Наблюдение и описание движения небесных тел. Относительность механического движения. Масса и плотность Земли

Все космогонические гипотезы можно разделить на несколько групп. Согласно одной из них Солнце и все тела Солнечной системы: планеты, спутники, астероиды, кометы и метеорные тела - образовались из единого газовопылевого, или пылевого облака. Согласно второй Солнце и его семейство имеют различное происхождение, так что Солнце образовалось из одного газовопылевого облака (туманности, глобулы), а остальные небесные тела Солнечной системы - из другого облака, которое было захвачено каким-то, не совсем понятным, образом Солнцем на свою орбиту и разделилось каким-то, еще более непонятным образом на множество самых различных тел (планет, их спутников, астероидов, комет и метеорных тел), имеющих самые различные характеристики: массу, плотность, эксцентриситет, направление обращения по орбите и направление вращения вокруг своей оси, наклонение орбиты к плоскости экватора Солнца (или эклиптики) и наклон плоскости экватора к плоскости своей орбиты.
Девять больших планет обращаются вокруг Солнца по эллипсам (мало отличающимся от окружностей) почти в одной плоскости. В порядке удаления от Солнца - это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон . Кроме них в Солнечной системе множество малых планет (астероидов), большинство которых движется между орбитами Марса и Юпитера. Пространство между планетами заполнено крайне разреженным газом и космической пылью. Его пронизывают электромагнитные излучения.
Солнце в 109 раз больше Земли по диаметру и примерно в 333 000 раз массивнее Земли . Масса всех планет составляет всего лишь около 0,1% от массы Солнца, поэтому оно силой своего притяжения управляет движением всех членов Солнечной системы.

Конфигурация и условия видимости планет

Конфигурациями планет называют некоторые характернее взаимные расположения планет, Земли и Солнца.
Условия видимости планет с Земли резко различаются для планет внутренних (Венера и Меркурий), орбиты которых лежат внутри земной орбиты, и для планет внешних (все остальные).
Внутренняя планета может оказаться между Землей и Солнцем или за Солнцем. В таких положениях планета невидима, так как теряется в лучах Солнца. Эти положения называются соединениями планеты с Солнцем. В нижнем соединении планета ближе всего к Земле, а в верхнем соединении она от нас дальше всего.

Синодические периоды обращения планет и их связь с сидерическими периодами

Период обращения планет вокруг Солнца по отношению к звездам называется звездным или сидерическим периодом.
Чем ближе планета к Солнцу, тем больше ее линейная и угловая скорости и короче звездный период обращения вокруг Солнца.
Однако из непосредственных наблюдений определяют не сидерический период обращения планеты, а промежуток времени, протекающий между ее двумя последовательными одноименными конфигурациями, например между двумя последовательными соединениями (противостояниями). Этот период называется синодическим периодом обращения. Определив из наблюдений синодические периоды, путем вычислений находят звездные периоды обращения планет.
Синодический период внешней планеты - это промежуток времени, по истечении которого Земля обгоняет планету на 360° при их движении вокруг Солнца.

Законы Кеплера

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому ученому Иоганну Кеплеру (1571 -1630). В начале XVII в. Кеплер, изучая обращение Марса вокруг Солнца, установил три закона движения планет.

Первый закон Кеплера . Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон площадей). Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади.

Третий закон Кеплера . Квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит.

Среднее расстояние всех планет от Солнца в астрономических единицах можно вычислить, используя третий закон Кеплера. Определив среднее расстояние Земли от Солнца (т. е. значение 1 а.е.) в километрах, можно найти в этих единицах расстояния до всех планет Солнечной системы.Большая полуось земной орбиты принята за астрономическую единицу расстояний (=1 a.e.)
Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения .

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя .

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Задача . Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

Дано
РЕШЕНИЕ

Большую полуось орбиты можно определить из третьего закона Кеплера:
,
а звездный период - из соотношения между сидерическим и синодическим периодами:
,

- ?

Размер и форма Земли

На фотоснимках, сделанных из космоса, Земля выглядит как шар, освещенный Солнцем.
Точный ответ о форме и размере Земли дают градусные измерения , т. е. измерения в километрах длины дуги в 1° в разных местах на поверхности Земли. Градусные измерения показали, что длина 1° дуги меридиана в километрах в полярной области наибольшая (111,7 км), а на экваторе наименьшая (110,6 км). Следовательно, на экваторе кривизна поверхности Земли больше, чем у полюсов, а это говорит о том, что Земля не является шаром. Экваториальный радиус Земли больше полярного на 21,4 км. Поэтому Земля (как и другие планеты) вследствие вращения сжата у полюсов.
Шар, равновеликий нашей планете, имеет радиус, равный 6370 км. Это значение принято считать радиусом Земли.
Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом.

Масса и плотность Земли

Закон всемирного тяготения позволяет определить одну из важнейших характеристик небесных тел - массу, в частности массу нашей планеты. Действительно, исходя из закона всемирного тяготения, ускорение свободного падения g=(G*M)/r 2 . Следовательно, если известны значения ускорения свободного падения, гравитационной постоянной и радиуса Земли, то можно определить ее массу.
Подставив в указанную формулу значение g = 9,8 м/с 2 , G =6,67 * 10 -11 Н * м 2 /кг 2 ,

R =6370 км, найдем, что масса Земли М=6 x 10 24 кг. Зная массу и объем Земли, можно вычислить ее среднюю плотность.

С самых древних времен человечество интересовали видимые движения небесных тел: Солнца, Луны и звезд. Трудно представить себе Наша собственная Солнечная система кажется слишком большой, протянувшись более чем на 4 триллиона миль от Солнца. А между тем Солнце - это всего лишь одна сотая миллиарда от других звезд, которые составляют галактику Млечный Путь.

Млечный Путь

Сама галактика представляет собой громаднейшее колесо, которое вращается, из газа, пыли и более 200 миллиардов звезд. Между ними простираются триллионы миль пустого пространства. Солнце закрепилось на окраине галактики, по форме напоминающей спираль: сверху Млечный Путь смотрится как огромный вращающийся ураган из звезд. По сравнению с размерами галактики, Солнечная система чрезвычайно мала. Если представить, что Млечный Путь величиной с Европу, то Солнечная система будет не больше по размерам, чем грецкий орех.

Солнечная система

Солнце и его 9 планет - спутников разбросаны в одном направлении от центра галактики. Как планеты совершают обороты вокруг своих звезд, так же и звезды обращаются вокруг галактик.

Солнцу понадобится около 200 миллионов лет при скорости 588000 миль в час для того, чтобы сделать полный оборот вокруг этой галактической карусели. Ничем особенным наше Солнце не отличается от других звезд, кроме того, что у него есть спутник, планета под названием Земля, населенная жизнью. Вокруг Солнца по своим орбитам вращаются планеты и небесные тела поменьше, которые называются астероидами.

Первые наблюдения светил

Человек наблюдает видимые движения небесных тел и космические явления уже как минимум 10000 лет. Впервые записи в летописях о небесных телах появились в древнем Египте и Шумере. Египтяне умели различать на небе три типа тел: звезды, планеты и "звезды с хвостами". Тогда же были обнаружены небесные тела: Сатурн, Юпитер, Марс, Венера, Меркурий и, конечно, Солнце, и Луна. Видимые движения небесных тел - это созерцаемое с Земли передвижение этих объектов относительно системы координат, независимо от суточного вращения. Настоящее движение - движение их в космическом пространстве, определяемое действующими на эти тела силами.

Видимые галактики

Глядя в ночное небо, можно увидеть нашу ближайшую соседку - - в виде спирали. Млечный путь, несмотря на его размеры, всего лишь одна из 100 миллиардов галактик в космосе. Без использования телескопа можно увидеть три галактики и часть нашей. Две из них имеют названия Большое и Малое Магелланово облако. Впервые они были увидены в южных водах в 1519 году экспедицией португальского исследователя Магеллана. Эти небольшие галактики совершают обороты вокруг Млечного пути, поэтому являются нашими самыми близкими космическими соседями.

Третья видимая с Земли галактика, Андромеда, отдалена от нас примерно 2 миллионами световых лет. Это значит, что звездный свет Андромеды проходит миллионы лет, чтобы приблизиться к нашей Земле. Таким образом, мы созерцаем эту галактику такой, какой она была 2 миллиона лет назад.

Помимо этих трех галактик ночью можно увидеть часть Млечного пути, представленного множеством звезд. По мнению древних греков, эта группа звезд - молоко из груди богини Геры, отсюда и происходит название.

Видимые планеты с Земли

Планеты - это небесные тела, обращающиеся вокруг Солнца. Когда мы наблюдаем Венеру, светящуюся в небе, то это происходит от того, что она освещается Солнцем и отбивает часть солнечного света. Венера - это Вечерняя звезда или Утренняя звезда. Люди называют ее по-разному, потому что вечером и утром она находится в разных местах.

Как планета Венера вращается вокруг Солнца и меняет свое местонахождение. На протяжении суток происходит видимое движение небесных тел. Система небесных координат не только помогает разобраться в местоположении светил, но и позволяет составлять звездные карты, ориентироваться в ночном небе по созвездиям и изучать поведение небесных объектов.

Законы движения планет

Соединяя воедино наблюдения и теории о движении небесных тел, люди вывели закономерности нашей галактики. Открытия ученых помогли расшифровать видимые движения небесных тел. открытые были одними из первых астрономических законов.

Немецкий математик и астроном стал первооткрывателем данной темы. Кеплер, изучив работы Коперника, вычислил для орбит самую лучшую форму, разъясняющую видимые движения небесных тел - эллипс, и довел закономерности передвижения планет, известные в научном мире как законы Кеплера. Два из них характеризуют передвижение планеты по орбите. Они гласят:

    Любая планета вращается по эллипсу. В одном из фокусов его присутствует Солнце.

    Каждая из них передвигается в плоскости, проходящей сквозь середину Солнца, при этом за одинаковые периоды радиус-вектор между Солнцем и планетой, очерчивает равновеликие площади.

Третий закон соединяет орбитальные данные планет в пределах системы.

Нижние и верхние планеты

Изучая видимые движения небесных тел, физика подразделяет их на две группы: нижние, куда относятся Венера, Меркурий, и верхние - Сатурн, Марс, Юпитер, Нептун, Уран и Плутон. Передвижение этих небесных тел в сфере совершается по-разному. В процессе наблюдаемого перемещения нижних планет у них отмечается смена фаз как у Луны. При перемещении верхних планет можно заметить, что смена фаз у них не происходит, они постоянно обращены к людям своей светлой стороной.

Земля, наравне с Меркурием, Венерой и Марсом, принадлежит к группе так называемых внутренних планет. Они совершают обороты вокруг Солнца внутренними орбитами, в отличие от больших планет, которые вращаются внешними орбитами. Например, Меркурий, который в 20 раз меньше по крайней внутренней орбите.

Кометы и метеориты

Вокруг Солнца вертятся, кроме планет, еще миллиарды ледяных глыб, состоящие из замерзшего твердого газа, мелкого камня и пыли, - кометы, которыми заполнена Солнечная система. Видимые движения небесных тел, представленные кометами, можно увидеть только тогда, когда они приближаются к Солнцу. Тогда их хвост начинает гореть и светится в небе.

Самая знаменитая из них - комета Галлея. Каждые 76 лет она сходит со своей орбиты и приближается к Солнцу. В это время ее можно наблюдать с Земли. Еще в ночном небе можно созерцать метеориты в виде летящих звезд - это сгустки материи, которые движутся по Вселенной с огромной скоростью. Когда они попадают в поле притяжения Земли, почти всегда сгорают. Из-за чрезвычайной скорости и трения с воздушной оболочкой Земли метеориты раскаляются и распадаются на мелкие частицы. Процесс их сгорания можно наблюдать в ночном небе в виде светящейся ленты.

Учебная программа по астрономии описывает видимые движения небесных тел. 11 класс уже ознакомлен с закономерностями, по которым происходит сложное движение планет, сменой лунных фаз и законами затмений.

Все светила перемещаются по небу, совершая один оборот за сутки. Связано это с вращением Земли. Однако двигаются они по-разному. Для наблюдателя, находящегося на Северном полюсе, над горизонтом находятся звезды только северного полушария неба. Они вращаются вокруг Полярной звезды и не заходят за горизонт. Наблюдатель, находящийся на Южном полюсе, видит только звезды южного полушария. На экваторе могут наблюдаться все звезды, расположенные и в северном, и в южном полушариях неба.

Звезды бывают заходящими и восходящими на данной широте места наблюдения, а также невосходящими и незаходящими. Например, в России не видны звезды созвездия Южный Крест – это созвездие, на наших широтах невосходящее. А созвездия Дракона, Малой Медведицы – незаходящие созвездия. Прохождение светила через меридиан называется кульминацией. В верхней кульминации высота светила h максимальна, в нижней кульминации – минимальна. Промежуток между кульминациями светил равен 12 часам (половине суток).

Солнце, как и всякое другое светило, каждый день поднимается из-за горизонта в восточной стороне неба и заходит на западе. В полдень по местному времени оно достигает наибольшей высоты; нижняя кульминация случается в полночь. В полярных областях Солнце летом не заходит за горизонт, и его нижнюю кульминацию можно наблюдать. В средних широтах на протяжении года видимый суточный путь Солнца то сокращается, то увеличивается. Наименьшим он будет в день зимнего солнцестояния (приблизительно 22 декабря), наибольшим – в день летнего солнцестояния (приблизительно 22 июня). В дни весеннего и осеннего равноденствий (соответственно 21 марта и 23 сентября) продолжительность дня равна продолжительности ночи, т.к. Солнце находится на небесном экваторе: оно восходит в точке востока и заходит в точке запада.

>> Видимые движения небесных тел

АСТРОНОМИЯ

В этом разделе мы изучим строение Солнечной системы, законы, описывающие движение планет, проявления гравитационного взаимодействия в системе Земля - Луна, физические свойства Солнца и звезд. Используя известные законы физики, заглянем в недра звезд, обсудим их жизнь и смерть. Узнаем, что останется после смерти Солнца и более массивных звезд. Изучение мира галактик позволит нам узнать, как устроен Млечный Путь и где образуются звезды. Мы посмотрим, как наблюдаемое красное смещение в спектрах галактик указывает на расширение Вселенной в целом и что наблюдаемое реликтовое излучение, заполняющее всю Вселенную, указывает на то, что в прошлом Вселенная была не только плотной, но и горячей. Увидим, как знание законов небесной механики позволяет смоделировать движение не только планет, но и искусственных небесных тел.

Глава 15. СОЛНЕЧНАЯ СИСТЕМА

Из текста этой главы мы узнаем, что сложные видимые петлеобразные движения планет среди звезд объясняются движением Земли и планет вокруг Солнца. Узнаем, что сложный характер движения Луны вокруг Земли и Земли вокруг Солнца объясняет смену лунных фаз, явление приливов и отливов, а также закономерности солнечных и лунных затмений. Изучим состав Солнечной системы.

§ 116 ВИДИМЫЕ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ

Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий. Во II в. до н. э. Гиппарх разделил звезды по блеску на звездные величины, самые яркие он отнес к звездам первой величины (1 m), а самые слабые, едва видимые невооруженным глазом, - к 6 m . В созвездии звезды обозначаются греческими буквами, некоторые самые яркие звезды имеют собственные названия. Так, Полярная звезда - Малой Медведицы имеет блеск 2 m . Самая яркая звезда северного неба Вега - Лиры имеет блеск около О m .

Особое место среди созвездий занимали 12 зодиакальных созвездий, через которые проходит годичный путь Солнца - эклиптика. Так, в марте Солнце движется по созвездию Рыб, в мае - Тельца, в августе - Льва, в ноябре - Скорпиона.

В настоящее время для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них - экваториальная система координат (рис. 15.1). В ее основе лежит небесный экватор - проекция земного экватора на небесную сферу.

Эклиптика и экватор пересекаются в двух точках: весеннего равноденствия.

Точка весеннего равноденствия находится в созвездии Рыбы, и она служит начальной точкой, от которой в направлении против часовой стрелки отсчитывается координата прямое восхождение, которую обычно обозначают буквой . Эта координата является аналогом долготы в географических координатах. В астрономии принято прямое восхождение измерять в часовой мере, а не в градусной. При этом исходят из того, что полная окружность составляет 24 ч.


Вторая координата светила - склонение,- является аналогом широты, ее измеряют в градусной мере. Так, звезда Альтаир ( Орла) имеет координаты = 19 ч 48 м 18 с, склонение = + 8°44". Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты (рис. 15.2), которые используют астрономы при поиске нужных светил.

Взаимное расположение звезд на небе не меняется, они совершают суточное вращение вместе с небесной сферой. Планеты наряду с суточным вращением совершают медленное движение среди звезд, оправдывая свое название (planetas в переводе с греческого - блуждающая звезда).

Видимый путь планет на небе петлеобразен. Размеры описываемых планетами петель различны. На рисунке 15.3 показано видимое петлеобразное движение Марса, которое длится 79 дней.

Наиболее просто видимое движение планет и Солнца описывается в системе отсчета, связанной с Солнцем. Такой подход получил название гелиоцентрической системы мира и был предложен польским астрономом Николаем Коперником (1473-1543).

В этой системе суточное движение небесного свода объясняется вращением Земли вокруг оси, годичное движение Солнца по эклиптике - движением Земли вокруг Солнца, а описываемые планетами петли - сложением движений Земли и планет (см. рис. 15.3). Вокруг Земли движется только Луна. Коперник рассчитал расстояния планет до Солнца.

В астрономии среднее расстояние от Земли до Солнца принято за единицу расстояния и называется астрономической единицей (а. е.), 1 а. е. = 150 10 6 км. Так, Меркурий находится от Земли на расстоянии 0,39 а. е., а Сатурн - на расстоянии 9,54 а. е.

В античные времена и вплоть до Коперника полагали, что в центре Вселенной расположена Земля и все небесные тела обращаются по сложным траекториям вокруг нее. Эта система мира называется геоцентричекой системой мира.

Доказательство движения Земли вокруг Солнца и определение расстояний до звезд. Если Земля обращается вокруг Солнца, то близкие звезды должны периодически смещаться на фоне более далеких звезд. Это смещение называется параллактическим, а угол 71, под которым со звезды виден радиус земной орбиты, называется параллаксом. Как видно из рисунка 15.4, расстояние до звезды

Так как параллакс звезд мал, мы заменили синус малого угла самим углом, выраженным в радианной мере, а затем перепзли от радианной меры к градусной, учтя, что 1 рад = 206 265". В астрономии принято измерять расстояние до звезд в парсеках (пк).

1 пк = 206 265 а о = 206 265 150 10 6 км = 3 10 13 км.

Итак, если параллакс измерять в угловых секундах, а расстояние до звезды - в парсеках, то связью между ними будет равенство

Только во второй половине XIX в. удалось измерить параллаксы и расстояния до звезд и тем самым подтвердить теорию Коперника наблюдениями. Так, ближайшая к нам звезда Центавра имеет параллакс = 0,751", поэтому расстояние до нее r = 1,33 пк 4 10 13 км.

Для определения положения звезд используются небесные экваториальные координаты. Сложное петлеобразное движение планет объясняется движением Земли и планет вокруг Солнца, а наблюдение годичного параллакса у звезд не только подтверждает обращение Земли вокруг Солнца, но и позволяет определять расстояния до иих.

1. Что называется небесным экватором)
2. Что такое эклиптика!
3. Чем отличается геоцентрическая система мира от гелиоцентрической!
4. Что такое парсек!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки