История создания и принцип действия камеры вильсона. Методы наблюдения и регистрации элементарных частиц. Камера Вильсона- Скобельцын, пузырьковая камера, счетчик Гейгера-Мюллера, счетчик Черенкова

Камера Вильсона. Камера Вильсона один из первых в истории приборов для регистрации следов заряженных частиц. Изобретена шотландским физиком Чарльзом Вильсоном 1912 г. Чарльзом Вильсоном1912Чарльзом Вильсоном1912 Камера Вильсона состоит из невысокого стеклянного цилиндра со стеклянной крышкой. Внутри цилиндра может двигаться поршень. На дне камеры находится черная ткань. Благодаря тому, что ткань увлажнена смесью воды со спиртом, воздух в камере насыщен парами этих жидкостей




Ядерная реакция 14N (×a, р) 17О, зарегистрированная в камере Вильсона. На снимке видны следы бомбардирующих ×a-частиц (линии, направленные снизу вверх), а также образующие вилку следы продуктов реакции протона и ядра 17О. Ядерная реакция 14N (×a, р) 17О, зарегистрированная в камере Вильсона. На снимке видны следы бомбардирующих ×a-частиц (линии, направленные снизу вверх), а также образующие вилку следы продуктов реакции протона и ядра 17О.


Вильсон установил! Вильсон установил. Что избыточная влага может конденсироваться не только на пылинках или других твердых частицах, но и на электрически заряженных атомах или молекулах газа, то есть на ионах. Это свойство ионов служить ядрами конденсации и использовал Вильсон для своего изобретения. Вильсон установил. Что избыточная влага может конденсироваться не только на пылинках или других твердых частицах, но и на электрически заряженных атомах или молекулах газа, то есть на ионах. Это свойство ионов служить ядрами конденсации и использовал Вильсон для своего изобретения. Вильсон установил, что влаге воздуха всегда нужно что - то, на чем она могла бы осесть. В воздухе ядрами конденсации для влаги являются крохотные пылинки. Если влажность воздуха слишком велика или если произошло внезапное охлаждение воздуха, то избыточная влага собирается на ядрах конденсации, и тогда образуется или туман, или дождь. Там, где в воздухе слишком много пыли, очень легко может возникать дождь или появляться туман. Если, конечно, в воздухе, кроме пыли, имеется еще достаточно много влаги. Вильсон установил, что влаге воздуха всегда нужно что - то, на чем она могла бы осесть. В воздухе ядрами конденсации для влаги являются крохотные пылинки. Если влажность воздуха слишком велика или если произошло внезапное охлаждение воздуха, то избыточная влага собирается на ядрах конденсации, и тогда образуется или туман, или дождь. Там, где в воздухе слишком много пыли, очень легко может возникать дождь или появляться туман. Если, конечно, в воздухе, кроме пыли, имеется еще достаточно много влаги.


Для регистрации альфа- и бета-частиц используют камеру Вильсона. Камера Вильсона - цилиндр со стеклянными боковыми стенками и крышкой, в котором перемещается поршень. Впускаемые в камеру через тонкое окошко частицы на своем пути ионизируют воздух. Образовавшиеся ионы становятся центрами конденсации перенасыщенного пара, и образованный на ионах по пути движения частиц туман от капелек сконденсированного пара позволяет при достаточно сильном освещении сфотографировать траектории частиц.


Камера Вильсона сыграла огромную роль в изучении строения вещества. На протяжении нескольких десятилетий она оставалась практически единственным инструментом для визуального исследования ядерных излучений. В 1927 году Вильсон получил за свое изобретение Нобелевскую премию по физике. Впоследствии камера Вильсона в качестве основного средства исследования радиации уступила место пузырьковым и искровым камерам Камера Вильсона сыграла огромную роль в изучении строения вещества. На протяжении нескольких десятилетий она оставалась практически единственным инструментом для визуального исследования ядерных излучений. В 1927 году Вильсон получил за свое изобретение Нобелевскую премию по физике. Впоследствии камера Вильсона в качестве основного средства исследования радиации уступила место пузырьковым и искровым камерам1927 годуВильсонНобелевскую премию по физикепузырьковымискровым камерам1927 годуВильсонНобелевскую премию по физикепузырьковымискровым камерам

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.


Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена
Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).
Важным этапом в методике наблюдения следов частиц явилось создание камеры Вильсона (1912 г.). За это изобретение Ч. Вильсону в 1927 г. присуждена Нобелевская премия. В камере Вильсона (см. рис. 1) треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей. На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10 -3 -10 -4 см) и фотографирования при хорошем освещении. Пространственное разрешение камеры Вильсона обычно ≈ 0.3 мм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта – на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Время чувствительности камеры, в течение которого перенасыщение остаётся достаточным для конденсации на ионах, а сам объём приемлемо прозрачным (не перегруженным капельками, в том числе и фоновыми), меняется от сотых долей секунды до нескольких секунд. После этого необходимо очистить рабочий объём камеры и восстановить её чувствительность. Таким образом, камера Вильсона работает в циклическом режиме. Полное время цикла обычно > 1 мин.

Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.
Наблюдение позитрона в камере Вильсона (рис. 2) , помещенной в магнитное поле. Тонкая изогнутая прерывистая линия, идущая снизу вверх – трек позитрона. Темная полоса, пересекающая трек посредине, слой вещества, в котором позитрон теряет часть энергии, и по выходе из которого двигается с меньшей скоростью. Поэтому трек искривлён сильнее.

Важным усовершенствованием, удостоенным в 1948 г. Нобелевской премии (П. Блэкетт), явилось создание управляемой камеры Вильсона. Специальные счётчики отбирают события, которые должны быть зарегистрированы камерой Вильсона, и “запускают” камеру лишь для наблюдения таких событий. Эффективность камеры Вильсона, работающей в таком режиме, многократно возрастает. “Управляемость” камеры Вильсона объясняется тем, что можно обеспечить очень высокую скорость расширения газовой среды и камера успевает отреагировать на запускающий сигнал внешних счётчиков.

В конце XIX века ученые открыли радиоактивное излучение урана и установили, что оно представляет собой поток разнообразных быстрых частиц. Можно ли проследить за их движением и взаимодействием с различными мишенями? Ведь эти частицы меньше атома, а их скорость соизмерима со скоростью света: даже относительно тяжелые и медленные альфа-частицы уже движутся со скоростью около 5% от световой и представляют собой лишь крохотное ядро одного из самых легких элементов — гелия.

1. В качестве корпуса камеры мы взяли прозрачную акриловую коробку от конфет. Можно использовать и любую другую прозрачную прямоугольную или цилиндрическую емкость (даже целый аквариум). Главное, чтобы материал стенок не лопался от сильных перепадов температуры, так что пластик предпочтительнее стекла.

Камера Вильсона

В 1912 году Чарльз Вильсон, исследовавший до этого далекие от ядерной физики процессы образования туманов и дождей, сконструировал камеру, за которую в 1927 году получил Нобелевскую премию. В ней резкое движение поршня на доли секунды создавало перенасыщенный пар какой-либо летучей жидкости. Перенасыщенный пар неустойчив, малейшие возмущения заставляют его сконденсироваться в капли. Пролетающие через объем камеры альфа- и бета-частицы оставляют за собой след ионов воздуха, который немедленно вызывает конденсацию жидкости, создавая видимый невооруженным глазом трек (след), в точности повторяющий траекторию частицы. По длине и толщине трека можно судить об энергии, скорости и массе частицы. Толстые треки остаются за тяжелыми медленными частицами, а легкие и быстрые дают тонкий, едва заметный след.


2. К верхней крышке обычным канцелярским скотчем или суперклеем крепится марлевый жгут с ватой внутри, пропитанный спиртом (этиловым или изопропиловым). Дно заклеивается черной изолентой, чтобы белые треки частиц были лучше видны (можно покрасить дно черной матовой краской или приклеить лист черной бумаги). В качестве источника частиц мы взяли сварочный электрод марки WT-20, состоящий из вольфрама с добавкой 2% тория (несмотря на радиоактивный торий, электроды безопасны, если их не глотать).

