Составьте уравнение реакций в молекулярном виде. Ионообменные реакции с участием осадков и газов

Сбалансируйте полное молекулярное уравнение. Прежде чем приступить к записи ионного уравнения, следует сбалансировать исходное молекулярное уравнение. Для этого необходимо расставить соответствующие коэффициенты перед соединениями, так чтобы число атомов каждого элемента в левой части равнялось их количеству в правой части уравнения.

  • Запишите число атомов каждого элемента по обе стороны уравнения.
  • Добавьте перед элементами (кроме кислорода и водорода) коэффициенты, так чтобы количество атомов каждого элемента в левой и правой части уравнения было одинаковым.
  • Сбалансируйте атомы водорода.
  • Сбалансируйте атомы кислорода.
  • Пересчитайте количество атомов каждого элемента по обе стороны уравнения и убедитесь, что оно одинаково.
  • Например, после балансировки уравнения Cr + NiCl 2 --> CrCl 3 + Ni получаем 2Cr + 3NiCl 2 --> 2CrCl 3 + 3Ni.

Определите, в каком состоянии находится каждое вещество, которое участвует в реакции. Часто об этом можно судить по условию задачи. Есть определенные правила, которые помогают определить, в каком состоянии находится элемент или соединение.

Определите, какие соединения диссоциируют (разделяются на катионы и анионы) в растворе. При диссоциации соединение распадается на положительный (катион) и отрицательный (анион) компоненты. Эти компоненты затем войдут в ионное уравнение химической реакции.

Посчитайте заряд каждого диссоциировавшего иона. При этом помните, что металлы образуют положительно заряженные катионы, а атомы неметаллов превращаются в отрицательные анионы. Определите заряды элементов по таблице Менделеева. Необходимо также сбалансировать все заряды в нейтральных соединениях.

  • Перепишите уравнение так, чтобы все растворимые соединения были разделены на отдельные ионы. Все что диссоциирует или ионизируется (например, сильные кислоты) распадется на два отдельных иона. При этом вещество останется в растворенном состоянии (р-р ). Проверьте, чтобы уравнение было сбалансировано.

    • Твердые вещества, жидкости, газы, слабые кислоты и ионные соединения с низкой растворимостью не изменят своего состояния и не разделятся на ионы. Оставьте их в прежнем виде.
    • Молекулярные соединения просто рассеются в растворе, и их состояние изменится на растворенное (р-р ). Есть три молекулярных соединения, которые не перейдут в состояние (р-р ), это CH 4(г ) , C 3 H 8(г ) и C 8 H 18(ж ) .
    • Для рассматриваемой реакции полное ионное уравнение запишется в следующем виде: 2Cr (тв ) + 3Ni 2+ (р-р ) + 6Cl - (р-р ) --> 2Cr 3+ (р-р ) + 6Cl - (р-р ) + 3Ni (тв ) . Если хлор не входит в состав соединения, он распадается на отдельные атомы, поэтому мы умножили количество ионов Cl на 6 с обеих сторон уравнения.
  • Сократите одинаковые ионы в левой и правой части уравнения. Можно вычеркнуть лишь те ионы, которые полностью идентичны с обеих сторон уравнения (имеют одинаковые заряды, нижние индексы и так далее). Перепишите уравнение без этих ионов.

    • В нашем примере обе части уравнения содержат 6 ионов Cl - , которые можно вычеркнуть. Таким образом, получаем краткое ионное уравнение: 2Cr (тв ) + 3Ni 2+ (р-р ) --> 2Cr 3+ (р-р ) + 3Ni (тв ) .
    • Проверьте результат. Суммарные заряды левой и правой частей ионного уравнения должны быть равны.
  • Инструкция

    Рассмотрите пример образования труднорастворимого соединения.

    Na2SO4 + BaCl2 = BaSO4 + 2NaCl

    Или вариант в ионном виде:

    2Na+ +SO42- +Ba2++ 2Cl- = BaSO4 + 2Na+ + 2Cl-

    При решении ионных уравнений, необходимо соблюдать следующие правила:

    Одинаковые ионы из обеих его частей исключаются;

    Следует помнить, что сумма электрических зарядов в левой части уравнения должна быть равна сумме электрических зарядов в правой части уравнения.

    Написать ионные уравнения взаимодействия между водными растворами следующих веществ: a) HCl и NaOH; б) AgNO3 и NaCl; в) К2СO3 и H2SO4; г) СН3СOOH и NaOH.

    Решение. Запишите уравнения взаимодействия указанных веществ в молекулярном виде:

    а) HCl + NaOH = NaCl + H2O

    б) AgNO3 + NaCl = AgCl + NaNO3

    в) K2CO3 + H2SO4 = K2SO4 + CO2 + H2O

    г) СН3СOOH + NaOH = CH3COONa + H2O

    Отметьте, что взаимодействие этих веществ возможно, ибо в результате происходит связывание ионов с образованием либо слабых (Н2О), либо труднорастворимого вещества (AgCl), либо газа (СO2).

    Исключив одинаковые ионы из левых и правых частей равенства (в случае варианта а) – ионы и , в случае б) – ионы натрия и -ионы, в случае в) – ионы калия и сульфат-ионы), г) – ионы натрия, получите решение этих ионных уравнений:

    а) H+ + OH- = H2O

    б) Ag+ + Cl- = AgCl

    в) CO32- + 2H+ = CO2 + H2O

    г) СН3СOOH + OH- = CH3COO- + H2O

    Довольно часто в самостоятельных и контрольных работах встречаются задания, предполагающие решение уравнений реакций. Однако без некоторых знаний, навыков и умений даже самые простые химические уравнения не написать.

    Инструкция

    Прежде всего нужно изучить основные органических и неорганических соединений. На крайний случай можно иметь перед собой подходящую шпаргалку, которая сможет помочь во время выполнения задания. После тренировки все равно в памяти отложатся необходимые знания и умения.

    Базовым является материал, охватывающий , а также способы получения каждого соединений. Обычно они представлены в виде общих схем, например: 1. + основание = соль + вода
    2. кислотный оксид + основание = соль + вода
    3. основный оксид + кислота = соль + вода
    4. металл + (разб) кислота = соль + водород
    5. растворимая соль + растворимая соль = нерастворимая соль + растворимая соль
    6. растворимая соль + = нерастворимое основание + растворимая соль
    Имея перед глазами таблицу растворимости солей, и , а также схемы-шпаргалки, можно по ним решать уравнения реакций. Важно только иметь полный перечень таких схем, а также сведения о формулах и названиях различных классов органических и неорганических соединений.

    После того, как удастся само уравнение, необходимо проверить правильность написания химических формул. Кислоты, соли и основания легко проверяются по таблице растворимости, в которой указаны заряды ионов кислотных остатков и металлов. Важно помнить, что любая должна быть в целом электронейтральна, то есть, количество положительных зарядов должно совпадать с количеством отрицательных. Обязательно при этом учитываются индексы, которые перемножаются на соответствующие заряды.

    Если и этот этап пройден и имеется уверенность в правильности написания уравнения химической реакции , то можно теперь смело расставлять коэффициенты. Химическое уравнение представляет собой условную запись реакции с помощью химических символов, индексов и коэффициентов. На этом этапе выполнения задания обязательно нужно придерживаться правил: Коэффициент ставится перед химической формулой и относится ко всем элементам, входящим в состав вещества.
    Индекс ставится после химического элемента немного внизу, и относится только к стоящему слева от него химическому элементу.
    Если группа (например, кислотный остаток или гидроксильная группа) стоит в скобках, то нужно усвоить, что два, рядом стоящих индекса (перед скобкой и после нее) перемножаются.
    При подсчете атомов химического элемента коэффициент умножается (не складывается!) на индекс.

    Далее подсчитывается количество каждого химического элемента таким образом, чтобы суммарное число элементов, входящих в состав исходных веществ совпадало с числом атомов, входящих в состав соединений, образовавшихся продуктов реакции . Путем анализа и применения, вышеизложенных, правил можно научиться решать уравнения реакций, входящих в состав цепочек веществ.

    Тема: Химическая связь. Электролитическая диссоциация

    Урок: Составление уравнений реакций ионного обмена

    Составим уравнение реакции между гидроксидом железа (III) и азотной кислотой.

    Fe(OH) 3 + 3HNO 3 = Fe(NO 3) 3 + 3H 2 O

    (Гидроксид железа (III) является нерастворимым снованием, поэтому не подвергается . Вода - малодиссоциируемое вещество, на ионы в растворе практически недиссоциировано.)

    Fe(OH) 3 + 3H + + 3NO 3 - = Fe 3+ + 3NO 3 - + 3H 2 O

    Зачеркнем одинаковое количество нитрат-анионов слева и справа, запишем сокращенное ионное уравнение:

    Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

    Данная реакция протекает до конца, т.к. образуется малодиссоциируемое вещество - вода.

    Составим уравнение реакции между карбонатом натрия и нитратом магния.

    Na 2 CO 3 + Mg(NO 3) 2 = 2NaNO 3 + MgCO 3 ↓

    Запишем данное уравнение в ионной форме:

    (Карбонат магния является нерастворимым в воде веществом, следовательно, на ионы не распадается.)

    2Na + + CO 3 2- + Mg 2+ + 2NO 3 - = 2Na + + 2NO 3 - + MgCO 3 ↓

    Зачеркнем одинаковое количество нитрат-анионов и катионов натрия слева и справа, запишем сокращенное ионное уравнение:

    CO 3 2- + Mg 2+ = MgCO 3 ↓

    Данная реакция протекает до конца, т.к. образуется осадок - карбонат магния.

    Составим уравнение реакции между карбонатом натрия и азотной кислотой.

    Na 2 CO 3 + 2HNO 3 = 2NaNO 3 + CO 2 + H 2 O

    (Углекислый газ и вода - продукты разложения образующейся слабой угольной кислоты.)

    2Na + + CO 3 2- + 2H + + 2NO 3 - = 2Na + + 2NO 3 - + CO 2 + H 2 O

    CO 3 2- + 2H + = CO 2 + H 2 O

    Данная реакция протекает до конца, т.к. в результате нее выделяется газ и образуется вода.

    Составим два молекулярных уравнения реакций, которым соответствует следующее сокращенное ионное уравнение: Ca 2+ + CO 3 2- = CaCO 3 .

    Сокращенное ионное уравнение показывает сущность реакции ионного обмена. В данном случае можно сказать, что для получения карбоната кальция необходимо, чтобы в состав первого вещества входили катионы кальция, а в состав второго - карбонат-анионы. Составим молекулярные уравнения реакций, удовлетворяющих этому условию:

    CaCl 2 + K 2 CO 3 = CaCO 3 ↓ + 2KCl

    Ca(NO 3) 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaNO 3

    1. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§17)

    2. Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§9)

    3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009.

    4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

    5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

    Дополнительные веб-ресурсы

    1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме): ().

    2. Электронная версия журнала «Химия и жизнь»: ().

    Домашнее задание

    1. Отметьте в таблице знаком «плюс» пары веществ, между которыми возможны реакции ионного обмена, идущие до конца. Составьте уравнения реакций в молекулярном, полном и сокращенном ионном виде.

    Реагирующие вещества

    K 2 CO 3

    AgNO 3

    FeCl 3

    HNO 3

    CuCl 2

    2. с. 67 №№ 10,13из учебника П.А. Оржековского «Химия: 9-ый класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.

    SO 4 2- + Ba 2+ → BaSO 4 ↓

    Алгоритм:

    Подбираем к каждому иону противоион, пользуясь таблицей растворимости, чтобы получилась нейтральная молекула – сильный электролит.

    1. Na 2 SO 4 + BaCl 2 → 2 NaCl + BaSO 4

    2. BaI 2 + K 2 SO 4 → 2KI + BaSO 4

    3. Ba(NO 33) 2 + (NH 4) 2 SO 4 → 2 NH 4 NO 3 + BaSO 4

    Ионные полные уравнения:

    1. 2 Na + + SO 4 2- + Ba 2- + 2 Cl‾ → 2 Na + + 2 Cl‾ + BaSO 4

    2. Ba 2+ + 2 I‾ + 2 K + + SO 4 2- → 2 K + + 2 I‾ + BaSO 4

    3. Ba 2+ + 2 NO 3 ‾ + 2 NH 4 + + SO 4 2- → 2 NH 4 + + 2 NO 3 ‾ + BaSO 4

    Вывод: к одному краткому уравнению можно составить множество молекулярных уравнений.

    ТЕМА 9. ГИДРОЛИЗ СОЛЕЙ

    Гидролиз солей – ионообменная реакция соли с водой, приводя-

    от греч. «гидро» щая к образованию слабого электролита (либо

    Вода, «лизис» - слабого основания, либо слабой кислоты) и изме-

    разложение нению среды раствора.

    Любую соль можно представить как продукт взаимодействия основания с

    кислотой.


