИЕ

28.18 Определить движение точки, масса которой 1 кг, под действием центральной силы притяжения, обратно пропорциональной кубу расстояния точки от центра притяжения, при следующих данных: на расстоянии 1 м сила равна 1 Н. В начальный момент расстояние точки от центра притяжения равно 2 м, скорость v0=0,5 м/с и составляет угол 45° с направлением прямой, проведенной из центра к точке.
РЕШЕНИЕ

28.19 Частица M массы 1 кг притягивается к неподвижному центру O силой, обратно пропорциональной пятой степени расстояния. Эта сила равна 8 Н на расстоянии 1 м. В начальный момент частица находится на расстоянии OM0=2 м и имеет скорость, перпендикулярную к OM0 и равную 0,5 м/с. Определить траекторию частицы.
РЕШЕНИЕ

28.20 Точка массы 0,2 кг, движущаяся под влиянием силы притяжения к неподвижному центру по закону тяготения Ньютона, описывает полный эллипс с полуосями 0,1 м и 0,08 м в течение 50 c. Определить наибольшую и наименьшую величины силы притяжения F при этом движении.
РЕШЕНИЕ

28.21 Математический маятник, каждый размах которого длится одну секунду, называется секундным маятником и применяется для отсчета времени. Найти длину l этого маятника, считая ускорение силы тяжести равным 981 см/с2. Какое время покажет этот маятник на Луне, где ускорение силы тяжести в 6 раз меньше земного? Какую длину l1 должен иметь секундный лунный маятник?
РЕШЕНИЕ

28.22 В некоторой точке Земли секундный маятник отсчитывает время правильно. Будучи перенесен в другое место, он отстает на T секунд в сутки. Определить ускорение силы тяжести в новом положении секундного маятника.

  • 1. Алгебраический момент количества движения относительно центра. Алгебраический О -- скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения m на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор m :
  • 2. Векторный момент количества движения относительно центра.

Векторный момент количества движения материальной точки относительно некоторого центра О -- вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов m и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству


Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:

Кинетический момент механической системы относительно центра и оси

1. Кинетический момент относительно центра.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.

2. Кинетический момент относительно оси.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.

3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью.

Теорема об изменении момента количества движения материальной точки относительно центра и оси

1. Теорема моментов относительно центра.

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра

2. Теорема моментов относительно оси.

Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси

Теорема об изменении кинетического момента механической системы относительно центра и оси

Теорема моментов относительно центра.

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра равна геометрической сумме моментов всех внешних сил, действующих на систему, относительно того же центра;

Следствие. Если главный момент внешних сил относительно некоторого центра равен нулю, то кинетический момент системы относительно этого центра не изменяется (закон сохранения кинетического момента).

2. Теорема моментов относительно оси.

Производная по времени от кинетического момента механической системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил, действующих на систему, относительно этой оси

Следствие. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент системы относительно этой оси не изменяется.

Например, = 0, тогда L z = const.

Работа и мощность сил

Работа силы -- скалярная мера действия силы.

1. Элементарная работа силы.

Элементарная работа силы -- это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы: ; - приращение радиуса-вектора точки приложения силы, годографом которого является траектория этой точки. Элементарное перемещение точки по траектории совпадает с в силу их малости. Поэтому

если то dA > 0;если, то dA = 0;если , то dA < 0.

2. Аналитическое выражение элементарной работы.

Представим векторы и d через их проекции на оси декартовых координат:

, . Получим (4.40)

3. Работа силы на конечном перемещении равна интегральной сумме элементарных работ на этом перемещении

Если сила постоянная, а точка ее приложения перемещается прямолинейно,

4. Работа силы тяжести. Используем формулу:Fx = Fy = 0; Fz = -G = -mg;

где h- перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх A 12 = -mgh (точка М 1 -- внизу, M 2 -- вверху).

Итак,. Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (M 2 совпадает с М 1 ) работа равна нулю.

5. Работа силы упругости пружины.

Пружина растягивается только вдоль оси х:

F y = F z = О, F x = = -сх;

где - величина деформации пружины.

При перемещении точки приложения силы из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда

Поэтому работа силы упругости

Работа сил на конечном перемещении; Если = const, то

где - конечный угол поворота; , где п -- число оборотов тела вокруг оси.

Кинетическая энергия материальной точки и механической системы. Теорема Кенига

Кинетическая энергия - скалярная мера механического движения.

Кинетическая энергия материальной точки - скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости,

Кинетическая энергия механической системы -- арифметическая сумма кинетических энергий всех материал точек этой системы:

Кинетическая энергия системы, состоящей из п связанных между собой тел, равна арифметической сумме кинетических энергий всех тел этой системы:

Теорема Кенига

Кинетическая энергия механической системы в общем случае ее движения равна сумме кинетической энергии движения системы вместе с центром масс и кинетической энергии системы при ее движении относительно центра масс:

где Vkc -- скорость k- й точки системы относительно центра масс.

Кинетическая энергия твердого тела при различном движении

Поступательное движение.

Вращение тела вокруг неподвижной оси . ,где -- момент инерции тела относительно оси вращения.

3. Плоскопараллельное движение. , где - момент инерции плоской фигуры относительно оси, проходящей через центр масс.

При плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела со скоростью центра масс и кинетической энергии вращательного движения вокруг оси, проходящей через центр масс, ;

Теорема об изменении кинетической энергии материальной точки

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии материальной точки равен элементарной работе силы, действующей на точку,

Теорема в интегральной (конечной) форме.

Изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии механической системы равен сумме элементарных работ внешних и внутренних сил, действующих на систему.

Теорема в интегральной {конечной) форме.

Изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутренних сил, приложенных к системе, на том же перемещении. ; Для системы твердых тел = 0 (по свойству внутренних сил). Тогда

Момент количества движения моме́нт коли́чества движе́ния

(кинетический момент, момент импульса, угловой момент), мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения K материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы, если заменить в них вектор силы на вектор количества движения mv , т. е. K = [r ·mv ], где r - расстояние до оси вращения. Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твёрдого тела главный момент количества движения относительно оси вращения z I z на угловую скорость ω тела, т. е. K z = I z ω.

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ

МОМЕ́НТ КОЛИ́ЧЕСТВА ДВИЖЕ́НИЯ (кинетический момент, момент импульса, угловой момент), мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы (см. МОМЕНТ СИЛЫ) , если заменить в них вектор силы на вектор количества движения mv , в частности K 0 = [r ·mv ]. Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твердого тела главный момент количества движения относительно оси вращения z тела выражается произведением момента инерции (см. МОМЕНТ ИНЕРЦИИ) I z на угловую скорость w тела, т. е. К Z = I z w.


Энциклопедический словарь . 2009 .

Смотреть что такое "момент количества движения" в других словарях:

    - (кинетический момент, угловой момент), одна из мер механич. движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращат. движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и… … Физическая энциклопедия

    - (кинетический момент Момент импульса, угловой Момент), мера механического движения тела или системы тел относительно какого либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же… … Большой Энциклопедический словарь

    Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси… … Википедия

    момент количества движения - кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль момент количества движения играет при изучении вращательного движения. Как и для момента силы, различают момент… … Энциклопедический словарь по металлургии

    момент количества движения - judesio kiekio momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, lygus dalelės padėties vektoriaus iš tam tikro taško į dalelę ir jos judesio kiekio vektorinei sandaugai, t. y. L = r · p; čia L – judesio kiekio momento… …

    момент количества движения - judesio kiekio momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Materialiojo taško arba dalelės spindulio vektoriaus ir judesio kiekio vektorinė sandauga. Dažniausiai apibūdina sukamąjį judesį taško arba ašies, iš kurios yra… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    момент количества движения - judesio kiekio momentas statusas T sritis fizika atitikmenys: angl. angular moment; moment of momentum; rotation moment vok. Drehimpuls, m; Impulsmoment, n; Rotationsmoment, n rus. момент импульса, m; момент количества движения, m; угловой момент … Fizikos terminų žodynas

    Кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения (См. Вращательное движение). Как и для момента силы (См. Момент силы),… … Большая советская энциклопедия

    - (кинетич. момент, момент импульса, угловой момент), мера механич. движения тела или системы тел относительно к. л. центра (точки) или осн. Для вычисления М. к. д. К материальной точки (тела) справедливы те же формулы, что и для вычисления момента … Естествознание. Энциклопедический словарь

    То же, что момент импульса … Большой энциклопедический политехнический словарь

Книги

  • Теоретическая механика. Динамика металлоконструкций электронная книга
  • Теоретическая механика. Динамика и аналитическая механика , В. Н. Шинкин. Рассмотрены основные теоретические и практические вопросы динамики материальной системы и аналитической механики по следующим темам: геометрия масс, динамика материальной системы и твердого…

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Конец работы -

Эта тема принадлежит разделу:

Динамика

Лекция.. краткое содержание введение в динамику аксиомы классической механики.. введение..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы единиц
СГС Си Техническая [L] см м м [M]

Дифференциальные уравнения движения точки
Основное уравнение динамики можно записать так

Основные задачи динамики
Первая или прямая задача: Известна масса точки и закон ее движения, необходимо найти действующую на точку силу. m

Наиболее важные случаи
1. Сила постоянна.

Количество движения точки
Количеством движения материальной точки называется вектор, равный произведению м

Элементарный и полный импульс силы
Действие силы на материальную точку в течении времени

Теорема об изменении количества движения точки
Теорема. Производная по времени от количества движения точки равна действующей на точку силе. Запишем основной закон динамики

Теорема об изменении момента количества движения точки
Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же

Работа силы. Мощность
Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Теорема об изменении кинетической энергии точки
Теорема. Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Принцип Даламбера для материальной точки
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:

Динамика несвободной материальной точки
Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие свободу движения точки, называются связями

Относительное движение материальной точки
Во многих задачах динамики движение материальной точки рассматривается относительно системы отсчета, движущейся относительно инерциальной системы отсчета.

Частные случаи относительного движения
1. Относительное движение по инерции Если материальная точка движется относительно подвижной системы отсчета прямолинейно и равномерно, то такое движение называется относительны

Геометрия масс
Рассмотрим механическую систему, которая состоит из конечного числа материальных точек с массами

Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции. Момент инерции относительно точки

Моменты инерции простейших тел
1. Однородный стержень 2. Прямоугольная пластина 3. Однородный круглый диск

Количество движения системы
Количеством движения системы материальных точек называется векторная сумма колич

Теорема об изменении количества движения системы
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих н

Законы сохранения количества движения
1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно

Теорема о движении центра масс
Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассмат

Момент количества движения системы
Моментом количества движения системы материальных точек относительно некоторого

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела
Вычислим момент количества движения твердого тела относительно оси вращения.

Теорема об изменении момента количества движения системы
Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на

Законы сохранения момента количества движения
1. Если главный момент внешних сил системы относительно точки равен нулю (

Кинетическая энергия системы
Кинетической энергией системы называют сумму кинетических энергий всех точек системы.

Кинетическая энергия твердого тела
1. Поступательное движение тела. Кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе этого тела.

Теорема об изменении кинетической энергии системы
Эта теорема существует в двух формах. Теорема. Дифференциал кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систе