Магнитное поле вокруг проводника с постоянным током. Магнитное поле соленоида. Магнитный момент во внешнем поле

Зависит ли величина индукции магнитного поля от той среды, в которой оно образовано? Для того чтобы ответить на этот вопрос, проделаем такой опыт. Определим сначала силу (см. рис. 117), с которой магнитное поле действует на проводник с током в воздухе (принципиально это надо делать в вакууме), а затем силу действия магнитного поля на данный проводник, например в воде, содержащей порошок окиси железа (на рисунке сосуд показан пунктиром). В среде из окиси железа магнитное поле действует на проводник с током с большей силой. В этом случае величина индукции магнитного поля больше. Есть вещества, например серебро, медь, в которых она меньше, чем в вакууме. Величина индукции магнитного поля зависит от среды, в которой оно образуется.

Величина, показывающая, во сколько раз индукция магнитного поля в данной среде больше или меньше, чем индукция магнитного поля в вакууме, называется магнитной проницаемостью среды. Если индукция магнитного поля среды В, а вакуума В 0 , то магнитная проницаемость среды

Магнитная проницаемость среды μ - величина безразмерная. Для разных веществ она различная. Так, для мягкой стали - 2180, воздуха - 1,00000036, меди - 0,999991 . Это объясняется тем, что различные вещества неодинаково намагничиваются в магнитном поле.


Выясним, от чего зависит индукция магнитного поля прямого проводника с током. Возле прямолинейного участка А витка провода (рис. 122) поместим индикатор С индукции магнитного поля. Включим ток. Магнитное поле участка А, действу на рамку индикатора, поворачивает ее, что вызывает отклонение стрелки от нулевого положения. Изменяя реостатом силу тока в рамке, замечаем, что во сколько раз усиливается, ток в проводнике, во столько же раз увеличивается и отклонение стрелки индикатора: В~I .

Оставляя силу тока неизменной, будем увеличивать расстояние между проводником и рамкой. По показанию индикатора замечаем, что индукция.магнитного поля обратно пропорциональна расстоянию от проводника до исследуемой точки поля: В~ I / R . Величина индукции магнитного поля зависит от магнитных, свойств среды - от ее магнитной проницаемости. Чем больше магнитная проницаемость, тем больше индукция магнитного поля: B~μ .

Теоретически и более точными экспериментами французские физики Био, Савар и Лаплас установили, что величина индукции магнитного поля прямого провода малого сечения в однородной среде с магнитной проницаемостью μ на расстоянии R от него равна


Здесь μ 0 - магнитная постоянная. Найдем ее числовое значение и наименование в системе СИ. Так как индукция магнитного поля в то же время равна то, приравняв эти две формулы, получим


Отсюда магнитная постоянная Из определения ампера мы знаем, что отрезки параллельных проводников длиной l = 1 м , находясь на расстоянии R = 1 м друг от друга, взаимодействуют с силой F = 2*10 -7 н, когда по ним идет ток I = 1 а. Исходя из этого, вычислим μ 0 (приняв μ = 1):

А теперь выясним, от чего зависит индукция магнитного поля внутри катушки с током. Соберем электрическую цепь (рис. 123). Поместив рамку индикатора индукции магнитного поля внутрь катушки, замкнем цепь. Увеличивая силу тока в 2, 3 и 4 раза, замечаем, что соответственно во столько же раз возрастает и индукция магнитного поля внутри катушки: В~I .

Определив индукцию магнитного поля внутри катушки, увеличим число витков, приходящихся на единицу ее длины. Для этого соединим последовательно две одинаковые катушки и одну из них вставим в другую. Реостатом установим прежнюю силу тока. При этой же длине катушки l число витков n в ней увеличилось в два раза и, как следствие этого, увеличилось в два раза число витков, приходящихся на единицу длины катушки.

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от . Он равен просто величине , умноженной на длину окружности. Если радиус окружности равен , то

.

Полный ток через петлю есть просто ток в проводе, поэтому

. (13.17)

Напряженность магнитного поля спадает обратно пропорционально , расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что направлено перпендикулярно как , так и , имеем

(13.18)

Фигура 13.7. Магнитное поле вне длинного провода с током .

Фигура 13.8. Магнитное поле длинного соленоида.

Мы выделили множитель , потому что он часто появляется. Стоит запомнить, что он равен в точности (в системе единиц СИ), потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии ток в создает магнитное поле, равное .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,- они отталкиваются.

Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» на рисунке. Эта кривая проходит расстояние внутри соленоида, где поле, скажем, равно , затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от вдоль этой кривой равен в точности , и это должно равняться , умноженному на полный ток внутри , т.е. на (где - число витков соленоида на длине ). Мы имеем

Или же, вводя - число витков на единицу длины соленоида (так что ), мы получаем

Фигура 13.9. Магнитное поле вне соленоида.

Что происходит с линиями , когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (13.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов, уже учтенных членом .

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились, когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,- у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,- однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.

Рассмотрим прямолинейный проводник (рис.3.2) , который является частью замкнутой электрической цепи. По закону Био-Савара-Лапласа вектор магнитной индукции
поля, создаваемого в точкеА элементом проводника с токомI , имеет значение
, где- угол между векторамии. Для всех участковэтого проводника векторыилежат в плоскости чертежа, поэтому в точкеА все векторы
, создаваемые каждым участком, направлены перпендикулярно к плоскости чертежа (к нам). Векторопределяется по принципу суперпозиции полей:

,

его модуль равен:

.

Обозначим расстояние от точки А до проводника . Рассмотрим участок проводника
. Из точкиА проведем дугу С D радиуса ,
– мал, поэтому
и
. Из чертежа видно, что
;
, но
(CD =
) Поэтому имеем:

.

Для получаем:

где и- значения угла для крайних точек проводникаMN .

Если проводник бесконечно длинный, то
,
. Тогда

    индукция в каждой точке магнитного поля бесконечно длинного прямолинейного проводника с током обратно пропорциональна кратчайшему расстоянию от этой точки до проводника .

3.4. Магнитное поле кругового тока

Рассмотрим круговой виток радиуса R , по которому течет ток I (рис. 3.3). По закону Био- Савара- Лапласа индукция
поля, создаваемого в точкеО элементом витка с током равна:

,

причём
, поэтому
, и
. С учётом сказанного получаем:

.

Все векторы
направлены перпендикулярно к плоскости чертежа к нам, поэтому индукция

напряженность
.

Пусть S – площадь, охватываемая круговым витком,
. Тогда магнитная индукция в произвольной точке оси кругового витка с током:

,

где – расстояние от точки до поверхности витка. Известно, что
- магнитный момент витка. Его направление совпадает с векторомв любой точке на оси витка, поэтому
, и
.

Выражение для по виду аналогично выражению для электрического смещения в точках поля, лежащих на оси электрического диполя достаточно далеко от него:

.

Поэтому магнитное поле кольцевого тока часто рассматривают как магнитное поле некоторого условного «магнитного диполя», положительным (северным) полюсом считают ту сторону плоскости витка, из которой магнитные силовые линии выходят, а отрицательным (южным) – ту, в которую входят.

Для контура тока, имеющего произвольную форму:

,

где - единичный вектор внешней нормали к элементуповерхностиS , ограниченной контуром. В случае плоского контура поверхность S – плоская и все векторы совпадают.

3.5. Магнитное поле соленоида

Соленоид - это цилиндрическая катушка с большим числом витков провода. Витки соленоида образуют винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов. Эти витки (токи) имеют одинаковый радиус и общую ось (рис.3.4).

Рассмотрим сечение соленоида вдоль его оси. Кружками с точкой будем обозначать токи, идущие из-за плоскости чертежа к нам, а кружочком с крестиком - токи, идущие за плоскость чертежа, от нас. L – длина соленоида, n число витков, приходящихся на единицу длины соленоида; - R - радиус витка. Рассмотрим точку А , лежащую на оси
соленоида. Ясно, что магнитная индукцияв этой точке направлена вдоль оси
и равна алгебраической сумме индукций магнитных полей, создаваемых в этой точке всеми витками.

Проведем из точки А радиус – вектор к какому-либо витку. Этот радиус-вектор образует с осью
уголα . Ток, текущий по этому витку, создает в точке А магнитное поле с индукцией

.

Рассмотрим малый участок
соленоида, он имеет
витков. Эти витки создают в точкеА магнитное поле, индукцию которого

.

Ясно, что расстояние по оси от точки А до участка
равно
; тогда
.Очевидно,
, тогда

Магнитная индукция полей, создаваемых всеми витками, в точке А равна

Напряженность магнитного поля в точке А
.

Из рис.3. 4 находим:
;
.

Таким образом, магнитная индукция зависит от положения точки А на оси соленоида. Она

максимальна в середине соленоида:

.

Если L >> R , то соленоид можно считать бесконечно длинным, в этом случае
,
,
,
; тогда

;
.

На одном из концов длинного соленоида
,
или
;
,
,
.