Направления развития общей теории систем. Примеры: центральная нервная система и периферические органы; правила дорожного движения и транспортные потоки; руководители и подчиненные в организации; и т. д. Четкой границы между статическими и динамическими с

Круг значений понятия “система” в греческом языке весьма обширен: сочетание, организм, устройство, организация, союз, строй, руководящий орган. Первенство в использовании этого понятия приписывается стоикам. Также это понятие прослеживается у Аристотеля.

Некоторые идеи, лежащие в основе общей теории систем встречаются уже у Гегеля. Они сводятся к следующему:

Целое есть нечто большее, чем сумма частей.

Целое определяет природу частей.

Части не могут быть познаны при рассмотрении их вне целого.

Части находятся в постоянной взаимосвязи и взаимозависимости.

В явной форме вопрос о научном подходе к управлению сложными системами первым поставил М.А. Ампер. В своей работе “Опыт о философии наук, или аналитическое изложение классификации всех человеческих знаний” (ч.1 - 1834г., ч.2 - 1843) при построении и классификации всевозможных, в том числе и не существовавших тогда, наук, он выделил специальную науку об управлении государством и назвал ее кибернетикой. Однако первый по-настоящему научный труд по этой тематике написал польский философ-гегельянец Б. Трентовский. В 1843г. он опубликовал книгу “Отношение философии к кибернетике как искусству управления народом”. Трентовский ставил целью построение научных основ практической деятельности руководителя (“кибернета”). Он подчеркивал, что действительно эффективное управление должно учитывать все важнейшие внешние и внутренние факторы, влияющие на объект управления. Главная сложность управления, по мнению Трентовского, связана со сложностью поведения людей. Используя знания диалектики, Трентовский утверждал, что общество, коллектив, да и сам человек - это система, единство противоречий, разрешение которых и есть развитие.

Однако в середине XIX века знания Трентовского оказались невостребованными. Практика управления еще могла обходиться без науки управления. Кибернетика была на время позабыта.

В 1891г. академик Е.С. Федоров, работавший в области минералогии и кристаллографии, изучавший особенности строения кристаллических решеток, отметил, что все невообразимое разнообразие природных тел реализуется из ограниченного и небольшого числа исходных форм. Развивая системные представления, он установил и некоторые закономерности развития систем. Ему принадлежит наблюдение, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а способность к приспособлению (“жизненная подвижность”), не стройность, а способность к повышению стройности.

Следующая ступень в изучении системности как самостоятельного предмета связана с именем А.А. Богданова. С 1911 по1925гг. вышли три тома книги “Всеобщая организационная наука (тектология)”. Богданову принадлежит идея о том, что все существующие объекты и процессы имеют определенную степень, уровень организованности. Все явления рассматриваются как непрерывные процессы организации и дезорганизации. Богданову принадлежит ценнейшее открытие, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей. Особенностью тектологии Богданова является то, что основное внимание уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации, роли открытых систем. Он подчеркивал роли моделирования и математики как потенциальных методов решения задач тектологии.

По настоящему явное и массовое усвоение системных понятий, общественное осознание системности мира, общества и человеческой деятельности началось с 1948г., когда американский математик Н. Винер опубликовал книгу под названием “Кибернетика”. Первоначально он определил кибернетику как “науку об управлении и связи в животных и машинах”. Такое определение сформировалось у Винера, благодаря его особому интересу к аналогиям процессов в живых организмах и машинах, однако оно неоправданно сужает сферу приложения кибернетики. Уже в следующей книге “Кибернетика и общество” Н.Винер анализирует с позиций кибернетики процессы, происходящие в обществе.

С кибернетикой Винера связаны такие продвижения, как типизация моделей систем, выявление особого значения обратных связей в системе, подчеркивание принципа оптимальности в управлении и синтезе систем, осознание информации как всеобщего свойства материи и возможности ее количественного описания, развитие методологии моделирования вообще и, в особенности идеи математического эксперимента с помощью ЭВМ.

Параллельно, и как бы независимо, от кибернетики прокладывался еще один подход к науке о системах - общая теория систем. Идея построения теории, приложимой к системам любой природы, была выдвинута австрийским биологом Л. Берталанфи. Один из путей реализации этой идеи Берталанфи видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности. Одним из важнейших достижений Берталанфи считается введение им понятия открытой системы. В отличие от винеровского подхода, где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается просто как отклик на внешнее воздействие, Берталанфи подчеркивает особое значение обмена веществом, энергией и информацией (негэнтропией) с открытой средой.

Отправной точкой общей теории систем как самостоятельной науки можно считать 1954г., когда было организовано общество содействия развитию общей теории систем. Свой первый ежегодник “Общие системы” общество опубликовало в 1956г. В статье, помещенной в первом томе ежегодника, Берталанфи указал причины появления новой отрасли знания:

Существует общая тенденция к достижению единства различных естественных и общественных наук.

Такое единство может быть предметом изучения ОТС.

Эта теория может быть важным средством формирования строгих теорий в науках о живой природе и обществе.

Развивая объединяющие принципы, которые имеют место во всех областях знания, эта теория приблизит нас к цели - достижению единства науки.

Все это может привести к достижению необходимого единства научного образования .

Приведенный исторический экскурс показывает, что развитием системного анализа занимались ученые самых различных специальностей: Ампер - физик, Трентовский - философ, Федоров - геолог, Богданов - медик, Винер - математик, Берталанфи - биолог. Это еще раз указывает на положение общей теории систем - в центре человеческих знаний. По степени общности Дж. ван Гиг ставит общую теорию систем на один уровень с математикой и философией.

Близко к ОТС на дереве научного знания расположены другие науки, занимающиеся изучением систем: кибернетика, телеология, теория информации, инженерная теория связи, теория ЭВМ, системотехника, исследование операций и сопряженные с ними научные и инженерные направления.

Кибернетика Винера

Тектология Богданова

А.А. Богданов «Всеобщая организационная наука (тектология)», т.1 - 1911 г., т.3 - 925 г.

Тектология должна изучать общие закономерности организации для всех уровней. Все явления - непрерывные процессы организации и дезорганизации.

Богданову принадлежит ценнейшее открытие, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей.

Особенностью тектологии Богданова является то, что основное внимание уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации, роли открытых систем. Он подчеркивал роли моделирования и математики как потенциальных методов решения задач тектологии.

Н. Винер «Кибернетика», 1948 г.

Наука об управлении и связи в животных и машинах.

"Кибернетика и общество‘. Н.Винер анализирует с позиций кибернетики процессы, происходящие в обществе.

Первый международный конгресс по кибернетике - Париж, 1966 г.

С кибернетикой Винера связаны такие продвижения, как типизация моделей систем, выявление особого значения обратных связей в системе, подчеркивание принципа оптимальности в управлении и синтезе систем, осознание информации как всеобщего свойства материи и возможности ее количественного описания, развитие методологии моделирования вообще и, в особенности идеи математического эксперимента с помощью ЭВМ.

Кибернетика - это наука об оптимальном управлении сложными динамическими системами (А.И. Берг)

Кибернетика - это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию (А.Н. Колмогоров)

Параллельно, и как бы независимо, от кибернетики прокладывался еще один подход к науке о системах - общая теория систем.

Идея построения теории, приложимой к системам любой природы, была выдвинута австрийским биологом Л. Берталанфи.

Л. Берталанфи ввел понятие открытой системы и теории, приложимой к системам любой природы. Термин «общая теория систем» употреблял устно в 30-х годах, после войны – в публикациях.

Один из путей реализации своей идеи Берталанфи видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности.

Одним из важнейших достижений Берталанфи считается введение им понятия открытой системы.

В отличие от винеровского подхода, где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается просто как отклик на внешнее воздействие, Берталанфи подчеркивает особое значение обмена веществом, энергией и информацией с открытой средой.



Отправной точкой общей теории систем как самостоятельной науки можно считать 1954г., когда было организовано общество содействия развитию общей теории систем.

Свой первый ежегодник "Общие системы" общество опубликовало в 1956г.

В статье, помещенной в первом томе ежегодника, Берталанфи указал причины появления новой отрасли знания:

· Существует общая тенденция к достижению единства различных естественных и общественных наук. Такое единство может быть предметом изучения ОТС.

· Эта теория может быть важным средством формирования строгих теорий в науках о живой природе и обществе.

Развивая объединяющие принципы, которые имеют место во всех областях знания, эта теория приблизит нас к цели - достижению единства науки.
Все это может привести к достижению необходимого единства научного образования.

Ампер - физик, Трентовский - философ, Федоров - геолог, Богданов - медик, Винер - математик, Берталанфи - биолог.

Это еще раз указывает на положение общей теории систем - в центре человеческих знаний. По степени общности Дж. ван Гиг ставит общую теорию систем на один уровень с математикой и философией.

Близко к ОТС на дереве научного знания расположены другие науки, занимающиеся изучением систем: кибернетика, телеология, теория информации, инженерная теория связи, теория ЭВМ, системотехника, исследование операций и сопряженные с ними научные и инженерные направления.

2. Определение понятия «система», предмет теории систем.

Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство.

Все определения можно разделить на три группы.

Три группы определений:

— комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя;

— инструмент, способ исследования процессов и явлений;

— компромисс между двумя первыми, искусственно создаваемый комплекс элементов для решения сложной задачи.

— Первая группа

Задача наблюдателя - выделить систему из окружающей среды, выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь система - объект исследования и управления.

— Вторая группа

Наблюдатель, имея некоторую цель, синтезирует систему, как абстрактное отображение реальных объектов. Система - совокупность взаимосвязанных переменных, представляющих характеристики объектов данной системы (совпадает с понятием модели).

— Третья группа

Наблюдатель не только выделяет систему из среды, но и синтезирует ее. Система - реальный объект и одновременно абстрактное отображение связей действительности (системотехника).

Приведенные выше закономерности образования и функционирования систем позволяют сформулировать ряд основных принципов общей теории систем и системной динамики.

1. Любая система выступает как триединство цели, функции и структуры. При этом функция порождает систему, структура же интерпретирует ее функцию, а иногда и цель.

В самом деле, даже внешний вид предметов нередко свидетель­ствует об их предназначении. В частности, нетрудно догадаться о том, что карандаш используется для рисования и письма, а линейка для измерений и графических работ.

2. Система (целое) - больше, чем сумма образующих ее ком­понентов (частей), поскольку обладает эмерджентным (неаддитивным) интегральным свойством, отсутствующим у ее элементов.

Эмерджентность наиболее ярко проявляется, например, при получении органами чувств человека какой-либо информации из окружающей его среды. Если глаза воспринимают примерно 45 % информации, а уши - 15 %, то вместе - не 60 %, а 85 %. Именно в результате появления нового качества люди создают малые группы и большие сообщества: семью - для рождения здоровых детей и их полноценного воспитания; бригаду - для производительной работы; политическую партию - для прихода к власти и ее удер­жания; государственные институты - для повышения жизнеспо­собности нации.

3. Система не сводится к сумме своих компонентов и элемен­тов. Поэтому любое ее механическое расчленение на отдельные части приводит к утрате существенных свойств системы.

4. Система предопределяет природу ее частей. Появление в системе инородных частей завершается либо их перерождением или отторжением, либо гибелью самой системы.

5. Все компоненты и элементы системы взаимосвязаны и взаи­мозависимы. Воздействие на одну часть системы всегда сопровож­дается реакцией со стороны других.

Данное свойство систем необходимо не только для повышения их устойчивости и стабильности, но и для наиболее экономного сохранения живучести. Не секрет, что люди, допустим, с ослаб­ленным зрением, как правило, лучше слышат, а лишенные каких-либо талантов - обладают более терпимым характером.

6. Система и ее части непознаваемы вне своего окружения, которое целесообразно делить на ближнее и дальнее. Связи внутри системы и между нею и ближним окружением всегда более существеннее всех остальных.

1.15. Управление – свойство человеческого общества

Управление существовало на всех этапах развития человеческого общества, т.е. управление внутренне присуще обществу и является его свойством. Это свойство имеет всеобщий характер и вытекает из системной природы общества, из общественного коллективистского труда людей, из необходимости общаться в процессе труда и жизни, обмениваться продуктами своей материальной и духовной деятельности – акад. В.Г.Афанасьев.

Управление можно определить как специфическую функцию, которая возникает одновременно с организацией предприятия и является своеобразным инструментом этой организации. В данном случае под управлением понимают целенаправленное воздействие на объекты, обеспечивающее достижение заранее заданных конечных результатов. Учет общих законов и принципов управления на производстве является важным условием повышения уровня безопасности и совершенствования условий труда. Знание основных положений управления безопасностью труда необходимо всем руководителям и специалистам.

Контрольные вопросы

1. Управление как система

2. Сущность управления

3. Анализ, синтез, индукция, дедукция - как формы логического мышления

4. Абстракция и конкретизация – необходимые элементы для принятия решений

5. Что понимается под системой и ее особенности

6. Классификация систем по природе

7. Классификация систем по составу

8. Классификация систем по степени воздействия с окружающей средой

9. Классификация систем по сложности

10. Классификация систем по изменчивости

11. Компоненты системы

12. Структура системы и обобщенная структура

13. Морфология, состав и функциональная среда системы

14. Состояние системы и две ее особенности

15. Процесс функционирования системы. Принцип Ле Шателье - Брауна и его применимость к характеристике стабильности системы

16. Понятия кризис, катастрофа, катаклизм

17. Самоуправляемые системы

18. Шесть основных принципов общей теории систем и системной динамики

19. Управление- свойство человеческого общества


МЕТОДОЛОГИЯ БЕЗОПАСНОСТИ

Опасность и безопасность

Опасность – это процессы, явления, предметы, оказывающие негативное влияние на жизнь и здоровье людей. Все виды опасностей разделяют на физические, химические, биологические и психофизические (социальные).

Безопасность – это состояние деятельности, при которой с определенной вероятностью исключаются потенциальные опасности, влияющие на здоровье человека. Безопасность следует понимать как комплексную систему мер по защите человека и среды обитания от опасностей, формируемых конкретной деятельностью.

Опасности, создаваемые деятельностью человека, имеют два важных для практики качества: они носят потенциальный характер (могут быть, но не приносить вреда) и имеют ограниченную зону воздействия.

Источниками формирования опасностей являются:

Сам человек как сложная система «организм – личность», в которой неблагоприятная для здоровья человека наследственность, физиологические ограничения возможностей организма, психологические расстройства и антропометрические показатели человека бывают непригодны для реализации конкретной деятельности;

Процессы взаимодействия человека и элементов среды обитания.

Опасности могут быть реализованы в форме травмы или заболеваний только в том случае, если зона формирования опасности (ноксосфера) пересекается с зоной деятельности человека (гомосфера). В производственных условиях – это рабочая зона и источник опасности, т.е. один из элементов производственной среды (рис 2.1.)

Рис.2.1. Формирование области действия опасности на человека в производственных условиях

Опасность и безопасность являются противоположными событиями и сумма вероятностей этих событий равна единице. Вероятность безопасности труда под влиянием управляющих воздействий асимптотически приближается к единице. Поэтому изменяемость уровней опасности и безопасности труда можно рассматривать как объективную предпосылку управления.

Собственно управление безопасностью и состоит в оптимизации деятельности по критериям управления, которая должна соответствовать требованиям реальности, предметности, количественной определенности и контролируемости. Такая цель может быть достигнута лишь системой мероприятий, направленных на обеспечение заданного уровня безопасности.

2.2. Классификация и характеристики опасностей

Опасности могут классифицироваться по разным признакам (рис.2.2).

Рис.2.2. Виды опасностей

По среде возникновения различают природные, техногенные, социальные и экономические опасности. Первые три могут привести к ущербу для жизни и здоровья человека прямо либо косвенно через ухудшение качества его жизни.

Опасности могут рассматриваться для различных объектов (по масштабу) (рис.2.2). Например, опасные природные явления для человека: сильные морозы, жара, ветер, наводнения. Человек приспособился к ним, создав необходимые системы защиты.

Опасными для объектов техносферы являются землетрясения и другие опасные природные явления.

Опасности реализуются в форме опасных явлений, негативных сценариев развития, нестабильности условий экономической деятельности.

Источник опасности – это процесс, деятельность или состояние окружающей среды, способные реализовать опасность.

По источнику опасности можно выделить:

Опасности территории – сейсмоопасные области, зоны затопления, места захоронения отходов, промплощадки и производственные корпуса, промышленные зоны, зоны военных действий, районы размещения потенциально опасных объектов (например, 30-километровая зона вокруг АЭС) и др.

Опасности вида и сферы деятельности.


Похожая информация.


Существует точка зрения, согласно которой «теория систем ... относится к числу несостоявшихся наук». Этот тезис основывается на том, что теория систем строится и опирается на выводы и методы различных наук: математического анализа, кибернетики, теории графов и других. Однако, известно, что любая научная дисциплина формируется на базе уже имеющихся теоретических концепций. Общая теория систем выступает в качестве самостоятельной научной дисциплины уже потому, что, как будет показано в дальнейшем, имеет свой предмет, собственную методологию и свои методы познания. Другое дело, что целостное исследование объектов требует активного использования знаний из самых различных областей. В связи с этим общая теория систем не просто опирается на различные науки, а объединяет, синтезирует, интегрирует их в себе. В этом плане первой и главной особенностью теории систем является ее междисциплинарный характер.

Определяя предмет общей теории систем, различные научные школы видят его в неодинаковом свете. Так, известный американский ученый Дж. ван Гиг ограничивает его вопросами «структуры, поведения, процесса, взаимодействия, назначения и т.п.». По сути, предмет этой теории сводится к проектированию систем. В данном случае отмечается только одна его практически-прикладная сторона и направленность. Возникает определенный парадокс: общая теория систем признается, но ее единой теоретической концепции не существует. Она оказывается растворенной во множестве методов, применяемых для анализа конкретных системных объектов.

Более продуктивным является поиск подходов к выделению предмета общей теории систем в лице определенного класса целостных объектов, их сущностных свойств и законов.

Предмет общей теории систем составляют закономерности, принципы и методы , характеризующие функционирование, структуру и развитие целостных объектов реального мира.

Системология представляет собой специфическое направление общей теории систем, которое занимается целостными объектами, представленными в качестве объекта познания. Ее основными задачами являются:

Представление конкретных процессов и явлений в качестве систем;

Обоснование наличия определенных системных признаков у конкретных объектов;

Определение системообразующих факторов для различных целостных образований;

Типизация и классификация систем по определенным основаниям и описание особенностей различных их видов;

Составление обобщенных моделей конкретных системных образований.

Следовательно, системология составляет лишь часть ОТС. Она отражает ту ее сторону, которая выражает учение о системах как сложных и целостных образованиях. Она призвана выяснить их сущность, содержание, основные признаки, свойства и т.д. Системология отвечает на такие вопросы как: Что такое система? Какие объекты могут быть отнесены к системным? Чем обусловлена целостность того или другого процесса? и т.п. Но она не дает ответа на вопрос: Как или каким образом должны изучаться системы? Это вопрос уже системных исследований.

В самом точном смысле системное исследование представляет собой научный процесс выработки новых научных знаний, один из видов познавательной деятельности, характеризующийся объективностью , воспроизводимостью , доказательностью и точностью . Оно базируется на самых различных принципах, методах, средствах и приемах . Это исследование специфично по своей сути и содержанию. Оно является одной из разновидностей познавательного процесса, имеющей целью такую его организацию, при которой бы обеспечивалось целостное изучение объекта и получение в конечном итоге его интегративной модели. Отсюда вытекают и основные задачи системного исследования объектов. К их числу относятся:

Разработка организационных процедур познавательного процесса, обеспечивающего получение целостного знания;

Осуществление подбора о каждом конкретном случае такого набора методов, который бы позволял получить интегративную картину функционирования и развития объекта;

Составление алгоритма познавательного процесса, дающего возможность всесторонне исследовать систему.

Системные исследования базируются на соответствующей методологии , методических основах и системотехнике . Они определяют весь процесс познания объектов и явлений, имеющих системную природу. От них напрямую зависит объективность, достоверность и точность полученных знаний.

Фундаментом общей теории систем и системных исследований является методология . Она представлена комплексом принципов и способов построения и организации теоретической и практической деятельности, направленной на целостное изучение реальных процессов и явлений окружающей действительности. Методология составляет понятийно-категориальный каркас общей теории систем, включает в себя законы и закономерности структуры и функционирования, а также развития сложноорганизованных объектов, действующие причинно-следственные связи и отношения , раскрывает внутренние механизмы взаимодействия компонентов системы , ее связи с внешним миром.

Методические основы системного исследования представлены совокупностью методов и алгоритмов теоретического и практического освоения системных объектов. Методы выражены в определенных приемах, правилах, процедурах, применяемых в познавательном процессе. К настоящему времени накоплен очень большой арсенал используемых в системных исследованиях методов, которые могут быть подразделены на общенаучные и частные. К первым из них относятся методы анализа и синтеза, индукции и дедукции, сравнения, сопоставления, аналогии и другие. Ко вторым принадлежит все многообразие методов конкретных научных дисциплин, которые находят свое применение в системном познании конкретных объектов. Алгоритм исследования определяет последовательность выполнения определенных процедур и операций, обеспечивающих создание целостной модели изучаемого явления. Он характеризует основные этапы и шаги, отображающие движение познавательного процесса от его начальной точки до конечной. Методы и алгоритмы находятся в неразрывной связи друг с другом. Каждому исследовательскому этапу соответствует своя совокупность методов. Правильная и четко определенная последовательность операций, сочетающаяся с верно избранными методами, обеспечивает научную достоверность и точность полученных результатов исследования.

Системотехника охватывает проблемы проектирования, создания, эксплуатации и испытания сложных систем. Во многом она базируется на активном применении знаний из таких областей как теория вероятности, кибернетика, теория информации, теория игр и т.д. Для системотехники характерно то, что она наиболее близко подходит к решению конкретных прикладных и практических проблем, возникающих в ходе системного исследования.

Наряду с наличием собственной структуры, общая теория систем несет в себе большую научно-функциональную нагрузку. Отметим следующие функции общей теории систем:

- функция обеспечения целостного познания объектов; - функция стандартизации терминологии; - описательная функция; - объяснительная функция; - прогнозная функция .

Общая теория систем является наукой не стоящей на месте, а постоянно развивающейся. Тенденции ее развития в современных условиях просматриваются по нескольким направлениям.

Первое из них - это теория жестких систем . Такое название они получили из-за влияния физико-математических наук. Эти системы имеют прочные и устойчивые связи и отношения. Их анализ требует строгих количественных построений. Основой последних является дедуктивный метод и точно определенные правила действий и доказательств. В этом случае, как правило, речь идет о неживой природе. В то же время, математические методы все больше проникают и в другие области. Такой подход реализован, к примеру, в ряде разделов экономической теории.

Второе направление - это теория мягких систем . Системы подобного рода рассматриваются как часть мироздания, воспринимаемая как единое целое, которые способны сохранять свою сущность, несмотря на изменения, происходящие в ней. Мягкие системы могут адаптироваться к условиям окружающей среды, сохраняя при этом свои характерные особенности. Солнечная система, истоки реки, семья, пчелиный улей, страна, нация, предприятие – все это системы, составляющие элементы которых подвергаются постоянным изменениям. Системы, относящиеся к мягким, имеют собственную структуру, реагируют на внешние воздействия, но при этом сохраняют свою внутреннюю сущность и способность к функционированию и развитию.

Третье направление представлено теорией самоорганизации . Это новая развивающаяся парадигма исследования, которая связана с целостными аспектами систем. По некоторым оценкам она является самым революционизирующим подходом для общей теории систем. Под самоорганизующимися системами подразумевают самовосстанавливающиеся системы, в которых результатом является сама система. К ним относятся все живые системы. Они постоянно самообновляются посредством обмена веществ и энергии, получаемой в результате взаимодействия с внешней средой. Для них характерно то, что они поддерживают неизменность своей внутренней организации, допуская, тем не менее, временные и пространственные изменения своей структуры. Эти изменения обусловливают серьезные специфические моменты в их исследовании, требуют применения новых принципов и подходов к их изучению.

В современном развитии ОТС все отчетливее проявляется зависимость эмпирических и прикладных вопросов от этических аспектов . Разработчики конкретной системы должны учитывать возможные последствия создаваемых ими систем. Они обязаны оценивать воздействия изменений, привносимых системой, на настоящее и будущее, как самих систем, так и их пользователей. Люди строят новые заводы и фабрики, изменяют русла рек, перерабатывают лес в древесину, бумагу - и все это зачастую делается без должного учета их влияния на климат и экологию. Поэтому ОТС не может не основываться на определенных этических принципах. Мораль систем связана с той системой ценностей, которая движет разработчиком, и зависит от того, как эти ценности согласуются с ценностями пользователя и потребителя. Закономерно, что этическая сторона систем затрагивает вопросы ответственности частных предпринимателей и руководителей государственных организаций за безопасность людей, участвующих в производстве и потреблении.

Неоценимое значение приобрела общая теория систем в решении многих практических задач. Вместе с развитием человеческого общества значительно увеличился объем и сложность проблем, которые должны быть разрешены. Но сделать это с помощью традиционных аналитических подходов становиться просто невозможно. Для решения все большего числа проблем нужно широкое поле зрения, которое охватывает весь спектр проблемы, а не его небольшие отдельные части. Немыслимо представить себе современные процессы управления, планирования без прочной опоры на системные методы. Принятие любого решения строится на системе измерений и оценок, на основании которых формируются соответствующие стратегии, обеспечивающие достижение системой установленных целей. Применение общей теории систем положило начало моделированию сложных процессов и явлений, начиная от таких крупномасштабных как глобальные мировые процессы и заканчивая мельчайшими физическими и химическими частицами. С системных позиций рассматривается сегодня экономическая деятельность, оценивается эффективность деятельности и развития фирм и предприятий.

Следовательно, общая теория систем - это междисциплинарная наука, призванная в целостном виде познавать явления окружающего мира . Она формировалась в течение длительного исторического периода, а ее появление явилось отражением возникшей общественной потребности познания не отдельных сторон предметов и явлений, а создания общих, интегративных представлений о них.

1. Введение в теорию систем.

2. Понятие и свойства системы.

3. Элементы классификации систем.

4. Понятие о системном подходе.

5. Системный анализ транспортных систем.

Общая теория систем (теория систем) - научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был выдвинут Людвигом фон Берталанфи. Его основная идея состоит в признании изоморфизма законов, управляющих функционированием системных объектов.

Предметом исследований в рамках этой теории является изучение:

    различных классов, видов и типов систем;

    основных принципов и закономерностей поведения систем (например, принцип узкого места);

    процессов функционирования и развития систем (например, равновесие, эволюция, адаптация, сверхмедленные процессы, переходные процессы).

В границах теории систем характеристики любого сложно организованного целого рассматриваются сквозь призму четырёх фундаментальных определяющих факторов:

    устройство системы;

    её состав (подсистемы, элементы);

    текущее глобальное состояние системной обусловленности;

    среда, в границах которой развёртываются все её организующие процессы.

В исключительных случаях, кроме того, помимо исследования названных факторов (строение, состав, состояние, среда), допустимы широкомасштабные исследования организации элементов нижних структурно-иерархических уровней, то есть инфраструктуры системы.

Общая теория систем и другие науки о системах

Сам фон Берталанфи считал, что следующие научные дисциплины имеют (отчасти) общие цели или методы с теорией систем:

    Кибернетика, - наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.

    Теория информации - раздел прикладной математики, аксиоматически определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных.

    Теория игр, анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.

    Теория принятия решений, анализирующая рациональные выборы внутри человеческих организаций.

    Топология, включающая неметрические области, такие, как теория сетей и теория графов.

    Факторный анализ, то есть процедуры выделения факторов в многопеременных явлениях в социологии и других научных областях.

Рисунок 1.1 - Структура системологии

Общая теория систем в узком смысле, пытающаяся вывести из общих определений понятия «система», ряд понятий, характерных для организованных целых, таких как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т. д., и применяющая их к конкретным явлениям.

Прикладные науки о системах

Принято выделять коррелят теории систем в различных прикладных науках, именующимися иногда науками о системах, или системной наукой (англ. Systems Science). В прикладных науках о системах выделяются следующие области:

    Системотехника (англ. Systems Engineering), то есть научное планирование, проектирование, оценку и конструирование систем «человек - машина».

    Исследование операций (англ. Operations research), то есть научное управление существующими системами людей, машин, материалов, денег и т. д.

    Инженерная психология (англ. Human Engineering).

    Теория полевого поведения Курта Левина.

    СМД-методология, разрабатывавшаяся в Московском Методологическом Кружке Г. П. Щедровицким, его учениками и сотрудниками.

    Теория интегральной индивидуальности Вольфа Мерлина, основанная на теории Берталанфи.

Отраслевые теории систем (специфические знания о различных видах системах) (примеры: теория механизмов и машин, теория надёжности

Систе́ма (от др.-греч. σύστημα - целое, составленное из частей; соединение) - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

По Бертрану Расселлу: «Множество есть совокупность различных элементов, мыслимая как единое целое»

Система - совокупность элементов, находящихся во взаимосвязи

и взаимоотношениях между собой, и образующих определенное един-

ство, целостность.

Свойство системы определяется не только и не сколько элемен-

тов ее составляющих сколько характером взаимосвязи между ними.

Для систем характерна взаимосвязь с окружающей средой, по отноше-

нию к которой система проявляет свою целостность. Для обеспече-

ния целостности необходимо чтобы система имела четкие границы.

Для систем характерна иерархическая структура, т.е. каждый

элемент системы является в свою очередь системой, также как и лю-

бая система является элементом системы более высокого уровня.

Элемент – предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.

Связь – ограничение степени свободы элементов. Характеризуются направлением (направленные, ненаправленные), силой (сильные, слабые), характером (подчинения, порождения, равноправные, управления).

Структура отражает определенные взаимосвязи, взаимное расположение составных частей системы, ее устройство (строение).

Понятия характеризующие функционирование и развитие системы:

Состояние – мгновенная фотография, «срез» системы, остановка ее в развитии.

Поведение – способ переходить из одного состояния в другое.(стр.30)

Равновесие – способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое состояние сколь угодно долго.

Устойчивость – способность системы возвращаться в состояние равновесия после того как она была выведена внешними (внутренними при наличии в системе активных элементов) возмущающими воздействиями.

Развитие - процесс, направленный на изменение материальных и духовных объектов с целью их усовершенствования.

Под развитием обычно понимают:

    увеличение сложности системы;

    улучшение приспособленности к внешним условиям (например, развитие организма);

    увеличение масштабов явления (например, развитие вредной привычки, стихийного бедствия);

    количественный рост экономики и качественное улучшение её структуры;

    социальный прогресс.