Три соединения с ионной химической связью используется. Типы химических связей: ионная, ковалентная, металлическая. Что такое ионы

Определение 1

При изучении строения молекулы появляется вопрос о природе сил, которые обеспечивают связь между нейтральными атомами, входящими в их состав. Такие связи между атомами в молекуле получили название химической связи .

Классифицируют на два типа:

  • ионная связь;
  • ковалентная связь.

Деление производится условно. Большинство случаев характеризуется наличием черт обоих типов связей. При помощи детальных и эмпирических исследований можно установить в каждом случае соотношение между степенью «ионности» и «ковалентности» связи.

Опытным путем доказали, что при разъединении молекулы на составные (атомы) необходимо совершить работу. То есть процесс ее образования должен сопровождаться выделением энергии. Если два атома водорода пребывают в свободном состоянии, то имеют большую энергию по сравнению с атомами в двухатомной молекуле H 2 . Выделяемая при образовании молекулы энергия считается мерой работы сил взаимодействия, связывающих атомы в молекулу.

Опыты доказывают, что появление силы взаимодействия между атомами идет вследствие наличия внешних валентных электронов атомов. Это возможно благодаря резкому изменению оптического спектра атомов, вступающих в химические реакции при сохранении без изменения рентгеновского характеристического спектра атомов, независимо от типа химического соединения.

Линейчатые оптические спектры определены состоянием валентных электронов, а характеристическое рентгеновское излучение определено при помощи внутренних электронов, то есть их состояния. Химические взаимодействия включают в себя участие электронов, требующих небольшую энергию для прохождения их изменений. Этой функцией обладают внешние электроны. Они отличаются меньшим потенциалом ионизации по сравнению с электронами внутренних оболочек.

Ионная связь

Существует предположение о природе химической связи атомов в молекуле, которое говорит о появлении силы взаимодействия электрической природы между внешними электронами. Для выполнения условия устойчивости должны существовать два взаимодействующих атома с электрическими зарядами противоположного знака. Тип химической связи может быть реализован только в части молекул. После взаимодействия атомов происходит превращение в ионы. Когда атом присоединяет один или несколько электронов, тогда становится отрицательным ионом, а другой – положительным ионом.

Ионная связь похожа на силы притяжения между зарядами с противоположными знаками. Если положительно заряженный ион натрия N a + будет притянут к отрицательному хлору C l - , то получим молекулу N a C l , которая служит явным примером ионной связи.

Определение 2

Иначе говоря, ионная химическая связь называется гетерополярной (гетеро - разный). Молекулы и ионными типами связи – ионные или гетерополярные молекулы.

Понятие ионной связи не дает возможности разъяснить строения и структуры всех молекул. Необъяснимо, почему может образоваться молекула из двух нейтральных атомов водорода. По причине одинаковой полярности атомов водорода недопустимо считать, что один из ионов водорода с положительным зарядом, другой – с отрицательным. Связь, имеющаяся у атомов водорода (между нейтральными атомами), объясняется только квантовой механикой. Она получила название ковалентной.

Ковалентная связь

Определение 3

Химическая связь, осуществляемая между нейтральными атомами в молекуле, называется ковалентной или гомеополярной (гомео – одинаковый). Образованные на основании таких связей молекулы называют гомеополярными или атомными.

Классическая физика рассматривает только один тип взаимодействия, где возможна ее реализация между двумя телами, – гравитация. Так как гравитационные силы малы, то с их помощью сложно объяснить взаимодействие в гомеополярной молекуле.

Ковалентная связь заключается в пребывании в определенном квантовом состоянии с определенной энергией электрона в поле ядра. Если расстояния между ядрами изменяются, то это отражается на состоянии движения электрона и его энергии. При уменьшении энергии между атомами происходит увеличение энергии взаимодействия между ядрами, объясняемое действием силы отталкивания.