Камера Вильсона, особенно помещенная по предложению советских физиков Петра Капицы и Дмитрия Скобельцына в сильное магнитное поле, оказалась феноменально эффективным инструментом, позволившим сделать множество открытий — в частности, обнаружить позитроны и мюоны. Однако она имела серьезный недостаток — находилась в чувствительном к частицам состоянии в лучшем случае секунды. Это делало ее совершенно непригодной для исследования редких случайных событий.


3. Конструкция охладителя тоже предельно проста: в пластиковый пищевой контейнер насыпаются гранулы сухого льда, сверху кладется миллиметровый лист алюминия, позволяющий сделать охлаждение максимально равномерным.

Диффузионная камера

Во второй половине 1930-х годов американский физик Александр Лангсдорф-младший решил эту проблему. Вместо того чтобы создавать перенасыщенный пар резким снижением давления, он создал в камере постоянный градиент температуры. В области высокой температуры испарялась летучая жидкость, пары диффундировали в область низкой температуры и там непрерывно находились в перенасыщенном состоянии, всегда готовые показать исследователям траектории частиц. Кроме непрерывности работы, диффузионная камера Лангсдорфа имеет еще одно достоинство: ее предельно просто сделать. Она состоит из емкости с прозрачными стенками и нагревателем вверху и/или охладителем внизу. Вверху также располагается ткань, вата или иное пористое хранилище для жидкости. Вот, собственно, и вся конструкция. Именно такую камеру мы решили собрать в редакции «Популярной механики».


4. Далее устанавливаем камеру на алюминиевый лист охладителя и подсвечиваем ее сбоку фонариком. Через несколько минут, когда в коробке установится градиент температур и вблизи дна образуются перенасыщенные пары спирта, можно любоваться медитативным зрелищем треков альфа-частиц — туманных следов, которые рождаются в объеме камеры и плавно опускаются на дно.

Антимир своими глазами

Используя неодимовые магниты, можно заставить частицы двигаться по искривленной траектории. А если вместо электрода с торием поместить в камеру небольшое количество калийных удобрений (природный калий содержит бета-активный калий-40) и набраться терпения, то можно будет лично наблюдать античастицы — позитроны. Калий-40, пусть и очень редко, испускает их вместо обычных электронов. В магнитном поле треки редких позитронов отклоняются в противоположную по отношению к электронам сторону.

Камера Вильсона - трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения.

Принцип работы первой камеры Вильсона. На нитке 1 подвешены шарики 2 и 3. Нитку пережигали, одновременно открывая вентиль 4. Шарики, падая, замыкали последовательно контакты 5 и 6, подключенные к источникам высокого напряжения - батареям лейденских банок. Включалась рентгеновская трубка 7, ионизирующая своим излучением газ в камере, и спустя сотые доли секунды в разряднике 8 возникала искра, освещающая треки. Их снимал фотоаппарат 9. Так без малого сто лет назад начались исследования микромира.

Действие камеры Вильсона основано на явлении конденсации пересыщенного пара, т.e. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль следа быстрой заряженной частицы. Капли жидкости вырастают до размеров достаточных для наблюдения (10-3 -10-4 см) и фотографирования при хорошем освещении.

Пространственное разрешение камеры Вильсона обычно 0.3 мм.

Рис. 3.

Для исследования частиц с малой энергией камеры заполняют газом при давлении меньше атмосферного. Для исследования частиц высоких энергий камеру наполняют газом до давлений в десятки атм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта - на положительных ионах). Широко варьируются размеры и форма камер, материалы их стенок.

Камера Вильсона сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий этот детектор был практически единственным визуальным методом регистрации ядерных излучений. Однако в последние годы камера Вильсона уступила место пузырьковым и искровым камерам.

Д.В. Скобельцын усовершенствовал камеру Вильсона, поместив её в мощное магнитное поле, параллельно оси камеры. По искривлению траектории можно судить о знаке заряда, а если известны заряд и масса частицы, то по радиусу кривизны траектории можно определить скорость и энергию частицы. Если температура жидкости выше температуры кипения при данном давлении, а жидкость не вскипает, то такую жидкость называют перегретой. Это состояние не стабильно, оно разрушается, если создать в жидкости центры парообразования. Идея создания пузырьковой камеры принадлежит английскому ученому Глезеру (1952 год). Если через камеру, содержащую перегретую жидкость, пролетает частица большой энергии, то на ионах, образовавшихся на пути этой частицы, возникают пузырьки пара и дают след траектории частицы, который можно сфотографировать.

