Как решать молекулярные и ионные уравнения. Алгоритм написания ионных уравнений

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

Таблица 15. Растворимость важнейших солей в воде

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.

Химические свойства кислот и оснований.

Химические свойства ОСНОВАНИЙ:

1. Действие на индикаторы: лакмус - синий, метилоранж - жёлтый, фенолфталеин - малиновый,
2. Основание + кислота = Соли + вода Примечание:реакция не идёт, если и кислота, и щёлочь слабые. NaOH + HCl = NaCl + H2O
3. Щёлочь + кислотный или амфотерный оксид = соли + вода
2NaOH + SiO2 = Na2SiO3 + H2O
4. Щёлочь + соли = (новое)основание + (новая) соль прим-е:исходные вещества должны быть в растворе, а хотя бы 1 из продуктов реакции выпасть в осадок или мало растворяться. Ba(OH)2 + Na2SO4 = BaSO4+ 2NaOH
5.Слабые основания при нагреве разлагаются: Cu(OH)2+Q=CuO + H2O
6.При нормальных условиях невозможно получить гидроксиды серебра и ртути, вместо них в реакции появляются вода и соответствующий оксид: AgNO3 + 2NaOH(p) = NaNO3+Ag2O+H2O

Химические свойства КИСЛОТ:
Взаимодействие с оксидами металлов с образованием соли и воды:
CaO + 2HCl(разб.) = CaCl2 + H2O
Взаимодействие с амфотерными оксидами с образованием соли и воды:
ZnO+2HNO3=ZnNO32+H2O
Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
NaOH + HCl(разб.) = NaCl + H2O
Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:
CuOH2+H2SO4=CuSO4+2H2O
Взаимодействие с солями, если выпадает осадок или выделяется газ:
Сильные кислоты вытесняют более слабые из их солей:
K3PO4+3HCl=3KCl+H3PO4
Na2CO3 + 2HCl(разб.) = 2NaCl + CO2 + H2O
Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты HNO3 любой концентрации и концентрированной серной кислоты H2SO4), если образующаяся соль растворима:
Mg + 2HCl(разб.) = MgCl2 + H2
С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:
Mg + 2H2SO4 = MgSO4 + 2H2O + SO4
Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):
CH3COOH + C2H5OH = CH3COOC2H5 + H2O

Номенклатура и химические свойства солей.

Химические свойства СОЛЕЙ
Определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода):
BaCl2(тверд.) + H2SO4(конц.) = BaSO4↓ + 2HCl
NaHCO3 + HCl(разб.) = NaCl + CO2 + H2O
Na2SiO3 + 2HCl(разб.) = SiO2↓ + 2NaCl + H2O
Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:
Cu+HgCl2=CuCl2+Hg
Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции; в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:
CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl
NaCl(разб.) + AgNO3 = NaNO3 +AgCl↓
3Na2SO3 + 4H2SO4(разб.) + K2Cr2O7 = 3Na2SO4 + Cr2(SO4)3 + 4H2O + K2SO4
Некоторые соли разлагаются при нагревании:
CuCO3=CuO+CO2
NH4NO3 = N2O + 2H2O
NH4NO2 = N2 + 2H2O


Комплексные соединения: номенклатура, состав и химические свойства.

Ионообменные реакции с участием осадков и газов.

Молекулярные и молекулярно-ионные уравнения.

Это реакции, идущие в растворах между ионами. Сущность их выражается ионными уравнениями, которые записываются так:
сильные электролиты пишутся в виде ионов, а слабые электролиты, газы, осадки (твердые вещества) – в виде молекул, независимо от того в какой части уравнения они находятся: левой или правой.

1. AgNO 3 + HCl = AgCl↓ + HNO 3 – молекулярное уравнение;
Ag + + NO 3 – + H + + Cl – = AgCl↓ + H + + NO 3 – – ионное уравнение.

Если одинаковые ионы в обеих частях уравнения сократить, то получится краткое, или сокращенное, ионное уравнение:

Ag + + Cl – = AgCl↓.

CaCO 3 ↓ + 2H + + 2Cl – = Ca 2+ + Cl – + CO 2 + H 2 O,
CaCO 3 ↓ + 2H + = Ca 2+ + CO 2 + H 2 O.

4. CH 3 COOH + NH 4 OH = CH 3 COONH 4 + H 2 O,
CH 3 COOH + NH 4 OH = CH 3 COO – + NH 4 + +H 2 O,
CH 3 COOH и NH 4 OH – слабые электролиты.

5. CH 3 COONH 4 + NaOH = CH 3 COONa + NH 4 OH NH 3
H 2 O

CH 3 COO – +NH 4 + + Na + + OH – = CH 3 COO – + Na + + NH 3 + H 2 O,
CH 3 COO – + NH 4 + + OH – = CH3COO – + NH 3 + H 2 O.

Реакции в растворах электролитах идут практически до конца в сторону образования осадков, газов и слабых электролитов.

4.2) Молекулярное уравнение это обычное уравнение, которыми мы часто пользуемся на уроке.
Например: NaOH+HCl -> NaCl+H2O
CuO+H2SO4 -> CuSO4+H2O
H2SO4+2KOH -> K2SO4+2H2O и т.д
Ионное уравнение.
Некоторые вещества растворяются в воде, образуя при этом ионы. Эти вещества можно записать с помощью ионов. А малорастворимые или труднорастворимые оставляем в первоначальном виде. Это и есть ионное уравнение.
Например: 1) CaCl2+Na2CO3 -> NaCl+CaCO3-молекулярное уравнение
Ca+2Cl+2Na+CO3 -> Na+Cl+CaCO3-ионное уравнение
Cl и Na остались такими же, какими они были до реакции, т.н. они не приняли в нём участие. И их можно убрать и из правой, и из левой частей уравнения. Тогда получается:
Ca+CO3 -> CaCO3
2) NaOH+HCl -> NaCl+H2O-молекулярное уравнение
Na+OH+H+Cl -> Na+Cl+H2O-ионное уравнение
Na и Cl остались такими же, какими они были до реакции, т.н. они не приняли в нём участие. И их можно убрать и из правой, и из левой частей уравнения. Тогда получается?
OH+H -> H2O

Сбалансируйте полное молекулярное уравнение. Прежде чем приступить к записи ионного уравнения, следует сбалансировать исходное молекулярное уравнение. Для этого необходимо расставить соответствующие коэффициенты перед соединениями, так чтобы число атомов каждого элемента в левой части равнялось их количеству в правой части уравнения.

  • Запишите число атомов каждого элемента по обе стороны уравнения.
  • Добавьте перед элементами (кроме кислорода и водорода) коэффициенты, так чтобы количество атомов каждого элемента в левой и правой части уравнения было одинаковым.
  • Сбалансируйте атомы водорода.
  • Сбалансируйте атомы кислорода.
  • Пересчитайте количество атомов каждого элемента по обе стороны уравнения и убедитесь, что оно одинаково.
  • Например, после балансировки уравнения Cr + NiCl 2 --> CrCl 3 + Ni получаем 2Cr + 3NiCl 2 --> 2CrCl 3 + 3Ni.

Определите, в каком состоянии находится каждое вещество, которое участвует в реакции. Часто об этом можно судить по условию задачи. Есть определенные правила, которые помогают определить, в каком состоянии находится элемент или соединение.

Определите, какие соединения диссоциируют (разделяются на катионы и анионы) в растворе. При диссоциации соединение распадается на положительный (катион) и отрицательный (анион) компоненты. Эти компоненты затем войдут в ионное уравнение химической реакции.

Посчитайте заряд каждого диссоциировавшего иона. При этом помните, что металлы образуют положительно заряженные катионы, а атомы неметаллов превращаются в отрицательные анионы. Определите заряды элементов по таблице Менделеева. Необходимо также сбалансировать все заряды в нейтральных соединениях.

  • Перепишите уравнение так, чтобы все растворимые соединения были разделены на отдельные ионы. Все что диссоциирует или ионизируется (например, сильные кислоты) распадется на два отдельных иона. При этом вещество останется в растворенном состоянии (р-р ). Проверьте, чтобы уравнение было сбалансировано.

    • Твердые вещества, жидкости, газы, слабые кислоты и ионные соединения с низкой растворимостью не изменят своего состояния и не разделятся на ионы. Оставьте их в прежнем виде.
    • Молекулярные соединения просто рассеются в растворе, и их состояние изменится на растворенное (р-р ). Есть три молекулярных соединения, которые не перейдут в состояние (р-р ), это CH 4(г ) , C 3 H 8(г ) и C 8 H 18(ж ) .
    • Для рассматриваемой реакции полное ионное уравнение запишется в следующем виде: 2Cr (тв ) + 3Ni 2+ (р-р ) + 6Cl - (р-р ) --> 2Cr 3+ (р-р ) + 6Cl - (р-р ) + 3Ni (тв ) . Если хлор не входит в состав соединения, он распадается на отдельные атомы, поэтому мы умножили количество ионов Cl на 6 с обеих сторон уравнения.
  • Сократите одинаковые ионы в левой и правой части уравнения. Можно вычеркнуть лишь те ионы, которые полностью идентичны с обеих сторон уравнения (имеют одинаковые заряды, нижние индексы и так далее). Перепишите уравнение без этих ионов.

    • В нашем примере обе части уравнения содержат 6 ионов Cl - , которые можно вычеркнуть. Таким образом, получаем краткое ионное уравнение: 2Cr (тв ) + 3Ni 2+ (р-р ) --> 2Cr 3+ (р-р ) + 3Ni (тв ) .
    • Проверьте результат. Суммарные заряды левой и правой частей ионного уравнения должны быть равны.