Жизнь без запахов: чего нас лишает потеря обоняния. Запах и пожилые. Лучшие запахи для повышения настроения

Согласно мнению одного из ведущих нейробиологов мира, ощущение вкуса, также, как и красоты, действительно рождается в мозгу наблюдателя, иногда разительно отличаясь у разных людей.

"Нет двух человек, которые воспринимали бы один и тот же запах одинаково", - сказал Патрик Мак Леод, президент Института обоняния и бывший директор лаборатории сенсорной нейробиологии.

"Когда мы чувствуем тот или иной аромат, точный характер ощущения, произведенного им, зависит как от наблюдателя, так и от объекта", - он сказал агентству Франс Пресс.

Зрительное, слуховое, тактильное восприятие намного более однородно у всего человеческого рода, это значит, что люди видят, слышат и осязают более или менее одинаково. Но когда речь идет о запахе или вкусе, то, что кажется "напитком богов" одному человеку, другому может показаться "бурдой".

Эти и другие результаты недавних исследований в области сенсорной нейробиологии, сказал Мак Леод, переворачивают многие представления современной науки. Они имеют глубокое значение для руководителей, ориентированных на потребителя отраслей промышленности от продовольственных продуктов и вина до парфюмерии и товаров для дома.

Если Мак Леод прав, то поиск вкуса или аромата, который будет нравиться всем, окажется обреченным с самого начала.

"Почти все, что мы сделали до сих пор в изучении вкуса, было подвергнуто сомнению. Мы должны начать сначала", - заявил он перед аудиторией виноделов и правительственных должностных лиц, собравшихся на прошлой неделе, чтобы обсудить обучение профессиональных дегустаторов, призванных подтвердить качество французских вин.

Несколько факторов являются причиной различий в нашем обонянии.

"Человеческий геном содержит 347 обонятельных генов - ровно один процент общего количества - в то время как, например, за зрение отвечают только четыре. По крайней мере, половина этих генов полиморфна, то есть имеет возможность меняться в большом диапазоне, - сказал Леод. - В силу этого мы сталкиваемся с тем фактом, что люди имеют широко расходящиеся пороги восприятия различных пахучих веществ".

Микродозы пиридина - органической составляющей многих приправ, которые Мак Леод использовал в экспериментах, "ваш кузен может найти чрезвычайно неприятными, но они могут быть совершенно незаметны для вас. Другое вещество может иметь противоположный эффект".

Исследование Мак Леода переполнено непривычными, алогичными фактами и деталями, начиная с того, что Homo sapiens действительно имеет превосходное обоняние.

"Сенсорная система человека достигла максимальной чувствительности к запахам, - утверждает Мак Леод. - Одна-единственная молекула может вызвать отклик в одной-единственной воспринимающей клетке, которая передаст сигнал к мозгу. Поскольку молекула - это наименьшая возможная единица, более совершенного механизма существовать не может".

А вот что является обедненным, настаивает Мак Леод, так это наша способность говорить о запахах. Когда клетка рецептора посылает свой электрический сигнал, мозг формирует представление, произвольный набор символов, который является уникальным для данного человека, но постоянным в течение времени как память.

Таким образом, когда мы говорим о запахах, наши словоформы являются "представлением представлений".

Мак Леод также показал, что зубы обеспечивают мозг почти половиной информации о вкусе, а нос собирает большую часть из оставшегося, дошедшего через ротовую полость. Рецепторы языка почти не используются.

Не менее удивителен тот факт что, не существует ароматов, плохих самих по себе. Если грязные детские подгузники заставляют нас морщить нос, то только потому, что мы научились не любить запах, который они испускают.

Другие органы чувств также вносят свой вклад в наше восприятие запаха. "Цвет вина, воспринимаемый визуально, может действительно изменить его вкус", - считает Мак Леод на основании результатов многочисленных экспериментов, показывающих, что восприятие запахов является мультисенсорным.

"Это не иллюзия. Белое вино, которое было окрашено специальным красителем без запаха, имеет другой вкус" и создает иной паттерн нервной деятельности в мозгу.

Discovery.com

на журнал "Человек без границ"

Обоняние и вкус, некогда столь же необходимые человеку для выживания, как слух, осязание и зрение, ныне гораздо слабее развиты, чем у животных, и играют второстепенную роль.

  • Для многих истинная красота роз скрыта в их упоительном аромате.
  • Лизнув мороженое кончиком языка, мы во всей полноте ощущаем его изумительный вкус!

С тех пор как человек поднялся с четверенек и оторвал нос от земли, его жизнь перестала в той же мере зависеть от обоняния и вкуса, как жизнь других животных. Утратив былое значение, эти физические чувства теперь служат человеку почти исключительно для выбора и получения удовольствия от еды и питья.

Химическая природа чувств

У вкуса и обоняния общая химическая природа. Это значит, что они представляют собой реакцию на присутствующие в окружающей среде химические вещества. Пробуя что-то на вкус, мы ощущаем присутствие во рту тех или иных химических веществ, а чувствуя запах - регистрируем их наличие в воздухе в газообразной форме.

Чистый воздух представляет собой смесь не имеющих запаха газов - главным образом, азота (78%) и кислорода (21%) с незначительными примесями инертных газов. Воздух может содержать до 5% водяных паров, тоже не имеющих запаха. Любые другие примеси потенциально можно обнаружить по запаху. Даже самые ничтожные концентрации химических примесей можно учуять носом, который подскажет хозяину, что годится в пищу, а что нет, что издает неприятный запах (и лучше держаться от него подальше), а что, возможно, является запахом другого животного - друга или врага.

Обоняние

Хорошо известно, что мы способны распознавать гораздо больше оттенков запаха, чем звуков. Однако ученым трудно уяснить, что же происходит, когда мы обоняем запах, как присутствующие в воздухе химические вещества воспринимаются носом и интерпретируются мозгом. До сих пор нет четкого понимания и того, как язык распознает и преобразует химические вещества во вкусовую информацию.

  • Любой шеф-повар скажет, что нельзя судить о свежести продукта по одному внешнему виду. В этой профессии не обойтись без тонкого обоняния.

Тончайшие волоски

Впрочем, известно, что небольшой участок в задней части носовой полости изобилует нервными окончаниями, воспринимающими запахи. Этот участок, называемый обонятельным эпителием, или обонятельной областью, буквально напичкан миллионами нервных окончаний. Каждое из них имеет не меньше десятка тончайших волосков, или жгутиков. Они постоянно увлажняются слизью, которая тоже служит ловушкой для пахучих веществ. Но из-за недоступности обонятельной области ученым трудно исследовать происходящие в ней процессы.

Полагают, что при вдыхании с воздухом доступных нашему обонянию пахучих веществ они растворяются в слизи, увлажняющей жгутики, в результате чего эти тончайшие волоски покрываются раствором пахучих веществ. Реагируя на них, жгутики посылают сигналы обонятельным клеткам для дальнейшей передачи по соответствующим нервным волокнам (их называют обонятельными нервами). Затем эти сигналы передаются в обонятельный мозг - участок головного мозга, гораздо слабее развитый у людей, нежели у животных.

Основные запахи

Насколько мы можем судить, все обонятельные клетки, действующие как рецепторы распознаваемых по запаху химических веществ, абсолютно одинаковы, по этому остается загадкой, как они различают тысячи многообразных запахов.

За многие века люди выделили шесть "основных" запахов: цветочный, фруктовый, зловонный, пряный, смолистый (как скипидар) и запах гари.

Чтобы обладать запахом, вещество должно испарять микроскопические частицы. Наименьшими "кирпичиками" любого вещества являются молекулы, и, как полагают, обонятельные клетки способны различать молекулы по их форме.

Частицы и запах

Чем больше частиц испускает вещество, тем сильнее запах. Например, кипящий на плите куриный суп пахнет сильнее, чем холодная курятина на тарелке, так как с паром в воздух попадает больше пахучих частиц. Они-то и распознаются как запахи в силу своей способности растворяться в воде. Под воздействием тепла в воздух попадает больше частиц, а содержащаяся в воздухе влага обеспечивает их повышенную концентрацию, поэтому в теплой и влажной атмосфере запахи усиливаются. Вероятно, вы и сами замечали, что в теплой дымке после летнего дождя усиливается благоухание сада или травы; или что щепотка соли для ванн издает в горячей воде более сильный аромат, чем целая сухая упаковка.

Адаптация и маскировка

Если вы войдете в помещение, где кто-то ест котлеты с луком, резкий запах тотчас ударит вам в нос, хотя находящиеся здесь же люди его не замечают. Это явление называется адаптацией. Причина, по-видимому, в том, что когда все рецепторы "заполнены" пахучими химическими частицами, они перестают посылать сигналы в мозг.

Возможно, вы задавались вопросом, как освежители воздуха устраняют неприятные запахи. Этот эффект называется маскировкой. Освежитель вовсе не удаляет из воздуха дурно пахнущие частицы, но благодаря его присутствию мы перестаем их замечать. Нечто подобное происходит и при маскировке слуха, когда громкий звук заглушает более тихий, даже если наши уши воспринимают обе частоты. Мы пока не знаем, почему один запах "громче" другого. Само собой, если в воздухе присутствуют два запаха, маскировка происходит далеко не всегда. Часто оба запаха смешиваются либо по-прежнему воспринимаются по отдельности.

Вкус

О вкусе известно гораздо больше, чем об обонянии, и принято считать, что основных вкусов всего четыре: сладкий, соленый, кислый и горький. Но всем богатством оттенков того, что называют вкусом, мы обязаны обонянию. Должно быть, вы успели заметить, что при сильной простуде обоняние на время пропадает, и пища становится безвкусной. А дело в том, что при простуде вы получаете информацию о вкусе только с языка. Как показали опыты, пробуя продукты на вкус только языком, человек не отличает даже очищенного яблока от сырого картофеля.

Рецепторы, улавливающие сигналы от растворенных химических веществ, из которых состоит наша пища, называются вкусовыми сосочками. Это скопления микроскопических клеток, или нервных окончаний, на крохотных бугорках, расположенных на языке, нёбе и гортани. Каждый вкусовой сосочек - это гроздь из 50 с лишним клеток, соединенных с мозгом нервными волокнами. Все вкусовые сосочки способны различать четыре основных вкуса. Некоторые из них служат опорными клетками, остальные же - вкусовыми. Подобно рецепторам запаха, каждая вкусовая клетка имеет крохотный волосок (микровиллу). Внешние оконечности вкусовых сосочков соединены с осязательными нервами, благодаря чему вкус и осязание пищи во рту тесно связаны между собой. Услышав спор о том, какая говядина вкуснее - тонко или грубо нарезанная, - вы можете задаться вопросом, а в чем, собственно, разница. Однако от осязания пищи языком зависит и ее вкусовое восприятие.

Строение языка

Лучше всего реагирует на сладкое верхушка (кончик) языка, на кислое - его боковые края, на соленое - область по соседству с верхушкой и на горькое - прикорневая область. Как и рецепторы запаха, все вкусовые сосочки похожи друг на друга, однако в разных отделах языка они поразному сгруппированы. Все еще остается загадкой, как одни и те же клетки воспринимают разные раздражители. Ученые полагают, что организм вырабатывает так называемые рецепторные вещества, с помощью которых ощущаются различия во вкусе. До сих пор в опытах на животных были открыты только протеины, действующие как рецепторы горечи и сладости. Не исключено, что разные отделы языка вырабатывают разные количества рецепторных веществ. Хотя четкого представления о том, как это происходит, ученые пока не имеют, но уже сейчас можно с достаточной уверенностью предположить, что, вступая в контакт с растворенными химическими веществами, вкусовые сосочки издают соответствующий электрический импульс, который по нервам поступает в головной мозг.

Вкусно или нет?

Помимо вкуса, на наше представление о том, что мы едим, влияет целый букет впечатлений. Прежде всего, газы, выделяемые при пережевывании пищи, поднимаются в полость носа, воздействуя на обоняние. Значение имеет и структура пищи. К процессу подключаются температурные и болевые ощущения - ведь острая пища стимулирует болевые рецепторы (мазнув аджикой по лицу, вы ощутите на коже такое же жжение, как и на языке). Рецепторы осязания и давления подсказывают, что у нас во рту - хрустящие кусочки или крем, жесткая пища или мягкая; уши воспринимают звуки, издаваемые пищей при пережевывании. И, само собой, память - мы надолго запомним вызвавшее отвращение блюдо.

Наконец, глаза докладывают о внешнем виде того или иного блюда, и мы не раз возвращаемся к нему в памяти. Вероятно, у вас не раз текли слюнки не только при виде, но и при одной мысли о чемнибудь вкусненьком. Можно провести с друзьями любопытный эксперимент, пробуя что-нибудь на вкус с завязанными глазами. Вы, например, обнаружите, что не можете отличить апельсиновый сок от грейпфрутового, не видя их и не представив заранее вкуса. Любой хороший повар знает, что красиво оформленное блюдо усиливает аппетит, и ваши эксперименты это подтвердят. Что ни говори, а мы все же привыкли больше полагаться на зрение, чем на обоняние и вкус.

  • Наш нюх гораздо слабее, чем у животных, и большинство людей просто не ощущает издаваемых нами природных запахов для привлечения сексуального партнера, полагаясь в этом на искусственно созданные ароматы.
  • Определяя качество вина, опытный дегустатор полагается не только на чувствительное нёбо, но и на тонкое обоняние. Для настоящего знатока в букете вина нет секретов.

Знаете ли вы?

  • Произрастающий в Западной Африке плод называют "волшебным", потому что он превращает кислую пищу в сладкую. Полагают, что он содержит протеин, заставляющий вкусовые сосочки подавать сигналы о наличии сладости в присутствии кислоты.
  • Соленый и сладкий вкус имеют больше общего, чем кажется на первый взгляд. При очень высокой (пороговой) концентрации соль кажется сладкой.
  • По некоторым оценкам, для определения вкуса нам требуется в 25 000 раз больше вещества, чем для определения запаха.
  • У взрослого человека около 9000 вкусовых сосочков. Удетей их больше.
  • Летучие вещества, например, бензин, обычно обладают сильным запахом, так как попадают в нос в довольно высокой концентрации.
  • Желая хорошенько принюхаться к чему-нибудь, мы автоматически втягиваем воздух носом, чтобы захватить побольше пахучих частиц.

Каждый человек, нормально воспринимающий запахи и вкусы, даже и не подумает, что эта способность у него может нарушиться или и вовсе пропасть. Однако на самом деле, огромное количество людей сталкивается с такими проблемами время от времени либо постоянно. Попробуем разобраться, чем же может быть спровоцировано изменение вкусовых ощущений и обоняния, причины рассмотрим возможные таких нарушений.

Самым распространенным расстройством обоняния и вкуса принято считать потерю либо существенное снижение способности ощущать запахи. Такое состояние носит наименование аносмии. Так как разность вкусовых ощущений во многом завязана на наличие обоняния, люди вначале говорят об исчезновении запаха, если пища кажется им безвкусной.

Кроме того нарушения обоняния и вкуса могут быть представлены избыточной чувствительностью к запахам – гиперсомией, обонятельными либо вкусовыми галлюцинациями, снижением либо потерей восприятия вкуса – авгезией, а также искажением вкуса – дисгевзией.

Обоняние может нарушаться по причине каких-то изменений в носу, а также в нервах, которые проходят от носа к головному мозгу. Также патологические процессы, спровоцировавшие такую неприятность, могут происходить непосредственно в головном мозгу.

Так обоняние может на порядок снижаться, а то и вовсе пропадать из-за насморка. В этом случае забитые носовые проходы просто не дают запахам достигнуть обонятельных рецепторов.

Так как способность чувствовать запах оказывает влияние на чувство вкуса, во время простуды пища довольно часто кажется совершенно безвкусной.

Также обонятельные клеточки могут временно поражаться вирусами, например гриппа, в этом случае человек не чувствует ни запаха, ни вкуса, в течение еще нескольких дней после выздоровления.

В определенных случаях воспалительное поражение носовых пазух способно стать причиной повреждения либо разрушения клеточек, воспринимающих запахи. В этом случае человек теряет способность чувствовать вкус и запах на многие месяцы, а иногда и насовсем. Такая же ситуация наблюдается и при проведении лучевой терапии, призванной устранить злокачественное опухолевое формирование.

Как показывает практика врачей, одной из наиболее распространенных причин, провоцирующих необратимую потерю обоняния, можно назвать травму головы, происходящую при автомобильной аварии. В этом случае происходит разрыв волокон обонятельного нерва, которые идут от рецепторов обоняния. Место разрыва локализируется в решетчатой кости, отделяющей внутричерепное пространство от полости носа.

Крайне редко люди появляются на свет уже с отсутствием обоняния.

Чрезмерная чувствительность к запахам считается более редкой патологией, нежели аносмия. Так искажение обоняния, при котором больной воспринимает самые обычные запахи, как достаточно неприятные, может возникать вследствие поражения придаточных пазух, спровоцированного инфекционными недугами либо частичным повреждением обонятельного нерва. Подобное нарушение также может развиваться при депрессии и при банальном пренебрежении гигиеной ротовой полости, из-за которого происходит активное размножение бактерий и возникновение плохого запаха.

У некоторых людей, которые страдают от приступов судорог, связанных с раздражением обонятельного центра, возникают краткосрочные достаточно яркие и в то же время неприятные обонятельные ощущения, которые можно охарактеризовать как обонятельные галлюцинации. Их стоит рассматривать, как компонент приступа, а не как простое искажение восприятия.

Снижение либо полная потеря восприятия вкуса – авгезия – достаточно часто развивается на фоне болезненного состояния языка, которое возникает по причине чрезмерной сухости в ротовой полости, а также из-за курения. Данная патология также может являться следствием проведения лучевой терапии в области шеи и головы, кроме того она может быть побочным эффектом от потребления некоторых медикаментов, к примеру, винкристина либо амитриптилина.

Что касается искажения вкуса, которое доктора классифицируют, как дисгевизию, то такое нарушение частенько возникает вследствие тех же причин, которые провоцируют потерю слуха.

Еще ожоги языка способны стать причиной временной потери вкусовых кусочков. Такое патологическое состояние, как паралич Белла (односторонняя форма паралича лица, которая провоцируется нарушенной деятельностью лицевого нерва) сопровождается притуплением вкуса с одной стороны языка. В определенных случаях дисгевзия становится одним из симптомов депрессивных состояний.

Расстройства вкуса могут возникать из-за естественной атрофии вкусовых сосочков во время старения. Иногда такие проблемы объясняются генетическими, гормональными либо метаболическими заболеваниями. Кроме того подобные расстройства могут появляться на фоне недостаточного питания, злоупотребления наркотиками либо лекарственными составами.

Иногда снижение восприятия вкуса объясняется утолщенностью и обложенностью языка, что характерно для пациентов с гастритом, дегидратацией или наблюдается при дыхании через рот.

Пути вкусовых ощущений могут повреждаться при хирургических вмешательствах и при поражениях некоторых черепных нервов.

При внезапном изменении или исчезновении обоняния и вкуса стоит обращаться к доктору для проведения своевременной диагностики и адекватной терапии.

Екатерина, www.сайт

P.S. В тексте употреблены некоторые формы свойственные устной речи.

Доктор технических наук В. МАЙОРОВ.

В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.

Наука и жизнь // Иллюстрации

Пути передачи информации о запахах в головной мозг.

Схематическое изображение обонятельного эпителия. Базальные клетки являются клетками-предшественниками обонятельных рецепторных нейронов.

Изображение реснички обонятельного нейрона, сделанное с помощью флуоресцентного красителя. На мембране ресничек расположены рецепторные белки, взаимодействующие с молекулами одорантов.

Модель молекулы обонятельного рецепторного белка мыши, к которому присоединена молекула одоранта - гексанола (пурпурного цвета).

Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона.

Схематическое изображение комбинаторных рецепторных кодов одорантов.

Электроольфактограмма (ЭОГ) - электрический колебательный сигнал, регистрируемый специальным электродом с участка внешней поверхности обонятельного эпителия крысы.

Чуть более четверти века назад в журнале "Наука и жизнь" (№ 1, 1978 г.) была опубликована статья "Загадка запаха". Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел "выбраться из чащи". Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.

И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.

КАК ВОСПРИНИМАЕТСЯ ЗАПАХ

Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох - запах исчезает.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.

Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика - 2 - 4 см 2 (у кролика эта величина равна 7-10 см 2 , у собак - 27 - 200 см 2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами - обонятельными рецепторами.

Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов (у кролика - около 100 млн, а у немецкой овчарки - до 225 млн).

Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.

СЕМИОТИКА ОБОНЯНИЯ

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше - около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. "Наука и жизнь" № 12, 2004 г).

Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.

Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин "одотоп" (odotope ), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен "различать" молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).

Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.

НЕОБХОДИМАЯ СЛИЗЬ

Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, - около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.

Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса - одорант-связующие белки (OBP) и одорант-разрушающие ферменты.

ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.

Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.

Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою "запаховую" активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.

ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ

Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.

Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между процессом связывания молекулы одоранта с рецептором и передачей обонятельного сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою очередь активирует аденилатциклазу (AC) - фермент, преобразующий внутриклеточный аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует другой мембранносвязанный белок, который называется ионным каналом, поскольку открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал открыт, в клетку проникают катионы металлов. Таким способом меняется электрический потенциал клеточной мембраны и генерируется электрический импульс, передающий сигнал с одного нейрона на другой.

Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.

Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.

Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.

ЛУКОВИЧНАЯ НЕЙРОСЕТЬ

Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования "на ножках". Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.

Митральные клетки - самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы - примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.

Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода "слепок" запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер - они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.

Обонятельная луковица - это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.

От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

ЗАГАДКИ ЗАПАХОВ

То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному, основополагающему, но начальному разделу науки о запахах - к их восприятию. Не раскрыт механизм взаимодействия обоняния с другими системами восприятия, например со вкусом (см. "Наука и жизнь" № , с. 16-20). Ведь известно, что если человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых продуктов (например - кофе) он не в состоянии точно определить, что он пробовал. Достаточно разжать ноздри - и вкусовые ощущения восстанавливаются.

С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его "букет", чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.

Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда "Парфюмер", более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.

Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные "парфюмеры" разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.

Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг - "наука" о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.

Литература

Лозовская Е., канд. физ.-мат. наук. // Наука и жизнь, 2004, № 12.

Майоров В. А. Запахи: их восприятие, воздействие, устранение. - М.: Мир, 2006.

Марголина А., канд. биол. наук. // Наука и жизнь, 2005, № 7.

Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.