Плотность заряда напряженность. Использование конвертера «Конвертер поверхностной плотности заряда. Исследование при помощи пробной пластинки

Для начала вспомним формулы, которые используют при решении подобных задач: S = υ·t , υ = S: t , t = S: υ
где S – расстояние, υ – скорость движения, t – время движения.

Когда два объекта движутся равномерно с разными скоростями, то расстояние между ними за каждую единицу времени или увеличивается, или уменьшается.

Скорость сближения – это расстояние, на которое сближаются объекты за единицу времени.
Скорость удаления – это расстояние, на которое удаляются объекты за единицу времени.

Движение на сближение встречное движение и движение вдогонку . Движение на удаление можно разделить на два вида: движение в противоположных направлениях и движение с отставанием .

Трудность для некоторых учеников заключается в том, чтобы правильно поставить «+» или «–» между скоростями при нахождении скорости сближения объектов или скорости удаления.

Рассмотрим таблицу.

Из неё видно, что при движении объектов в противоположные стороны их скорости складываются . При движении в одну сторону – вычитаются .

Примеры решения задач.

Задача №1. Две автомашины движутся навстречу друг другу со скоростями 60км/ч и 80 км/ч. Определите скорость сближения машин.
υ 1 = 60 км/ч
υ 2 = 80 км/ч
Найти υ сб
Решение.
υ сб = υ 1 + υ 2 – скорость сближения в разных направлениях )
υ сб = 60 + 80 = 140 (км/ч)
Ответ: скорость сближения 140 км/ч.

Задача №2. Из одного пункта в противоположных направлениях выехали две автомашины со скоростями 60 км/ч и 80 км/ч. Определите скорость удаления машин.
υ 1 = 60 км/ч
υ 2 = 80 км/ч
Найти υ уд
Решение.
υ уд = υ 1 + υ 2 – скорость удаления (знак «+» так как из условия понятно, что машины движутся в разных направлениях )
υ уд = 80 + 60 = 140 (км/ч)
Ответ: скорость удаления 140 км/ч.

Задача №3. Из одного пункта в одном направлении выехали сначала автомобиль со скоростью 60 км/ч, а затем мотоцикл со скоростью 80 км/ч. Определите скорость сближения машин.
(Видим, что здесь случай движения вдогонку, поэтому находим скорость сближения)
υ ав = 60 км/ч
υ мот = 80 км/ч
Найти υ сб
Решение.
υ сб = υ 1 – υ 2 – скорость сближения (знак «–» так как из условия понятно, что машины движутся в одном направлении )
υ сб = 80 – 60 = 20 (км/ч)
Ответ: скорость сближения 20 км/ч.

То есть название скорости – сближения или удаления – не влияют на знак между скоростями. Имеет значение только направление движения .

Рассмотрим другие задачи.

Задача № 4. Из одного пункта в противоположных направлениях вышли два пешехода. Скорость одного из них 5 км/ч, другого – 4 км/ч. Какое расстояние будет между ними через 3 ч?
υ 1 = 5 км/ч
υ 2 = 4 км/ч
t = 3 ч
Найти S
Решение.
в разных направлениях )
υ уд = 5 + 4 = 9 (км/ч)

S = υ уд ·t
S = 9·3 = 27 (км)
Ответ: через 3 ч расстояние будет 27 км.

Задача № 5. Два велосипедиста одновременно выехали навстречу друг другу из двух пунктов, расстояние между которыми 36 км. Скорость первого 10 км/ч, второго 8 км/ч. Через сколько часов они встретятся?
S = 36 км
υ 1 = 10 км/ч
υ 2 = 8 км/ч
Найти t
Решение.
υ сб = υ 1 + υ 2 – скорость сближения (знак «+» так как из условия понятно, что машины движутся в разных направлениях )
υ сб = 10 + 8 = 18 (км/ч)
(время встречи можно рассчитать по формуле)
t = S: υ сб
t = 36: 18 = 2 (ч)
Ответ: встретятся через 2 ч.