Когда происходит уменьшение энергии электрона при уменьшении расстояния быстрее, чем рост энергии взаимодействия ядер, тогда значение совокупной энергии системы значительно уменьшается. Это объясняется действием сил, стремящихся уменьшить расстояние между ядрами, в системе, составленной из двух отталкивающихся ядер и электрона. Имеющиеся силы притяжения участвуют в порождении ковалентной связи молекулы. Их появление спровоцировано наличием общего электрона, иначе говоря, благодаря электронному обмену между атомами, значит, считаются обменными квантовыми силами.

Ковалентная связь обладает свойством насыщения. Его проявление возможно благодаря определенной валентности атомов. То есть атом водорода связывается с одним атомом водорода, а атом углерода с количеством не более 4 атомов водорода.

Предложенная связь способствует объяснению валентности атомов, которое не получила его в классической физике. То есть свойство насыщения непонятно с точки зрения природы взаимодействия в классической теории.

Присутствие ковалентной связи наблюдается не только в двухатомных молекулах. Она свойственна для большого числа молекул неорганических соединений (окись азота, аммиак и другие).

В 1927 году была создана количественная теория ковалентной связи для молекулы водорода В. Гайтлером и Ф. Лондоном, основываясь на понятиях квантовой механики. Они доказали причину, вызывающую появление молекулы с ковалентной связью, а именно: квантовомеханический эффект, связанный с неразличимостью электронов. Определение основной энергии связи происходит при наличии обменного интеграла. Суммарный спин молекулы водорода равняется 0 , в ней отсутствует орбитальный момент, поэтому она диамагнитна. При столкновении двух атомов водорода молекула появляется только при параллельности спинов обоих электронов. Это условие способствует отталкиванию атомов водорода, то есть молекулы не смогут образоваться.

При соединении двух одинаковых атомов ковалентной связью расположение электронного облака в молекуле становится симметричным. Если связь объединяет два разных атома, то электронное облако располагается асимметрично. Молекула с асимметричным распределением электронного облака обладает постоянным дипольным моментом, то есть полярна. Когда вероятность локализации электрона около одного из атомов преобладает над вероятностью нахождения этого электрона около другого атома, происходит переход от ковалентной связи к ионной. Четкой границы между ионной и ковалентной связи нет.

Пример 1

Произвести описание состояния при сближении двух атомов.

Решение

Когда расстояние между двумя атомами уменьшают, то возможно появление нескольких ситуаций:

  1. Одна пара электронов или более становятся общими для рассматриваемых атомов. Они могут перемещаться между атомами и находятся там дольше, чем в других местах. Это способствует созданию силы притяжения.
  2. Возникновение ионной связи. Один или более электронов способны переходить к другому. То есть это способствует появлению притягивающихся положительного и отрицательного ионов.
  3. Отсутствие возникновения связи. Электронные структуры двух атомов перекрываются и составляют единую систему. По принципу Паули такая система является неподходящей только для квантового состояния двух электронов. При переходе на более высокий энергоуровень система получит больше энергии, что приведет к нестабильности. Даже при соответствии принципу Паули без увеличения энергии системы появится электрическая сила отталкивания между разными электронами. По условию оказывается намного меньше влияния на создание связи, чем с принципом Паули.

Пример 2

Энергия ионизации (потенциал ионизации) элемента – это энергия, необходимая для вырывания электрона из одного атома. Ее считают мерой силы связи внешнего электрона или электронов. Объяснить, почему энергия ионизации лития больше, чем натрия, натрия больше, чем калия, калия больше, чем рубидия.

Решение

Все выше перечисленные элементы обладают свойствами щелочных металлов и относятся к первой группе. Любой их атом обладает единственным внешним электроном в s -состоянии. Электроны внутренних оболочек частично экранируют внешний электрон от ядерного заряда + Z q e в качестве следствия эффективного заряда, удерживающего внешний электрон, равняется + q e . Чтобы вырвать из такого атома внешний электрон, следует совершить работу с превращением атомов щелочных металлов в положительные ионы. Чем больше размер атома, тем больше расстояние валентного электрона от ядра, но меньше сила его притягивания. Данная группа характеризуется убыванием энергии ионизации сверху вниз по периодической системе Менделеева. Ее рост в каждом периоде слева направо связан с увеличением заряда и постоянным количеством внутренних экранирующих электронов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Ионы – это атомы, потерявшие или получившие электроны и, как следствие, некоторый заряд. Для начала хотелось бы напомнить, что ионы бывают двух типов: катионы (положительный заряд ядра больше, чем количество электронов, несущих отрицательный заряд) и анионы (заряд ядра меньше количества электронов). Ионная связь образуется в результате взаимодействия двух ионов с разноименными зарядами.

Ионная и ковалентная связь

Данный тип связи является частным случаем ковалентной. Разность электроотрицательностей в данном случае столь велика (более чем 1,7 по Полингу), что общая пара электронов не частично смещается, а полностью переходит к атому с большей электроотрицательностью. Поэтому образование ионной связи является результатом возникновения сильного электростатического взаимодействия между ионами. Важно понимать, что не существует стопроцентно ионной связи. Данный термин применяется, если «ионные признаки» более выражены (т.е. электронная пара сильно смещена к более электроотрицательному атому).

Механизм ионной связи

Атомы, имеющие практически полную или практически пустую валентную (внешнюю) оболочку, наиболее охотно вступают в химические реакции. Чем меньше пустых орбиталей на валентной оболочке, тем выше шанс, что атом получит электроны извне. И наоборот – чем меньше электронов находится на внешней оболочке, тем вероятнее, что атом отдаст электрон.

Электроотрицательность

Это способность атома притягивать к себе электроны, поэтому атомы с наиболее заполненными валентными оболочками более электроотрицательны.

Типичный металл охотно отдает электроны, тогда как типичный неметалл охотнее их забирает. Поэтому чаще всего ионную связь образуют металлы и неметаллы. Отдельно следует упомянуть другой тип ионной связи – молекулярную . Ее особенность в том, что в роли ионов выступают не отдельные атомы, а целые молекулы.

Схема ионной связи

На рисунке схематически изображено формирование фторида натрия. Натрий имеет низкую электроотрицательность и всего один электрон на валентной оболочке (ВО). Фтор – значительно более высокую электроотрицательность, ему не хватает всего одного электрона для заполнения ВО. Электрон с ВО натрия, переходит на ВО фтора, заполняя орбиталь, в следствии чего оба атома приобретают разноименные заряды и притягиваются друг к другу.

Свойства ионной связи

Ионная связь достаточно сильна – разрушить ее при помощи тепловой энергии крайне сложно, а потому вещества с ионной связью имеют высокую температуру плавления . В то же время радиус взаимодействия ионов достаточно низкий, что обуславливает ломкость подобных соединений. Важнейшими ее свойствами являются ненаправленность и ненасыщаемость . Ненаправленность происходит из формы электрического поля иона, которое представляет собой сферу и способно взаимодействовать с катионами или анионами во всех направлениях. При этом поля двух ионов не компенсируются полностью, вследствие чего они вынуждены притягивать к себе дополнительные ионы, образуя кристалл, – это и есть явление, называемое ненасыщаемостью. В ионных кристаллах нет молекул, а отдельные катионы и анионы окружены множеством ионов противоположного знака, количество которых зависит в основном от положения атомов в пространстве.

Кристаллы поваренной соли (NaCl) – типичный пример ионной связи.

Ионная (электровалентная) химическая связь - связь, обусловленная образованием электронных пар за счет перехода валентных электронов от одного атома к другому. Характерна для соединений металлов с наиболее типичными неметаллами, напр.:

Na + + Cl - = Na + Cl

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Идеальной ионной связи практически не существует. Даже в тех соединениях, которые обычно относят к ионным, не происходит полного перехода электронов от одного атома к другому; электроны частично остаются в общем пользовании. Так, связь во фториде лития на 80% ионная, а на 20% - ковалентная. Поэтому правильнее говорить о степени ионности (полярности) ковалентной химической связи. Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной. При большей разности соединение можно считать ионным.

Ионной моделью химической связи широко пользуются для описания свойств многих веществ, в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами. Это обусловлено простотой описания таких соединений: считают, что они построены из несжимаемых заряженных сфер, отвечающих катионам и анионам. При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Водородная связь

Водородная связь является особым видом химической связи. Известно, что соединения водорода с сильно электроотрицательными неметаллами, такими как F, О,N, имеют аномально высокие температуры кипения. Если в ряду Н 2 Тe–H 2 Se–H 2 Sтемпература кипения закономерно уменьшается, то при переходе отH 2 Sк Н 2 О наблюдается резкий скачок к увеличению этой температуры. Такая же картина наблюдается и в ряду галогенводородных кислот. Это свидетельствует о наличии специфического взаимодействия между молекулами Н 2 О, молекуламиHF. Такое взаимодействие должно затруднять отрыв молекул друг от друга, т.е. уменьшать их летучесть, а, следовательно, повышать температуру кипения соответствующих веществ. Вследствие большой разницы в ЭО химические связиH–F,H–O,H–Nсильно поляризованы. Поэтому атом водорода имеет положительный эффективный заряд (δ +), а на атомахF,OиNнаходится избыток электронной плотности, и они заряжены отрицательно ( -). Вследствие кулоновского притяжения происходит взаимодействие положительно заряженного атома водорода одной молекулы с электроотрицательным атомом другой молекулы. Благодаря этому молекулы притягиваются друг к другу (жирными точками обозначены водородные связи).

Водородной называется такая связь, которая образуется посредством атома водорода, входящего в состав одной из двух связанных частиц (молекул или ионов). Энергия водородной связи (21–29 кДж/моль или5–7 ккал/моль) приблизительнов 10 раз меньше энергии обычной химической связи. И тем не менее, водородная связь обусловливает существование в парах димерных молекул (Н 2 О) 2 , (HF) 2 и муравьиной кислоты.

В ряду сочетаний атомов НF,HO,HN,HCl,HSэнергия водородной связи падает. Она также уменьшается с повышением температуры, поэтому вещества в парообразном состоянии проявляют водородную связь лишь в незначительной степени; она характерна для веществ в жидком и твердом состояниях. Такие вещества как вода, лед, жидкий аммиак, органические кислоты, спирты и фенолы, ассоциированы в димеры, тримеры и полимеры. В жидком состоянии наиболее устойчивы димеры.


Wikimedia Foundation . 2010 .

Смотреть что такое "Ионная химическая связь" в других словарях:

    Связь между атомами в молекуле или мол. соединении, возникающая в результате либо переноса эл на с одного атома на другой, либо обобществления эл нов парой (или группой) атомов. Силы, приводящие к X. с., кулоновские, однако X. с. описать в рамках … Физическая энциклопедия

    ХИМИЧЕСКАЯ СВЯЗЬ - взаимодействие атомов, при котором электроны, принадлежащие двум разным атомам (группам), становятся общими (обобществлёнными) для обоих атомов (групп), обусловливая их соединение в молекулы и кристаллы. Различают два основных типа X. с.: ионная… … Большая политехническая энциклопедия

    ХИМИЧЕСКАЯ СВЯЗЬ, механизм, за счет которого атомы соединяются и образуют молекулы. Имеется несколько типов такой связи, основанных либо на притяжении противоположных зарядов, либо на образовании устойчивых конфигураций путем обмена электронами.… … Научно-технический энциклопедический словарь

    Химическая связь - ХИМИЧЕСКАЯ СВЯЗЬ, взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Действующие при образовании химической связи силы имеют в основном электрическую природу. Образование химической связи сопровождается перестройкой… … Иллюстрированный энциклопедический словарь

    - … Википедия

    Взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома (о чём подробнее сказано ниже) показывает число связей … Большая советская энциклопедия

    химическая связь - взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атома показывает число связей, образованных данным атомом с соседними. Термин «химическое строение» ввел академик А. М. Бутлеров в… … Энциклопедический словарь по металлургии

    Взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Это взаимодействие приводит к уменьшению полной энергии образующейся молекулы или кристалла по сравнению с энергией невзаимодействующих атомов и основано на… … Большой энциклопедический политехнический словарь

    Ковалентная связь на примере молекулы метана: законченный внешний энергетический уровень у водорода (H) 2 электрона, а у углерода (C) 8 электронов. Ковалентная связь связь, образованная направленными валентными электронными облаками. Нейтральные… … Википедия

    Химическая связь явление взаимодействия атомов, обусловленное перекрыванием электронных облаков, связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861… … Википедия


Теория химической связи занимает важнейшее место в современной химии. Она объясняет, почему атомы объединяются в химические частицы, и позволяет сравнивать устойчивость этих частиц. Используя теорию химической связи, можно предсказать состав и строение различных соединений. Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами.

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Для возникновения ионной связи необходимо, чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной. Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует. Даже в тех соединениях, которые обычно относят к ионным, не происходит полного перехода электронов от одного атома к другому; электроны частично остаются в общем пользовании. Так, связь во фториде лития на 80% ионная, а на 20% - ковалентная. Поэтому правильнее говорить о степени ионности (полярности) ковалентной химической связи. Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной. При большей разности соединение можно считать ионным.

Ионной моделью химической связи широко пользуются для описания свойств многих веществ, в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами. Это обусловлено простотой описания таких соединений: считают, что они построены из несжимаемых заряженных сфер, отвечающих катионам и анионам. При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов. Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию:

r 0 = r + + r

При этом остается неясным, где следует провести границу между катионом и анионом. Сегодня известно, что чисто ионной связи не существует, так как всегда имеется некоторое перекрывание электронных облаков. Для вычисления радиусов ионов используют методы исследования, которые позволяют определять электронную плотность между двумя атомами. Межъядерное расстояние делят в точке, где электронная плотность минимальна.

Размеры иона зависят от многих факторов. При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра) ионный радиус уменьшается. Это особенно хорошо заметно в ряду лантаноидов, где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6. Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера. Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса, связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона: 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента: Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе, поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами. Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6, соответственно.

Структура идеального ионного соединения, обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов, во многом определяется соотношением ионных радиусов катионов и анионов. Это можно показать простыми геометрическими построениями.

Отношение r + : r Координационное число катиона Окружение Пример
0,225−0,414 4 Тетраэдрическое ZnS
0,414−0,732 6 Октаэдрическое NaCl
0,732−1,000 8 Кубическое CsCl
>1,000 12 Додекаэдрическое В ионных кристаллах не обнаружено

Энергия ионной связи

Энергия связи для ионного соединения - это энергия, которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов. Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия, которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона :

E (прит.) = q + q − / (4π r ε),

где q + и q − - заряды взаимодействующих ионов, r - расстояние между ними, ε - диэлектрическая проницаемость среды.

Так как один из зарядов отрицателен, то значение энергии также будет отрицательным.

Согласно закону Кулона, на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой. Однако этого не происходит, так как ионы не являются точечными зарядами. При сближении ионов между ними возникают силы отталкивания, обусловленные взаимодействием электронных облаков. Энергия отталкивания ионов описывается уравнением Борна:

Е (отт.) = В / r n ,

где В - некоторая константа, n может принимать значения от 5 до 12 (зависит от размера ионов). Общая энергия определяется суммой энергий притяжения и отталкивания:

Е = Е (прит.) + Е (отт.)

Ее значение проходит через минимум. Координаты точки минимума отвечают равновесному расстоянию r 0 и равновесной энергии взаимодействия между ионами E 0:

E 0 = q + q − (1 - 1 / n ) / (4π r 0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий, чем между парой ионов. Это число определяется в первую очередь типом кристаллической решетки. Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А :

E (прит.) = A q + q − / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов. Например, для хлорида натрия она равна 1,74756.