Рис. 4.

Быстрые заряженные частицы производят на зерна фотоэмульсии такое же воздействие, как и кванты света. Так как плотность вещества эмульсии во много раз превышает плотность воздуха, то след, оставленный быстрой частицей в эмульсии в тысячи раз короче, чем в воздухе. Поэтому для исследования частиц очень большой энергии применяются стопки, состоящие из листков эмульсии. Метод толстослойных фотоэмульсий был предложен советскими учеными Мысовским и Ждановым.

Для исследования распределения заряженных частиц по скоростям используются черенковские счетчики, основанные регистрации излучения Вавилова-Черенкова, возникающего при движении в среде заряженной частицы, имеющей скорость, большую скорости света в данной среде.

Биологические методы регистрации излучений.

Для регистрации ионизирующих излучений используют также биологические методы. Величину дозы оценивают по уровню летальности живых организмов, степени лейкомии, количеству хромосомных аберраций, изменению окраски и гиперемии кожи, выпадению волос, появлению в выделениях дезоксицитидина и др. Биологические методы не очень точны и менее чувствительны по сравнению с физическими методами. Однако они незаменимы в случае определения относительной биологической эффективности тяжелых частиц с большой энергией, а также при учете индивидуальных различий радиочувствительности.

Расчетные методы регистрации излучений.

В расчетных методах дозу излучения определяют путем математических вычислений. Это единственно возможный метод для определения дозы от инкорпорированных радионуклидов. Математический метод широко применяют для определения поглощенной и интегральной доз, исходя из экспозиционной и терапевтической доз от закрытых радиоактивных препаратов.

Дозиметрические приборы позволяют определять экспозиционную или поглощенную дозы излучения или мощность доз. Они предназначены для оценки радиационной обстановки в жилых, рабочих помещениях и на местности. Эти приборы просты в эксплуатации. К такому типу приборов относятся сигнализаторы-индикаторы, позволяющие выявить и оценивать мощность гамма-излучений с помощью световой и звуковой индикации. Измерители-индикаторы позволяют выявить радиоактивное загрязнение и одновременно измерять мощность гамма излучения. В общем случае оценку мощности гамма-излучения проводят на высоте 1 метр от поверхности земли и в 30 метрах от строений. Если снять заднюю крышку дозиметра можно измерить плотность потока бета-излучения, пользуясь пересчетной формулой, указанной в техническом описании прибора.

При своей простоте дозиметры позволяют определять уровень загрязнения лишь качественно.

Например, если дозиметр показывает 10 мкР/ч (0,1 мкЗв/ч) на расстоянии 5 см от одного килограмма продукта, это соответствует удельной активности 3500 Бк/кг, что свидетельствует об очень высоком уровне радиоактивного загрязнения.

Для более точных измерений применяют радиометры. Исследуемые пробы (продукты, почва, вода) помещают в отдельный сосуд, который изолирован от внешнего излучения, что позволяет зафиксировать даже незначительную величину излучения. Одним из наиболее удобных радиометров является Беккерель-монитор "Berthold", который позволяет определить загрязненность продуктов питания с точностью до 2 %.

К наиболее распространенным отечественным приборам радиационного контроля, которыми пользуется население, относятся:

Дозиметр "Сосна" - позволяет определить мощность экспозиционной дозы гамма-излучения и плотность потока бета-излучения. Имеет звуковую сигнализацию. Схожие характеристики имеет дозиметр "Белла".

Дозиметр-радиометр "Припять" измеряет степень радиоактивного загрязнения поверхностей продуктов.

Дозиметр-радиометр РКСБ-104 также измеряет уровень радиации и загрязненность объектов радионуклидами.

Существуют и другие приборы с подобными функциями.

ионизирующий детектор гейгер пузырьковый

Табл. 1. Единицы дозиметрии