Задача №6. Два поезда отошли от одной станции в противоположных направлениях. Их скорости 60 км/ч и 70км/ч. Через сколько часов расстояние между ними будет 260 км?
υ 1 = 60 км/ч
υ 2 = 70 км/ч
S = 260 км
Найти t
Решение .
1 способ
υ уд = υ 1 + υ 2 – скорость удаления (знак «+» так как из условия понятно, что пешеходы движутся в разных направлениях )
υ уд = 60 + 70 = 130 (км/ч)
(Пройденное расстояние находим по формуле)
S = υ уд ·t t = S: υ уд
t = 260: 130 = 2 (ч)
Ответ: через 2 ч расстояние между ними будет 260 км.
2 способ
Сделаем пояснительный рисунок:

Из рисунка видно, что
1) через заданное время расстояние между поездами будет равно сумме расстояний, которые прошли каждый из поездов:
S = S 1 + S 2 ;
2) каждый из поездов ехал одинаковое время (из условия задачи), значит,
S 1 =υ 1 · t —расстояние которое проехал 1 поезд
S 2 =υ 2 · t — расстояние которое проехал 2 поезд
Тогда,
S = S 1 + S 2
= υ 1 · t + υ 2 · t = t · (υ 1 + υ 2) = t · υ уд
t = S: (υ 1 + υ 2) — время за которое оба поезда проедут 260 км
t = 260: (70 + 60) = 2 (ч)
Ответ: расстояние между поездами будет 260 км через 2 ч.

1. Два пешехода одновременно вышли навстречу друг другу из двух пунктов, расстояние между которыми 18 км. Скорость одного из них 5 км/ч, другого – 4 км/ч. Через сколько часов они встретятся? (2 ч)
2. Два поезда отошли от одной станции в противоположных направлениях. Их скорости 10 км/ч и 20 км/ч. Через сколько часов расстояние между ними будет 60 км? (2 ч)
3. Из двух сел, расстояние между которыми 28 км, одновременно навстречу друг другу вышли два пешехода. Скорость первого 4 км/ч, скорость второго 5 км/ч. На сколько километров за час пешеходы сближаются друг с другом? Какое расстояние будет между ними через 3 часа? (9 км, 27 км)
4. Расстояние между двумя городами 900 км. Два поезда вышли из этих городов навстречу друг другу со скоростями 60 км/ч и 80 км/ч. На каком расстоянии друг от друга были поезда за 1 час до встречи? Есть ли в задаче лишнее условие? (140 км, есть)
5. Велосипедист и мотоциклист выехали одновременно из одного пункта в одном направлении. Скорость мотоциклиста 40 км/ч, а велосипедиста 12 км/ч. Какова скорость их удаления друг от друга? Через сколько часов расстояние между ними будет 56 км? (28 км/ч, 2 ч)
6. Из двух пунктов, удаленных друг от друга на 30 км, выехали одновременно в одном направлении два мотоциклиста. Скорость первого 40 км/ч, второго 50 км/ч. Через сколько часов второй догонит первого?
7. Расстояние между городами А и В 720 км. Из А в В вышел скорый поезд со скоростью 80 км/ч. Через 2 часа навстречу ему из В в А вышел пассажирский поезд со скоростью 60 км/ч. Через сколько часов они встретятся?
8. Из села вышел пешеход со скоростью 4 км/ч. Через 3 часа вслед за ним выехал велосипедист со скоростью 10 км/ч. За сколько часов велосипедист догонит пешехода?
9. Расстояние от города до села 45 км. Из села в город вышел пешеход со скоростью 5 км/ч. Через час навстречу ему из города в село выехал велосипедист со скоростью 15 км/ч. Кто из них в момент встречи будет ближе к селу?
10. Старинная задача. Некий юноша пошел из Москвы к Вологде. Он проходил в день 40 верст. Через день вслед за ним был послан другой юноша, проходивший в день 45 верст. Через сколько дней второй догонит первого?
11. Старинная задача . Собака усмотрела в 150 саженях зайца, который пробегает в 2 минуты по 500 сажен, а собака за 5 минут – 1300 сажен. Спрашивается, в какое время собака догонит зайца?
12. Старинная задача . Из Москвы в Тверь вышли одновременно 2 поезда. Первый проходил в час 39 верст и прибыл в Тверь двумя часами раньше второго, который проходил в час 26 верст. Сколько верст от Москвы до Твери?

Общие сведения

Мы живём в эпоху синтезированных материалов. Начиная с изобретения вискозы и нейлона, химическая промышленность щедро снабжает нас синтетическими тканями и мы уже не мыслим своё существование без них. Воистину, благодаря им, человечеству удалось полностью удовлетворить потребность в одежде: от ажурных дамских чулок и колготок до лёгких и тёплых свитеров и удобных и красивых курток с синтетическими утеплителями. Синтетические ткани имеют массу других достоинств, в число которых, например, входят прочность при носке и водоотталкивающие свойства, или свойство долго сохранять форму после глажения.

К сожалению, в бочке с мёдом всегда найдётся место для ложки дёгтя. Синтезированные материалы легко электризуются, что мы буквально чувствуем своей собственной кожей. Каждый из нас, стягивая с себя свитер из искусственной шерсти в темноте, мог наблюдать искорки и слышать треск электрических разрядов.

Медики относятся к такому свойству синтетики достаточно настороженно, рекомендуя использовать, по крайней мере, для нижнего белья изделия из натуральных волокон с минимальным количеством добавляемой синтетики.

Технологи стремятся создавать ткани с высокими антистатическими свойствами, используя различные способы снижения электризации, но усложнение технологий ведёт к росту себестоимости производства. Для контроля антистатических свойств полимеров применяют различные методы измерения поверхностной плотности заряда, которая, наряду с удельным электрическим сопротивлением, служит характеристикой антистатических свойств.

Необходимо отметить, что антистатические свойства одежды и обуви очень важны для определенной части чистых производственных помещений, например, в микроэлектронной промышленности, где электростатические заряды, накапливаемые при трении тканей или материалов обуви на их поверхностях, могут разрушать микросхемы.

Крайне высокие требования к антистатическим свойствам тканей одежды и к материалам обуви предъявляет нефтегазовая промышленность - ведь достаточно небольшой искры, чтобы инициировать взрыв или пожар на таких производствах. порой с очень тяжёлыми последствиями в материальном плане и даже с человеческими жертвами.

Историческая справка

Понятие поверхностной плотности заряда непосредственно связано с понятием электрических зарядов.

Ещё Шарль Дюфе, учёный из Франции, в 1729 году высказал и доказал предположение о существовании зарядов различного типа, названых им «стеклянным» и «смоляным», поскольку они получались при натирании стекла шелком и янтаря (то есть смолы деревьев) шерстью. Бенджамин Франклин, исследовавший грозовые разряды и создавший громоотвод, ввёл современные названия таких зарядов - положительные (+) и отрицательные (–) заряды.

Закон взаимодействия электрических зарядов открыл французский учёный Шарль Кулон в 1785 году; ныне в честь его заслуг перед наукой этот закон носит его имя. Справедливости ради необходимо отметить, что тот же самый закон взаимодействия на 11 лет раньше Кулона открыл британский учёный Генри Кавендиш, использовавший для экспериментов такие же разработанные им крутильные весы, которые впоследствии самостоятельно применил Кулон. К сожалению, работа Кавендиша по закону взаимодействия зарядов долгое время (свыше ста лет) была неизвестна. Рукописи Кавендиша были опубликованы в только 1879 году.

Следующий шаг в исследовании зарядов и расчётов создаваемых ними электрических полей сделал британский учёный Джеймс Клерк Максвелл, объединивший своими уравнениями электростатики закон Кулона и принцип суперпозиции полей.

Поверхностная плотность заряда. Определение

Поверхностная плотность заряда - это скалярная величина, характеризующая заряд, приходящийся на единицу поверхности объекта. Её физической иллюстрацией в первом приближении может служить заряд на конденсаторе из плоских проводящих пластин некоторой площади. Поскольку заряды могут быть как положительными, так и отрицательными, значения их поверхностной плотности заряда могут выражаться положительными и отрицательными величинами. Она обозначается греческой буквой σ (произносится как сигма) и рассчитывается исходя из формулы:

σ = Q/S

σ = Q/S где Q - поверхностный заряд, S - площадь поверхности.

Размерность поверхностной плотности заряда в Международной системе единиц СИ выражается в кулонах на квадратный метр (Кл/м²).

Помимо основной единицы поверхностной плотности заряда, используется кратная единица (Кл/см2). В другой системе измерений - СГСМ - применяется единица абкулон на квадратный метр (абКл/м²) и кратная единица абкулон на квадратный сантиметр (абКл/см²). 1 абкулон равен 10 кулонам.

В странах, где не используются метрические единицы площади, поверхностная плотность заряда измеряется в кулонах на квадратный дюйм (Кл/дюйм²) и абкулонах на квадратный дюйм (абКл/дюйм²).

Поверхностная плотность заряда. Физика явлений

Поверхностная плотность заряда используется для проведения физических и инженерных расчётов электрических полей при конструировании и использовании различных электронных экспериментальных установок, физических приборов и электронных компонентов. Как правило, такие установки и приборы имеют плоскостные электроды из проводящего материала достаточной площади. Поскольку заряды в проводнике располагаются по его поверхности, его другими размерами и краевыми эффектами можно пренебречь. Расчёты электрических полей таких объектов ведутся с использованием уравнений электростатики Максвелла.

Поверхностная плотность заряда Земли

Мало кто из нас помнит тот факт, что мы живём на поверхности гигантского конденсатора, одна из обкладок которого представляет собой поверхность Земли, а вторая обкладка образована ионизированными слоями атмосферы.

Именно поэтому Земля и ведёт себя подобно конденсатору - накапливает электрический заряд и в этом конденсаторе, время от времени, даже возникают пробои межэлектродного пространства при превышении «рабочего» напряжения, более известные нам как молнии. Электрическое поле Земли подобно электрическому полю сферического конденсатора.

Подобно любому конденсатору, Земля может характеризоваться поверхностной плотностью заряда, величина которой, в общем случае, может меняться. При ясной погоде поверхностная плотность заряда на конкретном участке Земли примерно соответствует среднему значению по планете. Локальные значения поверхностной плотности заряда Земли в горах, на возвышенностях, в местах залегания металлических руд и при электрических процессах в атмосфере могут отличаться от средних значений в сторону увеличения.

Оценим её среднее значение при обычных условиях. Как известно, радиус Земли равен 6371 километру.

Экспериментальное исследование электрического поля Земли и соответствующие расчёты показывают, что Земля в целом обладает отрицательным зарядом, среднее значение которого оценивается в 500 000 кулонов. Этот заряд поддерживается приблизительно на одном уровне благодаря целому ряду процессов в атмосфере Земли и в ближайшем космосе.

По известной из школьного курса формуле вычислим площадь поверхности земного шара, она примерно равна 500 000 000 квадратных километров.

Отсюда средняя поверхностная плотность заряда Земли составит примерно 1 10⁻⁹ Кл/м² или 1 нКл/м².

Кинескоп и осциллографическая трубка

Телевидение было бы невозможно без появления устройств, обеспечивающих формирование узкого пучка электронов с высокой плотностью заряда - электронных пушек. Еще недавно одним из основных элементов телевизоров и мониторов являлся кинескоп, или, иначе, электронно-лучевая трубка (ЭЛТ). Производство ЭЛТ в годовом исчислении составляло в недалёком прошлом сотни миллионов единиц.

Кинескоп - это электронно-вакуумный прибор, предназначенный для преобразования электрических сигналов в световые для динамического формирования изображения на покрытом люминофором экране, который может быть монохромным или полихромным.

Конструкция кинескопа состоит из электронной пушки, фокусирующей и отклоняющей систем, ускоряющих анодов и экрана с нанесенным слоем люминофора. В цветных кинескопах (ЦЭЛТ) число элементов, создающих электронные лучи, утраивается по числу отображаемых цветов - красного, зелёного и синего. Экраны цветных кинескопов имеют щелевые или точечные маски, предотвращающие попадание электронных лучей иного цвета на конкретный люминофор.

Люминофорное покрытие представляет собой мозаику из трёх слоёв люминофоров с различным цветовым свечением. Элементы мозаики могут располагаться в одной плоскости или в вершинах треугольника элемента отображения.

Электронная пушка состоит из катода, управляющего электрода (модулятора), ускоряющего электрода, и одного и более анодов. При наличии двух и более анодов, первый анод называется фокусирующим электродом.

Катод кинескопов выполнен в виде полой гильзы, на внешнюю сторону дна которой нанесён оксидный слой из оксидов щелочноземельных металлов, обеспечивающий достаточную термоэмиссию электронов при нагреве до температуры около 800 °С за счёт подогревателя, электрически изолированного от катода.

Модулятор представляет собой цилиндрический стакан с дном, накрывающий собой катод. В центре дна стакана имеется калиброванное отверстие порядка 0,01 мм, называемое несущей диафрагмой, через которую проходит электронный луч.

Поскольку модулятор находится на небольшом расстоянии от катода, его назначение и действие подобно назначению и действию управляющей сетки в электронной лампе.

Ускоряющий электрод и аноды представляют собой полые цилиндры, последний анод выполнен также в виде гильзы с калиброванным отверстием на дне, которое называется выходной диафрагмой. Эта система электродов предназначена для придания электронам необходимой скорости и формирования пятна малых размеров на экране кинескопа, представляя собой электростатическую линзу. Её параметры зависят от геометрии этих электродов и поверхностных плотностей заряда на них, которые создаются путём подачи на них соответствующих напряжений относительно катода.

Одним из еще недавно широко применяемых электронных приборов являлась осциллографическая электронно-лучевая трубка (ОЭЛТ), предназначенная для визуализации электрических сигналов за счёт их отображения электронным лучом на люминесцентном монохромном экране. Основным отличием осциллографической трубки от кинескопа является принцип построения отклоняющей системы. В ОЭЛТ применяется электростатическая система отклонения, потому что она обеспечивает большее быстродействие.

Осциллографическая ЭЛТ представляет собой вакуумированную стеклянную колбу, внутри которой находятся электронная пушка, генерирующая узкий пучок электронов с помощью системы электродов, отклоняющих электронный луч и ускоряющих его, и люминесцентный экран, светящийся при бомбардировке ускоренными электронами.

Отклоняющая система состоит из двух пар пластин, расположенных горизонтально и вертикально. К горизонтальным пластинам - иначе пластинам вертикального отклонения - прикладывается исследуемое напряжение. На вертикальные пластины - иначе пластины горизонтального отклонения - подаётся пилообразное напряжение от генератора развёртки. Под действием напряжений на пластинах происходит перераспределение зарядов на них и за счёт образующегося суммарного электрического поля (вспомним принцип суперпозиции полей!) летящие электроны отклоняются от своей первоначальной траектории пропорционально приложенным напряжениям. Электронный луч рисует на экране трубки форму исследуемого сигнала. Из-за пилообразности напряжения на вертикальных пластинах электронный луч, в отсутствие сигнала на горизонтальных пластинах, движется по экрану слева направо, при этом рисуя горизонтальную линию.

Если на вертикальные и горизонтальные отклоняющие пластины подать два различных сигнала, то на экране можно наблюдать так называемые фигуры Лиссажу.

Так как обе пары пластин образуют собой плоские конденсаторы, заряды которых сосредотачиваются на обкладках, для расчёта конструкции электронно-лучевой трубки применяется поверхностная плотность заряда, характеризующая чувствительность отклонения электронов к воздействующему напряжению.

Электролитический конденсатор и ионистор

Расчеты поверхностного заряда необходимо выполнять и при разработке конденсаторов. В современной электротехнике, радиотехнике и электронике широко используют конденсаторы различных типов, применяемые для разделения цепей постоянного и переменного тока и для накопления электрической энергии.

Накопительная функция конденсатора напрямую зависит от величины его ёмкости. Типичный конденсатор представляет собой пластины из проводника, называемые обкладками конденсатора (как правило, их материалом служат различные металлы), разделённые слоем диэлектрика. Диэлектриком в конденсаторах служат твёрдые, жидкие или газообразные вещества, имеющие высокую диэлектрическую проницаемость. В простейшем случае диэлектриком является обычный воздух.

Можно сказать, что накопительная ёмкость конденсатора для электрической энергии прямо пропорциональна поверхностной плотности зарядов на его обкладках или площади обкладок, и обратно пропорциональна расстоянию между его обкладками.

Таким образом, доступны два пути увеличения накопленной конденсатором энергии - увеличение площади обкладок и уменьшение зазора между ними.

В электролитических конденсаторах большой ёмкости в качестве диэлектрика применяется тонкая оксидная плёнка, нанесённая на металл одного из электродов - анода - другим электродом выступает электролит. Главная особенность электролитических конденсаторов состоит в том, что они, по сравнению с другими типами конденсаторов, обладают большой ёмкостью при достаточно небольших габаритах, кроме того, они являются полярными электрическими накопителями, то есть должны включаться в электрическую цепь с соблюдением полярности. Ёмкость электролитических конденсаторов может достигать порядка десятков тысяч микрофарад; для сравнения: ёмкость металлического шара с радиусом, равным радиусу Земли, составляет всего 700 микрофарад.

Соответственно поверхностная плотность заряда таких конденсаторов, находящихся под напряжением, может достигать значительных величин.

Другим способом повышения ёмкости конденсатора является увеличение поверхностной плотности заряда за счёт развитой поверхности электродов, что достигается применением материалов с повышенной пористостью и использованием свойств двойного электрического слоя.

Технической реализацией этого принципа является ионистор (другие названия суперконденсатор или ультраконденсатор), представляющий собой конденсатор, «обкладками» которого служит двойной электрический слой на границе раздела электрода и электролита. Функционально ионистор представляет собой гибрид конденсатора и химического источника тока.

Двойной межфазный электрический слой - это слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора или ориентирования полярных молекул на границе фаз. Ионы, непосредственно связанные с поверхностью, называются потенциалопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.

Поскольку толщина двойного электрического слоя, то есть расстояние между «обкладками» конденсатора, крайне мала (размером с ион), запасённая ионистором энергия выше по сравнению с обычными электролитическими конденсаторами того же размера. К тому же использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить эффективную площадь поверхности электрода.

Пока типичные ионисторы по плотности запасаемой энергии уступают электрохимическим аккумуляторам, но перспективные разработки суперконденсаторов с применением нанотехнологий уже сравнялись с ними по этому показателю и даже превосходят их.

Например, аэрогелевые суперконденсаторы разработки фирмы Ness Cap., Ltd с электродами из вспененного углерода имеют объёмную ёмкость, в 2000 раз превосходящую объёмную ёмкость электролитического конденсатора одинакового с ним размера, а удельная мощность превосходит удельную мощность электрохимических аккумуляторов в 10 раз.

К другим ценным качествам суперконденсатора, как устройства накопления электрической энергии, относятся малое внутреннее сопротивление и очень малый ток утечки. Кроме того, суперконденсатор имеет малое время зарядки, допускает высокие токи разряда и практически неограниченное число циклов заряд-разряд.

Суперконденсаторы находят применение для длительного хранения электрической энергии и при питании нагрузки высокими токами. Например, при утилизации энергии торможения гоночными болидами Формулы 1 с последующей рекуперацией накопленной в ионисторах энергии. Для гоночных машин, где важен каждый грамм и каждый кубический сантиметр объёма, суперконденсаторы с плотностью запасаемой энергии, достигающей 4000 Вт/кг, являются отличной альтернативой литий-ионным аккумуляторам. Ионисторы также стали привычными в легковых автомобилях, где они используются для питания аппаратуры во время работы стартера и для сглаживания скачков напряжения при пиковых нагрузках.

Эксперимент. Определение поверхностной плотности заряда оплётки коаксиального кабеля

В качестве примера рассмотрим расчёт поверхностной плотности заряда на оплётке коаксиального кабеля.

Для вычисления поверхностной плотности заряда, накапливаемого оплёткой коаксиального кабеля, учитывая то обстоятельство, что центральная жила вместе с оплёткой образуют цилиндрический конденсатор, воспользуемся зависимостью заряда конденсатора от приложенного напряжения:

Q = C U где Q - заряд в кулонах, C - ёмкость в фарадах, U - напряжение в вольтах.

Возьмём отрезок радиочастотного коаксиального кабеля малого диаметра (при этом выше его ёмкость и её проще измерить) длиной L равной 10 метрам.

Мультиметром измерим ёмкость отрезка кабеля, микрометром - диаметр оплётки d

Ск = 500 пФ; d = 5 мм = 0,005 м

Подадим на кабель калиброванное напряжение 10 вольт от источника питания, подсоединив оплётку и центральную жилу кабеля к клеммам источника.

По приведенной выше формуле рассчитаем заряд, накопленный на оплётке:

Q = Сk Uk = 500 10 = 5000 пКл = 5 нКл

Считая оплётку отрезка кабеля сплошным проводником, найдём её площадь, вычисляемую по известной формуле площади цилиндра:

S = π d L = 3,14 0,005 10 = 0,157 м²

и вычислим примерную поверхностную плотность заряда оплётки кабеля:

σ = Q/S = 5/0,157 = 31,85 нКл/м²

Естественно, при повышении напряжения, приложенного к оплётке и центральной жиле коаксиального кабеля, повышается и накапливаемый заряд и, следовательно, растёт и поверхностная плотность заряда.