Новая мысль. Антиэлектрон, который по предложению андерсона окрестили позитроном

И была открыта новая частица. По сути дела, это открытие было предсказано
физиками-теоретиками. Занимаясь математическими расчетами свойств элементарных частиц, П. Дирак пришел к выводу, что у каждой частицы должен быть свой антипод, или античастица, (Ученым вообще нравится, когда природа устроена не только просто, но и симметрично.) Таким образом, должен существовать антиэлектрон, тот же электрон, но с положительным зарядом, и антипротон - отрицательно заряженная частица, в остальном полностью эквивалентная протону.

Гипотеза Дирака, которую он сформулировал в 1930 году, вначале оставалась без особого внимания ученого мира. Однако два года спустя и в самом деле появилось сообщение о реально зафиксированном антиэлектроне. В ходе этого эксперимента американцы К. Андерсон и Р. Милликен работали над выяснением природы космических лучей: что это - волны или частицы?

К тому времени большинство ученых склонялись к мнению Комптона, утверждавшего, что это поток частиц. Но Милликен упорно не соглашался с этой идеей, считая, что еще ничего не доказано. Вместе с Андерсоном они с помощью камеры Вильсона решили проверить, отклоняются ли космические лучи в сильном магнитном поле. Максимально замедлив поток лучей с помощью большой массы свинца, они обнаружили, что траектория лучей в камере искривляется. Но при этом выяснился еще один странный момент. При прохождении через свинец космические лучи выбили из него непонятные частицы. Причем траектория такой частицы напоминала след от электрона, но отклонялась в противоположном направлении! У нее была та же масса, но противоположный по знаку заряд. Это и был предсказанный Дираком антиэлектрон, который по предложению Андерсона окрестили позитроном . Это как раз один из примеров вторичного космического излучения, хотя в 1963 году было экспериментально установлено, что позитроны имеются и в составе первичного излучения.

Позитрон не уступает по устойчивости электрону (а почему бы и нет, если он полностью совпадает с последним, за исключением знака заряда?) и в.одиночестве может существовать неопределенно долго. Но такой возможности ему судьба не предоставляет, поскольку вся Вселенная буквально набита электронами, и сразу после "появления на свет" (буквально за миллионную долю секунды) он неизбежно сближается с одним из них.

На один миг происходит электронно-позитронная ассоциация - когда обе частицы проникают друг в друга, образуя общий силовой центр. В 1945 году американский физик А. Рур к предложил назвать такую ассоциированную систему из двух частиц позитроний , а в 1951 году австриец Мартин Дейч сумел зафиксировать позитроний по характеристическому гамма-излучению.

Но даже в форме позитрония система устойчива не более 10-миллионной доли секунды. Два противоположных вида материи, соединившись на неуловимо краткий миг, неизбежно взаимоуничтожают друг друга, что приводит к их полному материальному исчезновению (аннигиляции); остается лишь энергетический след в форме гамма-излучения. Это явление подтверждает теорию А. Эйнштейна, что материя переходит в энергию и наоборот. И действительно, вскоре тот же Андерсон зафиксировал обратный процесс - внезапное исчезновение гамма-излучения и появление пары позитрон-электрон. Этот эффект получил название образование пары . Вместе с Гессом Андерсон был удостоен Нобелевской премии по изике за 1936 год.

Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории.

В соответствии с теорией Дирака электрон и позитрон могут рождаться парой, и на этот процесс должна быть затрачена энергия, равная энергии покоя этих частиц, 2×0,511 МэВ. Поскольку были известны естественные радиоактивные вещества , испускавшие γ-кванты с энергией больше 1 МэВ, представлялось возможным получить позитроны в лаборатории, что и было сделано. Экспериментальное сравнение свойств позитронов и электронов показало, что все физические характеристики этих частиц, кроме знака электрического заряда, совпадают.

Позитрон оказался первой открытой античастицей . Существование античастицы электрона и соответствие суммарных свойств двух античастиц выводам теории Дирака, которая могла быть обобщена на другие частицы, указывало на возможность парной природы всех элементарных частиц и ориентировало последующие физические исследования. Такая ориентация оказалась необычайно плодотворной, и в настоящее время парная природа элементарных частиц является точно установленным законом природы, обоснованным большим числом экспериментальных фактов.

Аннигиляция

Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса . Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта .

В 2007 экспериментально доказано существование связанной системы из двух позитронов и двух электронов (молекулярный позитроний). Такая молекула распадается ещё быстрее, чем атомарный позитроний.

Позитроны в природе

Считается, что в первые мгновения после Большого Взрыва количество позитронов и электронов во Вселенной было примерно одинаково, однако при остывании эта симметрия нарушилась. Пока температура Вселенной не понизилась до 1 МэВ, тепловые фотоны постоянно поддерживали в веществе определённую концентрацию позитронов путём рождения электрон-позитронных пар (такие условия существуют и сейчас в недрах горячих звёзд). После охлаждения вещества Вселенной ниже порога рождения пар оставшиеся позитроны аннигилировали с избытком электронов.

В космосе позитроны рождаются при взаимодействии с веществом гамма-квантов и энергичных частиц космических лучей , а также при распаде некоторых типов этих частиц (например, положительных мюонов). Таким образом, часть первичных космических лучей составляют позитроны, так как в отсутствие электронов они стабильны. В некоторых областях Галактики обнаружены аннигиляционные гамма-линии 511 кэВ, доказывающие присутствие позитронов.

В солнечном термоядерном pp-цикле (а также в CNO-цикле) часть реакций сопровождается эмиссией позитрона, который немедленно аннигилирует с одним из электронов окружения; таким образом, часть солнечной энергии выделяется в виде позитронов, и в ядре Солнца всегда присутствует некоторое их количество (в равновесии между процессами образования и аннигиляции).

Некоторые природные радиоактивные ядра (первичные, радиогенные, космогенные) испытывают бета-распад с излучением позитронов . Например, часть распадов природного изотопа 40 K происходит именно по этому каналу. Кроме того, гамма-кванты с энергией более 1,022 МэВ, возникающие при радиоактивных распадах, могут рождать электрон-позитронные пары.

При взаимодействии электронного антинейтрино (с энергией больше 1,8 МэВ) и протона происходит реакция обратного бета-распада с образованием позитрона: Такая реакция происходит в природе, поскольку существует поток антинейтрино с энергией выше порога обратного бета-распада, возникающих, например, при бета-распаде природных радиоактивных ядер.

Литература

Примечания

См. также


Элементарные частицы
Фермионы
Бозоны
Другие Ду́хи
Гипотетические
Другие A 0 · Дилатон · · J · Тахион · · X (4140)
· W’ · Z’ · Стерильное нейтрино
Составные частицы
Адроны
Барионы / Гипероны Нуклоны (p · p · n · n ) · Δ · Λ · Σ · Ξ · Ω
Мезоны / Кварконии π · ρ · η · · φ · ω · · ϒ · θ · · · ·
Другие Атомные ядра · Атомы · Экзотические атомы (Позитроний · Мюоний · Кварконий) · Молекулы
Гипотетические
Другие Мезонная молекула · Померон
Квазичастицы Солитон Давыдова · Экситон · Биэкситон · Магнон · Фонон · Плазмон · Поляритон · Полярон · Примесон · Ротон · Биротон · Дырка · Электрон · Куперовская пара · Орбитон · Трион · Фазон · Флуктуон · Энион · Холон и спинон Списки Список частиц · Список квазичастиц · Список барионов · Список мезонов · История открытия частиц

Wikimedia Foundation . 2010 .

Открытие позитрона. Античастицы

Существование частицы, идентичной электрону, но обладающей противоположным электрическим зарядом, было предсказано Полем Адриеном Морисом Дираком (1902–1984) на основании уравнения, введенного им в 1928 году. Уравнение Дирака описывает заряженную частицу со спином с учетом релятивистских эффектов, т.е., например, релятивистский электрон. Однако интересно, что вывести это уравнение Дирак пытался исходя из совсем других соображений: он пытался справиться с проблемой отрицательной плотности вероятности. Эта проблема заключалась в том, что при попытке обобщить уравнение Шредингера для волновой функции квантовой частицы

на релятивистский случай получалось уравнение Клейна–Гордона,

для которого нельзя было построить неотрицательную сохраняющуюся величину, имеющую смысл плотности вероятности. Другими словами, либо частица могла рождаться и исчезать, либо надо было интерпретировать понятие отрицательной вероятности. Обе альтернативы были разрушительными для квантовой механики.