    Сильное Слабое Сильная Слабая может быть образована

    1. LiOH NH 4 OH или 1. Н 2 SO 4 все осталь- 1. Сильным основанием и

    2. NaOH NH 3 · H 2 O 2. HNO 3 ные слабой кислотой.

    3. KOH все осталь - 3. HCl 2. Слабым основанием и

    4. RbOH ные 4. HBr сильной кислотой.

    5. CsOH 5. HI 3. Слабым основанием и

    6. FrOH 6. HClO 4 слабой кислотой.

    7. Ca(OH) 2 4. Сильным основанием и

    8. Sr(OH) 2 сильной кислотой.

    9. Ва(ОН) 2


    СОСТАВЛЕНИЕ ИОННО-МОЛЕКУЛЯРНЫХ УРАВНЕНИЙ ГИДРОЛИЗА.

    РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ ПО ТЕМЕ: «ГИДРОЛИЗ СОЛЕЙ»

    Задача № 1.

    Составить ионно-молекулярные уравнения гидролиза соли Na 2 CO 3 .

    Алгоритм Пример

    1. Составить уравнение диссо-

    циации соли на ионы. Na 2 CO 3 → 2Na + + CO 3 2- Na + →NaOН - сильное

    2. Проанализировать, каким CO 3 2- →H 2 CO 3 - слабая

    Основанием и какой кисло-

    той образована соль. продукт

    3. Сделать вывод, какой сла- гидролиза

    бый электролит – продукт

    гидролиза.

    4. Написать уравнения гидроли-

    I ступень.

    А) составить краткое ионное I. а) CO 3 2- + H + │OH ‾ HCO 3 ‾ + OH ‾

    уравнение, определить среду

    раствора. pH>7, щелочная среда

    Б) составить полное ионное б) 2Na + +CO 3 2- +HOH Na + +HCO 3 ‾ +Na + +OH ‾

    уравнение, зная, что молеку-

    ла – электронейтральная ча-

    стица, подобрать к каждому

    иону противоион.

    В) составить молекулярное в) Na 2 CO 3 + HOH NaHCO 3 + NaOH

    уравнение гидролиза.

    Гидролиз протекает ступенчато, если слабое основание – многокислотное, а слабая кислота – многоосновная.

    II ступень (см. алгоритм выше NaHCO 3 Na + + HCO 3 ‾

    1, 2, 3, 4а, 4б, 4в). II. а) HCO 3 ‾ + HOH H 2 CO 3 + OH ‾

    Б) Na + + HCO 3 ‾ H 2 CO 3 + Na + + OH ‾

    В) NaHCO 3 + HOH H 2 CO 3 + NaOH

    Вывод: соли, образованные сильными основаниями и слабыми кислотами подвергаются частичному гидролизу (по аниону), среда раствора щелочная (рН>7).

    Задача № 2.

    Составить ионно-молекулярные уравнения гидролиза соли ZnCl 2 .

    ZnCl 2 → Zn 2+ + 2 Cl ‾ Zn 2+ → Zn(OH) 2 – слабое основание

    Cl ‾ → HCl – сильная кислота

    I. а) Zn 2+ + H + /OH ‾ ZnOH + + H + среда кислая, рН<7

    Б) Zn 2+ + 2 Cl ‾ + HOH ZnOH + + Cl ‾ + H + + Cl ‾

    В) ZnCl 2 + HOH ZnOHCl + HCl

    II. а) ZnOH + + HOH Zn(OH) 2 + H +

    Б) ZnOH + + Cl ‾ + HOH Zn(OH) 2 + H + + Cl ‾

    В) ZnOHCl + HOH Zn(OH) 2 + HCl

    Вывод: соли, образованные слабыми основаниями и сильными кислотами подвергаются частичному гидролизу (по катиону), среда раствора кислая.

    Задача № 3.

    Составить ионно-молекулярные уравнения гидролиза соли Al 2 S 3 .

    Al 2 S 3 → 2 Al 3+ + 3 S 2- Al 3+ → Al(OH) 3 – слабое основание

    S 2- → H 2 S – слабая кислота

    а), б) 2 Al 3+ + 3 S 2- + 6 HOH → 2 Al(OH) 3 ↓ + 3 H 2 S

    в) Al 2 S 3 + 6 H 2 O → 2 Al(OH) 3 + 3 H 2S S

    Вывод: соли, образованные слабыми основаниями и слабыми кислотами подвергаются полному (необратимому) гидролизу, среда раствора близка к нейтральной.

    При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

    Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

    Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

    Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

    Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

    Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

    При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

    Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

    Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

    Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

    Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

    Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

    Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

    В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

    Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

    Таблица 15. Растворимость важнейших солей в воде

    Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

    Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

    Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

    Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

    Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

    Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

    Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

    Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

    Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

    Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

    В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

    Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

    Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

    Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.