Решить логическое уравнение онлайн по информатике. Логика. Логические функции. Решение уравнений. Решение систем логических уравнений различного типа

Носкин Андрей Николаевич,
учитель информатики
высшей квалификационной категории,
кандидат военных наук, доцент
ГБОУ Лицей №1575 город Москва

Оптимизированный метод отображения для решения задачи 23 из КИМ ЕГЭ по информатике и ИКТ

Одной из самой трудной задачей в КИМ ЕГЭ является задача 23, в которой надо найти количество различных наборов значений логических переменных, которые удовлетворяют указанному условию.
Данная задача является едва ли не самым сложным заданием КИМ ЕГЭ по информатике и ИКТ. С ним, как правило, справляются не более 5% экзаменуемых {1}.
Такой маленький процент учеников, которые справились с данным заданием объясняется следующим:
- ученики могут путать (забыть) знаки логических операций;
- математические ошибки в процессе выполнения расчетов;
- ошибки в рассуждениях при поиске решения;
- ошибки в процессе упрощения логических выражений;
- учителя рекомендуют решать данную задачу, после выполнения всей работы, так как вероятность допущения
ошибок очень велика, а «вес» задачи составляет всего лишь один первичный балл.
Кроме того, некоторые учителя сами с трудом решают данный тип задач и поэтому стараются решать с детьми более простые задачи.
Также усложняет ситуацию, что в данном блоке существует большое количество разнообразных задач и невозможно подобрать какое-то шаблонное решение.
Для исправление данной ситуации педагогическим сообществом дорабатываются основные две методики решения задач данного типа: решение с помощью битовых цепочек {2} и метод отображений {3}.
Необходимость доработки (оптимизации) данных методик обусловлена тем, что задачи постоянно видоизменяются как по структуре, так и по количеству переменных (только один тип переменных Х, два типа переменных Х и Y, три типа: X, Y, Z).
Сложность освоения данными методиками решения задач подтверждается тем, что на сайте К.Ю. Полякова существует разборов данного типа задач в количестве 38 штук{4}. В некоторых разборах приведены более одного типа решения задачи.
Последнее время в КИМ ЕГЭ по информатике встречаются задачи с двумя типа переменных X и Y.
Я оптимизировал метод отображения и предлагаю своим ученикам пользоваться усовершенствованным методом.
Это дает результат. Процент моих учеников, которые справляются с данной задачей варьируется до 43% от сдающих. Как правило, ежегодно у меня сдает ЕГЭ по информатике от 25 до 33 человек из всех 11-х классов.
До появления задач с двумя типами переменными метод отображения ученики использовали очень успешно, но после появления в логическом выражении Y, я стал замечать, что у детей перестали совпадать ответы с тестами. Оказалось, они не совсем четко стали представлять, как составить таблицу отображений с новым типом переменной. Тогда мне пришла мысль, что для удобства надо все выражение привести к одному типу переменной, как удобно детям.
Приведу более подробно данную методику. Для удобства буду ее рассматривать на примере системы логических выражений, приведенных в {4}.
Сколько различных решений имеет система логических уравнений

(x 1 ^ y 1) = (¬x 2 V ¬ y 2 )
(x 2 ^ y 2) = (¬ x 3 V ¬ y 3 )
...
(x 5 ^ y 5 ) = (¬ x 6 V ¬ y 6 )

где x 1 , …, x 6 , y 1 , …, y 6 , - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.
Решение:
1. Из анализа системы логических уравнений мы видим, что присутствует 6 переменных Х и 6 переменных У . Так как любая из этих переменных может принимать только два значения (0 и 1), то заменим эти переменные на 12 однотипных переменных, например Z.
2. Теперь перепишем систему с новыми однотипными переменными. Сложность задачи будет заключаться во внимательной записи при замене переменных.

(z 1 ^ z 2) = (¬z 3 V ¬ z 4 )
(z 3 ^ z 4) = (¬ z 5 V ¬ z 6 )
...
(z 9 ^ z 10 ) = (¬ z 11 V ¬ z 12)


3. Построим таблицу, в которой переберем все варианты z 1 , z 2 , z 3 , z 4 , поскольку в первом логическом уравнении четыре переменных, то таблица будет иметь 16 строк (16=2 4); уберем из таблицы такие значения z 4 , при которых первое уравнение не имеет решения (зачеркнутые цифры).
0 0 0 0
1
1 0
1
1 0 0
1
1 0
1
1 0 0 0
1
1 0
1
1 0 0
1
1 0
1

4. Анализируя таблицу, строим правило отображения пар переменных (например, паре Z 1 Z 2 =00 соответствует пара Z 3 Z 4 = 11) .

5. Заполняем таблицу, вычисляя количество пар переменных, при котором система имеет решение.

6. Складываем все результаты: 9 + 9 + 9 + 27 = 54
7. Ответ: 54.
Приведенная выше оптимизированная методика решения задачи 23 из КИМ ЕГЭ позволила ученикам вновь обрести уверенность и решать успешно этот тип задачи.

Литература:

1. ФИПИ. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2015 года по ИНФОРМАТИКЕ и ИКТ. Режим доступа: http://www.fipi.ru/sites/default/files/document/1442163533/informatika_i_ikt.pdf

2. К.Ю. Поляков, М.А. Ройтберг. Системы логических уравнений: решение с помощью битовых цепочек. Журнал Информатика, № 12, 2014, с. 4-12. Издательский дом "Первое сентября", г.Москва.
3. Е.А. Мирончик, Метод отображения. Журнал Информатика, № 10, 2013, с. 18-26. Издательский дом "Первое сентября", г.Москва.

J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

Пояснение.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

J ∧ ¬K ∧ L ∧ ¬M = 0.

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В. Получим ¬J ∨ K ∨ ¬L ∨ M = 1.

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Ответ: 30

Сколько различных решений имеет уравнение

((J → K) → (M ∧ N ∧ L)) ∧ ((J ∧ ¬K) → ¬ (M ∧ N ∧ L)) ∧ (M → J) = 1

где J, K, L, M, N – логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Пояснение.

Используем формулы A → B = ¬A ∨ B и ¬(А ∨ В) = ¬А ∧ ¬В

Рассмотрим первую подформулу:

(J → K) → (M ∧ N ∧ L) = ¬(¬J ∨ K) ∨ (M ∧ N ∧ L) = (J ∧ ¬K) ∨ (M ∧ N ∧ L)

Рассмотрим вторую подформулу

(J ∧ ¬K) → ¬(M ∧ N ∧ L) = ¬(J ∧ ¬K) ∨ ¬(M ∧ N ∧ L) = (¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L

Рассмотрим третью подформулу

1) M → J = 1 следовательно,

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (1 ∧ N ∧ L) = ¬K ∨ N ∧ L;

(0 ∨ K) ∨ 0 ∨ ¬N ∨ ¬L = K ∨ ¬N ∨ ¬L;

Объединим:

¬K ∨ N ∧ L ∧ K ∨ ¬N ∨ ¬L = 0 ∨ L ∨ 0 ∨ ¬L = L ∨ ¬L = 1 следовательно, 4 решения.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (0 ∧ N ∧ L) = ¬K;

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (0 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L = K ∨ 1 ∨ ¬N ∨ ¬L

Объединим:

K ∨ 1 ∨ ¬N ∨ ¬L ∧ ¬K = 1 ∨ ¬N ∨ ¬L следовательно, 4 решения.

в) M = 0 J = 0.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (0 ∧ ¬K) ∨ (0 ∧ N ∧ L) = 0.

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (1 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L.

Ответ: 4 + 4 = 8.

Ответ: 8

Сколько различных решений имеет уравнение

((K ∨ L) → (L ∧ M ∧ N)) = 0

где K, L, M, N – логические переменные? В Ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве Ответа Вам нужно указать количество таких наборов.

Пояснение.

перепишем уравнение, используя более простые обозначения операций:

((K + L) → (L · M · N)) = 0

1) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

K + L = 1 и L · M · N = 0

2) из первого уравнения следует, что хотя бы одна из переменных, K или L, равна 1 (или обе вместе); поэтому рассмотрим три случая

3) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

4) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

5) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

6) всего получаем 4 + 3 + 3 = 10 решений.

Ответ: 10

Сколько различных решений имеет уравнение

(K ∧ L) ∨ (M ∧ N) = 1

Пояснение.

Выражение истинно в трех случаях, когда (K ∧ L) и (M ∧ N) равны соответственно 01, 11, 10.

1) "01" K ∧ L = 0; M ∧ N = 1, => M, N равны 1, а K и L любые, кроме как одновременно 1. Следовательно 3 решения.

2) "11" K ∧ L = 1; M ∧ N = 1. => 1 решение.

3) "10" K ∧ L = 1; M ∧ N = 0. => 3 решения.

Ответ: 7.

Ответ: 7

Сколько различных решений имеет уравнение

(X ∧ Y ∨ Z) → (Z ∨ P) = 0

где X, Y, Z, P – логические переменные? В ответе не нужно перечислять все различные наборы значений, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Пояснение.

(X ∧ Y ∨ Z) → (Z ∨ P) = 0 =>

¬(X ∧ Y ∨ Z) ∨ (Z ∨ P) = 0;

(¬X ∨ ¬Y ∧ ¬Z) ∨ (Z ∨ P) = 0;

Логическое ИЛИ ложно только в одном случае: когда оба выражения ложны.

Следовательно,

(Z ∨ P) = 0 => Z = 0, P = 0.

¬X ∨ ¬Y ∧ ¬Z = 0 => ¬X ∨ ¬Y ∧ 1 = 0 =>

¬X ∨ ¬Y = 0 => X = 1; Y = 1.

Следовательно, существует только одно решение уравнения.

Ответ: 1

Сколько различных решений имеет уравнение

(K ∨ L) ∧ (M ∨ N) = 1

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Пояснение.

Логическое И истинно только в одном случае: когда все выражения истинны.

K ∨ L = 1, M ∨ N = 1.

Каждое из уравнений дает по 3 решения.

Рассмотрим уравнение А ∧ В = 1 если и А и В принимают истинные значения в трех случаях каждое, то в целом уравнение имеет 9 решений.

Следовательно ответ 9.

Ответ: 9

Сколько различных решений имеет уравнение

((A → B)∧ C) ∨ (D ∧ ¬D)= 1,

где A, B, C, D – логические переменные?

В ответе не нужно перечислять все различные наборы значений A, B, C, D, при которых выполнено данное равенство. В качестве ответа вам нужно указать количество таких наборов.

Пояснение.

Логическое "ИЛИ" истинно, когда истинно хотя бы одно из утверждений.

(D ∧ ¬D)= 0 при любых D.

Следовательно,

(A → B)∧ C) = 1 => C = 1; A → B = 1 => ¬ A ∨ B = 1, что дает нам 3 варианта решений при каждом D.

(D ∧ ¬ D)= 0 при любых D, что дает нам два варианта решений (при D = 1, D = 0).

Следовательно: всего решений 2*3 = 6.

Итого 6 решений.

Ответ: 6

Сколько различных решений имеет уравнение

(¬K ∨ ¬L ∨ ¬M) ∧ (L ∨ ¬M ∨ ¬N) = 0

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Пояснение.

Применим отрицание к обеим частям уравнения:

(K ∧ L ∧ M) ∨ (¬L ∧ M ∧ N) = 1

Логическое ИЛИ истинно в трех случаях.

Вариант 1.

K ∧ L ∧ M = 1, тогда K, L, M = 1, а ¬L ∧ M ∧ N = 0. N любое, то есть 2 решения.

Вариант 2.

¬L ∧ M ∧ N = 1, тогда N, M = 1; L = 0, K любое, то есть 2 решения.

Следовательно, ответ 4.

Ответ: 4

A, B и С — целые числа, для которых истинно высказывание

¬ (А = B) ∧ ((A > B)→(B > C)) ∧ ((B > A)→(С > B)).

Чему равно В, если A = 45 и C = 43?

Пояснение.

1) ¬(А = B); (A > B)→(B > C); (B > A)→(С > B);

2) эти простые высказывания связаны операцией ∧ (И, конъюнкция), то есть, они должны выполняться одновременно;

3) из ¬(А = B)=1 сразу следует, что А B;

4) предположим, что A > B, тогда из второго условия получаем 1→(B > C)=1; это выражение может быть истинно тогда и только тогда, когда B > C = 1;

5) поэтому имеем A > B > C, этому условию соответствует только число 44;

6) на всякий случай проверим и вариант A 0 →(B > C)=1;

это выражение истинно при любом B; теперь смотрим третье условие получаем

это выражение может быть истинно тогда и только тогда, когда C > B, и тут мы получили противоречие, потому что нет такого числа B, для которого C > B > A.

Ответ: 44.

Ответ: 44

Составьте таблицу истинности для логической функции

X = (А ↔ B) ∨ ¬(A → (B ∨ C))

в которой столбец значений аргумента А представляет собой двоичную запись числа 27, столбец значений аргумента В — числа 77, столбец значений аргумента С — числа 120. Число в столбце записывается сверху вниз от старшего разряда к младшему(включая нулевой набор). Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

Пояснение.

Запишем уравнение, используя более простые обозначения операций:

1) это выражение с тремя переменными, поэтому в таблице истинности будет строчек; следовательно, двоичная запись чисел, по которым строятся столбцы таблицы А, В и С, должна состоять из 8 цифр

2) переведем числа 27, 77 и 120 в двоичную систему, сразу дополняя запись до 8 знаков нулями в начале чисел

3) вряд ли вы сможете сразу написать значения функции Х для каждой комбинации, поэтому удобно добавить в таблицу дополнительные столбцы для расчета промежуточных результатов (см. таблицу ниже)

X 0
А В С
0 0
0 1 1
0 0 1
1 0 1
1 1 1
0 1 0
1 0 0
1 1 0

4) заполняем столбцы таблицы:

А В С X
0 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0
0 0 1 1 1 1 0 1
1 0 1 0 1 1 0 0
1 1 1 1 1 1 0 1
0 1 0 0 1 1 0 0
1 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1

значение равно 1 только в тех строчках, где А = В

значение равно 1 в тех строчках, где либо В либо С = 1

значение равно 0 только в тех строчках, где А = 1 и В + С = 0

значение — это инверсия предыдущего столбца (0 заменяется на 1, а 1 – на 0)

результат Х (последний столбец) — это логическая сумма двух столбцов и

5) чтобы получить ответ, выписываем биты из столбца Х сверху вниз:

6) переводим это число в десятичную систему:

Ответ: 171

Каково наибольшее целое число X, при котором истинно высказывание (10 (X+1)·(X+2))?

Пояснение.

Уравнение является операцией импликации между двумя отношениями:

1) Конечно, здесь можно применить тот же способ, что и в примере 2208, однако при этом понадобится решать квадратные уравнения (не хочется…);

2) Заметим, что по условию нас интересуют только целые числа, поэтому можно попытаться как─то преобразовать исходное выражение, получив равносильное высказывание (точные значения корней нас совершенно не интересуют!);

3) Рассмотрим неравенство : очевидно, что может быть как положительным, так и отрицательным числом;

4) Легко проверить, что в области высказывание истинно при всех целых , а в области — при всех целых (чтобы не запутаться, удобнее использовать нестрогие неравенства, и , вместо и );

5) Поэтому для целых можно заменить на равносильное выражение

6) область истинности выражения — объединение двух бесконечных интервалов;

7) Теперь рассмотрим второе неравенство : очевидно, что так же может быть как положительным, так и отрицательным числом;

8) В области высказывание истинно при всех целых , а в области — при всех целых , поэтому для целых можно заменить на равносильное выражение

9) область истинности выражения — закрытый интервал;

10) Заданное выражение истинно везде, кроме областей, где и ;

11) Обратите внимание, что значение уже не подходит, потому что там и , то есть импликация дает 0;

12) При подставлении 2, (10 (2+1) · (2+2)), или 0 → 0 что удовлетворяет условию.

Таким образом, ответ 2.

Ответ: 2

Каково наибольшее целое число X, при котором истинно высказывание

(50 (X+1)·(X+1))?

Пояснение.

Применим преобразование импликации и преобразуем выражение:

(50 (X+1)·(X+1)) ⇔ ¬(X 2 > 50) ∨ ((X+1) 2) ∨ (|X+1|).

Логическое ИЛИ истинно когда истинно хотя бы одно логическое высказывание. Решив оба неравенства и учитывая, что видим, что наибольшее целое число, при котором выполняется хотя бы одно из них - 7 (на рисунке жёлтым изображено положительное решение второго неравенства, синим - первого).

Ответ: 7

Укажите значения переменных К, L, M, N, при которых логическое выражение

(¬(М ∨ L) ∧ К) → (¬К ∧ ¬М ∨ N)

ложно. Ответ запишите в виде строки из 4 символов: значений переменных К, L, М и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что К=1, L=1, M=0, N=1.

Пояснение.

Дублирует задание 3584.

Ответ: 1000

(¬K ∨ M) → (¬L ∨ M ∨ N)

Пояснение.

Применим преобразование импликации:

(K ∧ ¬M) ∨ (¬L ∨ M ∨ N) = 0

Применим отрицание к обоим частям уравнения:

(¬K ∨ M) ∧ L ∧ ¬M ∧ ¬N = 1

Преобразуем:

(¬K ∧ L ∨ M ∧ L) ∧ ¬M ∧ ¬N = 1

Следовательно, M = 0, N = 0, рассмотрим теперь (¬K ∧ L ∨ M ∧ L):

из того, что M = 0, N = 0 следует, что M ∧ L = 0, тогда ¬K ∧ L = 1, то есть K = 0, L = 1.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(¬(M ∨ L) ∧ K) → ((¬K ∧ ¬M) ∨ N)

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Пояснение.

Запишем уравнение, используя более простые обозначения операций (условие «выражение ложно» означает, что оно равно логическому нулю):

1) из формулировки условия следует, что выражение должно быть ложно только для одного набора переменных

2) из таблицы истинности операции «импликация» следует, что это выражение ложно тогда и только тогда, когда одновременно

3) первое равенство (логическое произведение равно 1) выполняется тогда и только тогда, когда и ; отсюда следует (логическая сумма равна нулю), что может быть только при ; таким образом, три переменных мы уже определили

4) из второго условия, , при и получаем .

Дублирует задание

Ответ: 1000

Укажите значения логических переменных Р, Q, S, Т, при которых логическое выражение

(Р ∨ ¬Q) ∨ (Q → (S ∨ Т)) ложно.

Ответ запишите в виде строки из четырех символов: значений переменных Р, Q, S, T (в указанном порядке).

Пояснение.

(1) (Р ∨ ¬Q) = 0

(2) (Q → (S ∨ Т)) = 0

(1) (Р ∨ ¬Q) = 0 => P = 0, Q = 1.

(2) (Q → (S ∨ Т)) = 0 Применим преобразование импликации:

¬Q ∨ S ∨ Т = 0 => S = 0, T = 0.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∨ (L ∧ K) ∨ ¬N

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Пояснение.

Логическое "ИЛИ" ложно тогда и только тогда, когда ложны оба утверждения.

(K → M) = 0, (L ∧ K) ∨ ¬N = 0.

Применим преобразование импликации для первого выражения:

¬K ∨ M = 0 => K = 1, M = 0.

Рассмотрим второе выражение:

(L ∧ K) ∨ ¬N = 0 (см. результат первого выражения) => L ∨ ¬N = 0 => L = 0, N = 1.

Ответ: 1001.

Ответ: 1001

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∧ (K → ¬M) ∧ (¬K → (M ∧ ¬L ∧ N))

истинно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Пояснение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

1) (K → M) = 1 Применим преобразование импликации: ¬K ∨ M = 1

2) (K → ¬M) = 1 Применим преобразование импликации: ¬K ∨ ¬M = 1

Отсюда следует, что K = 0.

3) (¬K → (M ∧ ¬L ∧ N)) = 1 Применим преобразование импликации: K ∨ (M ∧ ¬L ∧ N) = 1 из того что K = 0 получаем:

M ∧ ¬L ∧ N = 1 => M = 1, L = 0, N = 1.

Ответ: 0011

Известно, что для целых чисел X, Y и Z истинно высказывание

(Z Чему равно Z, если X=25 и Y=48?

Пояснение.

Выполнив подстановку чисел получаем что Z = 47.

Обратим внимание, что это сложное высказывание состоит из трех простых

1) (Z 2) эти простые высказывания связаны операцией ∧ (И, конъюнкция), то есть, они должны выполняться одновременно.

3) из ¬(Z+1 24, а из ¬(Z+1 47.

4) из (Z Z Ответ: 47.

Ответ: 47

A, B и C – целые числа, для которых истинно высказывание:

(C Чему равно C, если A=45 и B=18?

Пояснение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

Подставим значения чисел в выражение:

1) (C (C 2) ¬(C+1 , C ≥ 44.

3) ¬(C+1 , C ≥ 17.

Из 2) и 1) следует, что C

Ответ: 44

¬(А = B) ∧ ((B A)) ∧ ((A 2C))

Чему равно A, если C = 8 и B = 18?.

Пояснение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

1) ¬(А = B) = 1, то есть А ≠ 18 = 1.

2) ((B A)) Применим преобразование импликации: (18 > A) ∨ (16 > A) = 1

3) (A 2C) Применим преобразование импликации: (A > 18) ∨ (A > 16) = 1

Из 2) и 3) следует, что (18 > A) и (A > 16), так как в противном случае возникает противоречие А = 17.

Ответ: 17

A, B и С – целые числа, для которых истинно высказывание

¬(А = B) ∧ ((A > B) → (C = B)) ∧ ((B > A) → (C = A))

Чему равно B, если A = 45 и C = 18?

Пояснение.

Логическое "И" истинно только тогда, когда истинны все высказывания.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют определенные задачи, которые посвящены логике высказываний. Чтобы решить данного рода уравнения необходимо обладать неким багажом знаний: знания законов логики высказываний, знания таблиц истинности логических функций 1 или 2 переменных, методы преобразования логических выражений. Кроме того, необходимо знать следующие свойства логических операций: конъюнкции, дизъюнкции, инверсии, импликации и эквивалентности.

Любую логическую функцию от \ переменных - \можно задать таблицей истинности.

Решим несколько логически уравнений:

\[\rightharpoondown X1\vee X2=1 \]

\[\rightharpoondown X2\vee X3=1\]

\[\rightharpoondown X3\vee X4=1 \]

\[\rightharpoondown X9\vee X10=1\]

Начнем решение с \[Х1\] и определим какие значения данная переменная может принимать: 0 и 1. Далее рассмотрим каждое их вышеприведенных значений и посмотрим, какое может быть при этом \[Х2.\]

Как видно из таблицы наше логическое уравнение имеет 11 решений.

Где можно решить логическое уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Способы решения систем логических уравнений

Киргизова Е.В., Немкова А.Е.

Лесосибирский педагогический институт –

филиал Сибирского федерального университета, Россия

Умение мыслить последовательно, рассуждать доказательно, строить гипотезы, опровергать негативные выводы, не приходит само по себе, это умение развивает наука логика . Логика – это наука, изучающая методы установленияистинности или ложности одних высказываний на основе истинности или ложности других высказываний .

Овладение азами этой науки невозможно без решения логических задач. Проверка сформированности умений применять свои знания в новой ситуации осуществляется за счет сдачи. В частности, это умение решать логические задачи. Задания В15 в ЕГЭ, являются заданиями повышенной сложности, так как они содержат системы логических уравнений. Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности, декомпозиция, последовательное решение уравнений и т.д.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0 , B =0 и C =1 .

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A =0 , B =0 и C =1 .

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда :

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0 , B = 0 и C = 1 .

Так же можно воспользоваться методом последовательного решения уравнений , на каждом шаге добавляя по одной переменной в рассматриваемый набор. Для этого необходимо преобразовать уравнения таким образом, что бы переменные вводились в алфавитном порядке. Далее строим дерево решений, последовательно добавляя в него переменные.

Первое уравнение системы зависит только от A и B , а второе уравнение от А и C . Переменная А может принимать 2 значения 0 и 1:


Из первого уравнения следует, что , поэтому при A = 0 п олучаем B = 0 , а при A = 1 имеем B = 1 . Итак, первое уравнение имеет два решения относительно переменных A и B .

Изобразим второе уравнение, из которого определим значения C для каждого варианта. При A =1 импликация не может быть ложной, то есть вторая ветка дерева не имеет решения. При A =0 получаем единственное решение C = 1 :

Таким образом, получили решение системы: A = 0 , B = 0 и C = 1 .

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A → B ) + (C → D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A → B и Y = C → D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

( x 1 x 2 )*( x 2 x 3 )*…*( x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Переменные

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассуждениях и построении дерева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Далее можно увидеть, что одно уравнение истинно в следующих трех случаях: (0; 0), (0; 1), (1; 1). Система двух уравнений истина в четырех случаях (0; 0; 0), (0; 0; 1), (0; 1; 1), (1; 1; 1). При этом сразу видно, что существует решение, состоящее из одних нулей и еще m решений, в которых добавляется по одной единице, начиная с последней позиции до заполнения всех возможных мест. Можно предположить, что общее решение будет иметь такой же вид, но чтобы такой подход стал решением, требуется доказательство, что предположение верно.

Подводя итог всему вышесказанному, хочется обратить внимание, на то, что не все рассмотренные методы являются универсальными. При решении каждой системы логических уравнений следует учитывать ее особенности, на основе которых и выбирать метод решения.

Литература:

1. Логические задачи / О.Б. Богомолова – 2-е изд. – М.: БИНОМ. Лаборатория знаний, 2006. – 271 с.: ил.

2. Поляков К.Ю. Системы логических уравнений / Учебно-методическая газета для учителей информатики: Информатика №14, 2011 г.

Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности и декомпозиция.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0, B=0 и C=1.

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A=0, B=0 и C=1.

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда:

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0, B = 0 и C = 1.

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A →B ) + (C →D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A →B и Y = C →D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

(x 1 x 2 )*(x 2 x 3 )*…*(x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассужд ниях и построении де рева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)