Дирак же догадался, что появление отрицательных вероятностей связано с тем, что уравнение Клейна–Гордона содержит вторую производную волновой функции по времени, и постарался построить уравнение с первой производной, переходящее в нерелятивистском пределе в уравнение Шредингера или его подобие. Оказалось, что для этого функция должна быть не комплексным числом, как ранее, а набором из четырех комплексных чисел:

Для уравнения Дирака существовала неотрицательная плотность вероятность, равная , причем полная вероятность нахождения дираковской частицы хоть где-нибудь в пространстве со временем не меняется . Другими словами, частица сама собой не исчезает.

Оказалось, что полученное уравнение обладает неожиданными свойствами. Во-первых, в нерелятивистском пределе оно описывало частицу с энергией спином и магнитным моментом, который соответствует g-фактору, равному двум. Состояние этой частицы определяли две из четырех компонент волновой функции Дирака. Во-вторых, две оставшихся компоненты описывали электрон с отрицательной энергией . Чтобы избежать спонтанное падение частиц в этот отрицательный континуум , Дирак предположил, что этот континуум квантовых состояний уже занят , и электроны не могут проникнуть в него в силу принципа Паули. Этот полностью занятый континуум состояний получил название моря Дирака (см. рис. ниже).

Если частице из отрицательного континуума придать энергию, большую , она перейдет в положительный, при этом в отрицательном континууме образуется незанятое квантовое состояние - дырка. Эта дырка будет иметь положительный заряд и массу, равную электрону. Таким образом, при выходе электрона в положительный континуум физически наблюдается рождение пары частиц: электрона и его античастицы - позитрона. Именно такой перескок и изображен на рисунке выше.

Экспериментально существование предсказанной положительно заряженной частицы было подтверждено Карлом Дэвидом Андерсоном (1905–1991) в 1932 году. Эта частица была открыта в космических лучах по ее отклонению в магнитном поле в камере Вильсона. По тому, по часовой или против часовой стрелке изгибалась траектория частицы, можно было судить о знаке ее заряда. Это является прямым следствием уравнения движения частицы в магнитном поле:

(для простоты мы выписали нерелятивистское уравнение). Однако по фотографии трека в камере Вильсона напрямую нельзя определить направление движения частицы вдоль него. Две же одинаковые частицы, движущиеся в противоположных направлениях, будут отклоняться в магнитном поле в одну сторону. Чтобы определить истинное направление движения частицы, Андерсон разделил камеру Вильсона на две половины свинцовой перегородкой. Частица в результате прохождения через перегородку теряла скорость, поэтому радиус кривизны ее траектории

уменьшался, что наблюдалось по фотографии. Таким образом Андерсон восстановил «начало» и «конец» трека частицы и сделал вывод об ее положительном заряде. Радиус кривизны траектории также давал отношение массы к заряду для открытой частицы - оно оказалось равным по модулю этому же отношению для электрона.

В современной квантовой теории поля античастицы есть у всех частиц, обладающих каким бы то ни было зарядом. Тождественными себе являются фотон, бозон хиггса, ‑мезон и еще некоторые частицы. Кроме того, развитие квантовой теории поля, начавшейся, по сути дела, с уравнения Дирака, реабилитировало уравнение Клейна–Гордона и разрешило проблему отрицательных вероятностей совершенно другим способом - через так называемое вторичное квантование . Тем не менее, подход Дирака важен сам по себе как первый способ описания процессов рождения и уничтожения частиц. Уравнение Дирака является фундаментальным уравнением теоретической физики и описывает природу на фундаментальном уровне. Алгебраический же смысл, заложенный в это уравнение Дираком на этапе его вывода, заставляет задуматься о фундаментальной роли математики (и алгебры, в частности) в устройстве Вселенной.

Позитрон (от англ. positive —положительный и «-трон») — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории. Позитрон был открыт в 1932 году американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Полученное значение по модулю было равно значению электрона. На рисунке представлена одна из первых фотографий, доказавшая существование позитрона. Можно сделать вывод о том, что позитрон двигался снизу вверх, и, пройдя свинцовую пластинку, потерял часть своей энергии. В связи с этим кривизна траектории увеличилась.
(14.3) Вы видите фотографию, на которой запечатлен процесс образования пары электрон - позитрон. В камере Вильсона, находящейся в магнитном поле, пара оставляет характерный след и виде двурогой вилки. В результате проведения данных исследований ученые смогли сделать вывод о том, что такие преобразования, связанные с исчезновением (аннигиляцией) частиц и образованием новых, является именно превращением. Особенно наглядно обнаруживается это при аннигиляции пары электрон — позитрон. Обе частицы обладают определенной массой в состоянии покоя и электрическими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя. В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться не вечным. Впоследствии двойники — античастицы — были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Сравнительно недавно были обнаружены антипротон и антинейтрон. Электрический заряд антипротона отрицателен. Атомы, ядра которых состоят из антинуклонов, а оболочка — из позитронов, образуют антивещество. В 1969 г. в нашей стране был впервые получен антигелий. Антивещество — самый совершенный источник энергии, самое калорийное «горючее». В состоянии ли будет человечество когда-либо это «горючее» использовать, сейчас сказать трудно.

>> Открытие позитрона. Античастицы

§ 115 ОТКРЫТИЕ ПОЗИТРОНА. АНТИЧАСТИЦЫ

Существование двойника электрона - позитрона - было предсказано теоретически английским физиком П. Дираком в 1931 г.

Одновременно он предсказал, что при встрече позитрона с электроном обе частицы должны исчезнуть, породив фотоны большой энергии. Может протекать и обратный процесс - рождение электронно-позитронной пары, например при столкновении фотона достаточно большой энергии (его масса должна быть больше суммы масс покоя рождающихся частиц) с ядром.

Спустя два года позитрон был обнаружен с помощью камеры Вильсона, помещенной в магнитное поле. Направление искривления трека частицы указывало знак к ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Оно оказалось по модулю таким же, как и у электрона. На рисунке 14.2 вы видите первую фотографию, доказавшую существование позитрона. Частица двигалась снизу вверх и, пройдя спинцовую пластинку, потеряла часть своей энергии. Из за этого кривизна траектории увеличилась.

Процесс рождения пары электрон - позичрон -квантом в свинцовой пластинке показан на фотографии, приведенной на рисунке 14.3. В камере Вильсона, находящейся в магнитном поле, пара оставляет характерньгй смед и виде двурогой вилки.

Исчезновение (аннигиляция) одних частиц и появление других при реакциях между элементарными частицами является именно превращением, а не просто возникновением новой комбинации cocтавныx частей старых частиц. Особенно наглядно обнаруживается это при аипигиляции пары электрон - позитрон. Обо частицы обладают определенной массой в состоянии покоя и электричсекими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя.

В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться не вечным. Впоследствии двойники - античастицы - были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Сравнительно недавно обнаружены антипротон и антинейтрон. Электрический заряд антипротона отрицателен.

Сейчас хорошо известно, что рождение пары частица- античастица и их аннигиляция не составляют монополии электронов и позитронов.

Атомы, ядра которых состоят из антинуклонов, а оболочка - из позитронов, образуют антивещество. В 1969 г. в нашей стране был впервые получен антигелий.

При аннигиляции антивещества с веществом энергия покоя превращается в кинетическую энергию образующихся -квантов.

Энергия покоя - самый грандиозный и концентрированный резервуар энергии во Вселенной. И только при аннигиляции она полностью высвобождается, превращаясь в другие виды энергии. Поэтому антивещество - самый совершенный источник энергии, самое калорийное «горючее». В состоянии ли будет человечество когда-либо это «горючее» использовать, сейчас сказать трудно.

Можно надеяться, что недалеко то время, когда будет решена основная задача физики элементарных частиц и всей физики вообще. Будет получен спектр масс элементарных частиц и будет выяснено, чем определяются значения электрического заряда и других констант взаимодействия.

1. в чем различие трех этапов развития физики элементарных частиц!
2. Электрон - самая легкая из заряженных частиц. Какой из известных вам законов сохранения запрещает превращение электрона в фотоны или нейтрино!
3. Перечислите все стабильные элементарные частицы.
4. Какова частота -квантов, возникающих при аннигиляции медленно движущихся электрона и позитрона!
5. Можно ли в пузырьковой камере наблюдать трек заряженной частицы с временем жизни 10 -23 с!
6. Что такое кварк!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Помощь школьнику онлайн , Физика и астрономия для 11 класса скачать , календарно-тематическое планирование

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки