При нагревании предметы расширяются или сужаются. Тепловое расширение твердых тел и жидкостей

Провода летом провисают намного силь­нее, чем зимой, т. е. летом они длиннее. Если набрать полную бу­тылку холодной воды и поставить в теплое место, то со временем часть воды из бутылки выльется, так как во время нагревания вода расширяется. Воздушный шарик, вынесенный из комнаты на мороз, уменьшается в объеме.

1. Убеждаемся в тепловом расширении твердых тел, жидкостей и газов

Несложные опыты и многочисленные на­блюдения убеждают нас в том, что, как прави­ло, твердые тела, жидкости и газы во время нагревания расширяются, а во время охлажде­ния сжимаются.

Тепловое расширение жидкостей и газов лег­ко наблюдать с помощью колбы, шейка которой плотно закупорена, а в пробку вставлена стек­лянная трубка. Перевернем колбу, заполненную воздухом, в сосуд с водой.

Теперь достаточно взяться за колбу рукой, и в скором времени воз­дух, расширяясь в колбе, будет выходить в виде пузырьков из трубки под водой (рис. 2.30).

Теперь наполним колбу какой-нибудь подкра­шенной жидкостью и закупорим так, чтобы часть жидкости вошла в трубку (рис. 2.31, а). Обозна­чим уровень жидкости в трубке и опустим колбу в сосуд с горячей водой. В первый момент уровень жидкости немного снизится (рис. 2.31, б), и это можно объяснить тем, что сначала нагревается и расширяется колба, а уже потом, нагреваясь, расширяется вода.

Рис. 2.30. При нагревании воз­дух в колбе расширяется и часть его выходит из колбы - это видно по пузырькам воздуха, выходящим из трубки


Рис. 2.31 Опыт, демонстрирующий, что при нагревании жидкость (как твердые тела и газы) расширяется: а - закрытая пробкой колба с жидкостью в трубке; б - в первый момент нагрева­ния уровень жидкости немного снижается; в - при дальнейшем нагревании уровень жидкости значительно повышается

В скором времени мы убедим­ся, что по мере нагревания колбы и воды в ней уровень жидкости в трубке заметно повысится (рис. 2.31, в). Итак, твердые тела и жидкости, как и газы, во время нагревания расширяются. Исследовательским путем выяснено, что твердые тела и жидкости во время нагревания расширяются намного меньше, чем газы.

Тепловое расширение твердых тел можно продемонстрировать также на следующем опы­те. Возьмем медный шарик, который в ненагре­том состоянии легко проходит сквозь пригнан­ное к нему кольцо. Нагреем шарик в пламени спиртовки и убедимся в том, что шарик теперь не будет проходить сквозь кольцо (рис. 2.32, а). После охлаждения шарик снова легко пройдет сквозь кольцо (рис. 2.32, б).

2. Выясняем причину теплового расширения

В чем же причина увеличения объема тел во время нагревания, ведь количество молекул с увеличением температуры не изменяется?

Атомно-молекулярная теория объясняет теп­ловое расширение тел тем, что с увеличением температуры увеличивается скорость движения атомов и молекул. В результате увеличивается среднее расстояние между атомами (молекулами).


Рис. 2.32. Опыт, иллюстрирую­щий тепловое расширение твер­дых тел: а - в нагретом состоя­нии шарик не проходит сквозь кольцо; б - после охлаждения шарик проходит сквозь кольцо

Соответственно, увеличивает­ся объем тела. И наоборот, чем ниже температура вещества, тем меньше межмолекулярные промежутки. Исключением является вода, чугун и некоторые дру­гие вещества. Вода, например, расширяется только при температуре выше 4 °С; при температуре от О 0C до 4 0C объем воды во время нагревания уменьшается.

3. Характеризуем тепловое расширение твердых тел

Выясним, как изменяются линейные размеры твердого тела вследствие изменения температуры . Для этого измерим длину алюминиевой трубки, по­том нагреем трубку, пропуская сквозь нее горячую воду. Спустя некоторое время можно заметить, что длина трубки незначительно увеличилась.

Заменив алюминиевую трубку стеклянной такой же длины, мы убедим­ся, что в случае одинакового увеличения температуры длина стеклянной трубки увеличивается намного меньше, чем длина алюминиевой. Таким об­разом, делаем вывод: тепловое расширение тела зависит от вещества, из которого оно изготовлено.

Физическая величина , характеризующая тепловое расширение материала и численно равная отношению изменения длины тела вследствие его нагрева­ния на I °С и его начальной длины, называется температурным коэффициен­том линейного расширения.

Температурный коэффициент линейного расширения обозначается сим­волом а и вычисляется по формуле:


Из определения температурного коэффициента линейного расширения можно получить единицу этой физической величины:

Ниже в таблице приведены температурные коэффициенты линейного расширения некоторых веществ.

4. Знакомимся с тепловым расширением в природе и технике

Способность тел расширяться во время нагревания и сжиматься во время охлажде­ния играет очень важную роль в природе. По­верхность Земли прогревается неравномерно. В результате воздух вблизи Земли также рас­ширяется неравномерно, и образуется ветер, предопределяющий изменение погоды. Нерав­номерное прогревание воды в морях и океанах приводит к возникновению течений, которые существенно влияют на климат. Резкие коле­бания температуры в горных районах вызыва­ют расширение и сжатие горных пород. А по­скольку степень расширения зависит от вида породы, то расширения и сжатия происходят неравномерно, и в результате образуются тре­щины, которые приводят к разрушению этих пород.

Тепловое расширение приходится прини­мать во внимание при строительстве мостов и линий электропередач, прокладывании труб отопления, укладке железнодорожных рельсов, изготовлении железобетонных конструк­ций и во многих других случаях.

Явление теплового расширения широко ис­пользуется в технике и быту. Так, для авто­матического замыкания и размыкания элект­рических цепей используют биметаллические пластинки - они состоят из двух полос с раз­ным коэффициентом линейного расширения (рис. 2.33). Тепловое расширение воздуха по­могает равномерно прогреть квартиру, охла­дить продукты в холодильнике , проветрить комнату.

Рис. 2.33. Для изготовления авто­матических предохранителей (а), для автоматического включения и выключения нагревательных приборов (б) широко используют­ся биметаллические пластинки (в). Один из металлов при увеличении температуры расширяется намно­го больше, чем другой, в результа­те этого пластинка изгибается (г) и размыкает­ся (или замыкается)

5. Учимся решать задачи

Длина стального железнодорожного рельса при температуре О о C равна 8 г. На сколько увеличится его длина в зной­ный летний день при температуре 40 °С?

Анализ условия задачи. Зная, как изменя­ется длина стальной детали вследствие нагре­вания на 1 °С, т. е. зная температурный ко­эффициент линейного расширения стали, мы найдем, на сколько изменится длина рельса вследствие нагревания на 40 °С. Температурный коэффициент линейного расширения стали найдем по таб­лице, приведенной выше.


  • Подводим итоги

Твердые тела, жидкости и газы во время нагревания, как правило, расширяются. Причина теплового расширения в том, что с увеличением температуры увеличивается скорость движения атомов и молекул. В ре­зультате увеличивается среднее расстояние между атомами (молекулами). Тепловое расширение твердых веществ характеризуется коэффициентом ли­нейного расширения. Коэффициент линейного расширения численно равен отношению изменения длины тела вследствие нагревания его на 1 о C и его начальной длины

1. Приведите примеры, подтверждающие, что твердые тела, жидкос­ти и газы расширяются во время нагревания.

2. Опишите опыт, де­монстрирующий тепловое расширение жидкостей.

3. В чем причина увеличения объема тел во время нагревания?

4. От чего, кроме тем­пературы, зависит изменение размеров тел во время их нагревания (охлаждения)?

5. В каких единицах измеряется коэффициент ли­нейного расширения?

  • Упражнения

1. Выберите все правильные ответы. Когда тело охлаждается, то:

а) скорость движения его молекул уменьшается;
б) скорость движения его молекул увеличивается;
в) расстояние между его молекулами уменьшается;
г) расстояние между его молекулами увеличивается.

2. Как изменится объем воздушного шарика, если мы перенесем его из холодного помещения в теплое? Почему?
3. Что происходит с расстояниями между частичками жидкости в тер­мометре в случае похолодания?
4. Правильным ли является утверждение, что во время нагревания тело увеличивает свои размеры, так как размеры его молекул уве­личиваются? Если нет, предложите свой, исправленный, вариант.
5 . Зачем на точных измерительных приборах указывают темпера­туру?
6. Вспомните опыт с медным шариком, который вследствие нагрева­ния застревал в кольце (см. рис. 2.32). Как изменились вследствие нагревания: объем шара; его масса; плотность; средняя скорость движения атомов?
7. После того как пар кипящей воды пропустили через латунную трубку, длина трубки увеличилась на 1,62 мм. Чему равен коэффи­циент линейного расширения латуни, если при температуре 15 0C
длина трубки равна 1 м? Напоминаем, что температура кипящей воды равна 100 °С.
8. Платиновый провод длиной 1,5 м находился при температуре 0 °С. Вследствие пропускания электрического тока провод раскалился и удлинился на 15 мм. До какой температуры он был нагрет?
9. Медный лист прямоугольной формы, размеры которого при темпе­ратуры 20 0C составляют 60 см х 50 см, нагрели до 600 °С. Как из­менилась площадь листа?

  • Экспериментальные задания

1. Как, имея дощечку, молоток, два гвоздика, спиртовку и пинцет, показать, что размер монеты в 5 копеек во время нагревания уве­личивается? Выполните соответствующий опыт. Объясните наблю­даемое явление.

2. Наполните бутылку водой так, чтобы внутри остался пузырек воз­духа. Нагрейте бутылку в горячей воде. Проследите, как изменят­ся размеры пузырька. Объясните результат..

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Простые опыты и наблюдения убеждают нас, что при повышении температуры размеры тел немного увеличиваются, а при охлаждении - уменьшаются до прежних размеров. Так, например, сильно разогретый болт не входит в резьбу, в которую он свободно входит, будучи холодным. Когда болт охладится, он снова входит в резьбу. Телеграфные провода в жаркую летнюю погоду провисают заметно больше, чем во время зимних морозов. Увеличение провисания, а следовательно, и длины натянутых проволок при нагревании легко воспроизвести на опыте, изображенном на рис. 353. Нагревая натянутую проволоку электрическим током, мы видим, что она заметно провисает, а по прекращении нагревания снова натягивается.

Рис. 353. При нагревании электрическим током проволока удлиняется и провисает; по выключении тока она принимает прежнее положение

При нагревании увеличиваются не только длина тела, нотакже и другие линейные размеры. Изменение линейных размеров тела при нагревании называют линейным расширением.

Если однородное тело (например, стеклянная трубка) нагревается одинаково во всех частях, то оно, расширяясь, сохраняет свою форму. Иное происходит при неравномерном нагревании. Рассмотрим такой опыт. Стеклянная трубка расположена горизонтально, и один ее конец закреплен. Если трубку нагревать снизу, как показано на рис. 354, то верхняя ее часть остается вследствие плохой теплопроводности стекла более холодной; при этом трубка изгибается кверху. Легко понять, что нижняя половина изогнутой трубки сжата, так как она не может расширяться в той мере, в какой расширялась бы, если бы не составляла одно целое с верхней половиной. Верхняя половина, наоборот, растянута.

Рис. 354. Стеклянная трубка при нагревании ее снизу заметно изгибается вверх

Таким образом, при неравномерном нагревании тел в них возникают напряжения, которые могут повести к их разрушению, если напряжения сделаются слишком большими. Так, стеклянная посуда в первый момент, когда в нее налита горячая вода, находится в напряженном состоянии и иногда лопается. Это происходит вследствие того, что сперва прогреваются и расширяются внутренние части, которые и растягивают при этом внешнюю поверхность посуды. Такого напряжения при нагревании можно избежать, если взять посуду со столь тонкими стенками, что они быстро прогреваются по всей толщине (химическая посуда).

По сходной причине лопается обычная стеклянная посуда, если пытаться греть в ней жидкости на огне или на электрической плитке. Существуют, однако, специальные сорта стекла (так называемое кварцевое стекло, содержащее до 96% кварца, ), которые расширяются при нагревании настолько мало, что напряжения при неравномерном нагревании посуды, сделанной из такого стекла, не опасны. В кастрюле из кварцевого стекла можно кипятить воду.

Линейное расширение различных материалов при одном и том же повышении температуры различно. Это видно, например, из такого опыта: две разнородные пластинки (например, железная и медная) склепывают между собой в нескольких местах (рис. 355, а). Если при комнатной температуре пластинки прямые, то при нагревании они искривятся, как изображено на рис. 355, б. Это показывает, что медь расширяется в большей мере, чем железо. Из этого опыта следует также, что при изменениях температуры тела, состоящего из нескольких различно расширяющихся частей, в нем тоже появляются внутренние напряжения. В опыте, изображенном на рис. 355, медная пластинка сжата, а железная - растянута. По причине неодинакового расширения железа и эмали возникают напряжения в эмалированной железной посуде; при сильном нагреве эмаль иногда отскакивает.

Рис. 355. а) Пластинка, склепанная из медной и железной полосок, в холодном состоянии, б) Та же пластинка в нагретом состоянии (для наглядности изгиб показан преувеличенным)

Напряжения, появляющиеся в твердых телах вследствие теплового расширения, могут быть очень большими. Это необходимо принимать во внимание во многих областях техники. Бывали случаи, когда части железных мостов, склепанные днем, охлаждаясь ночью, разрушались, срывая многочисленные заклепки. Во избежание подобных явлений, принимают меры к тому, чтобы части сооружений при изменении температуры расширялись или сжимались свободно. Например, железные паропроводы снабжают пружинящими изгибами в виде петель (компенсаторы, рис. 356).

Рис. 356. Компенсатор на паропроводе дает возможность трубам и расширяться

Увеличение линейных размеров сопровождается увеличением объема тел (объемное расширение тел). О линейном расширении жидкостей говорить нельзя, так как жидкость не имеет определенной формы. Объемное же расширение жидкостей нетрудно наблюдать. Наполним колбу подкрашенной водой или другой жидкостью и заткнем ее пробкой со стеклянной трубкой так, чтобы жидкость вошла в трубку (рис. 357, а). Если к колбе поднести снизу сосуд с горячей водой, то в первый момент жидкость в трубке опустится, а затем начнет подниматься (рис. 357, б и в). Понижение уровня жидкости в первый момент указывает на то, что сперва расширяется сосуд, а жидкость еще не успела прогреться. Затем прогревается и жидкость.

Рис. 357. а) Подкрашенная вода вошла из колбы в пробку, б) К колбе снизу подносится сосуд с горячей водой. В первый момент погружения колбы жидкость в трубке опускается. в) Уровень в трубке через некоторое время устанавливается выше, чем до нагревания колбы

Повышение ее уровня показывает, что жидкость расширяется в большей мере, чем стекло. Различные жидкости расширяются при нагревании по-разному: например, керосин расширяется сильнее, чем вода.

Если жидкость нагревается в замкнутом сосуде, который препятствует ее расширению, то в ней, так же как и в твердых телах, появляются огромные напряжения (силы давления), действующие на стенки сосуда и могущие их разрушить. Поэтому системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой (рис. 358). При нагревании воды в системе труб часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб.

Рис. 358. Схема устройства водяного отопления в доме. На чердаке помещен расширительный бак 1, из которого вода стекает по трубке 2

195.1. Как меняется диаметр отверстия в чугунной кухонной печи, когда печь нагревается?

195.2. Когда балалайку выносят из теплого помещения на мороз, ее стальные струны становятся более натянутыми. Какое заключение можно вывести отсюда о различии в расширении стали и дерева?

195.3. Вроялях стальные струны натягиваются на железную раму. Меняется ли натяжение струн при настолько медленном изменении температуры, что рама успевает принять ту же температуру, что и струны (железо расширяется почти в той же степени, что и сталь)?

195.4. Для впайки электродов в электрическую лампу употребляют сплав «платинид», расширяющийся при нагревании так же, как стекло. Что может случиться, если впаять в стекло медную проволочку (медь расширяется заметно сильнее стекла)?

195.5. Как изменился бы опыт, изображенный на рис. 357, если бы колба была сделана из кварцевого стекла?

195.6. В технике часто пользуются биметаллическими пластинками, состоящими из двух тонких пластинок разных металлов, приваренных друг к другу по всей поверхности соприкосновения. На рис. 359 показана упрощенная схема термореле - прибора, автоматически выключающего на небольшой срок электрический ток, если сила тока почему-либо превысит допустимое значение: 1 - биметаллическая пластинка, 2 - небольшой нагревательный элемент, при допустимой силе тока нагревающийся слишком слабо для срабатывания реле, 3 - контакт. Разберитесь в действии термореле. С какой стороны пластинки 1 должен находиться металл, расширяющийся в большей мере?

Рис. 359. Упрощенная схема термореле

В первых термометрах использовалось изменение объема газа или жидкости при изменении температуры. Именно это свойство и позволило приписать любому телу определенную температуру, выражаемую числом. В этой главе мы рассмотрим, как меняются линейные размеры твердых тел, а также объемы, твердых тел и жидкостей в зависимости от температуры. О зависимости объема газа от температуры было рассказано достаточно.

§ 9.1. Тепловое расширение тел

При изменении температуры размеры тел меняются: при нагревании, как правило, увеличиваются, при охлаждении уменьшаются. Отчего это происходит?

Увеличение размеров небольшого тела невелико и его трудно заметить. Но если взять железную проволоку длиной 1,5- 2 м и нагревать ее электрическим током, то удлинение можно обнаружить на глаз без специальных приборов. Для этого один конец проволоки должен быть закреплен, а другой перекинут через блок. К этому концу надо прикрепить груз, оттягивающий проволоку вниз (рис. 9.1). По указателю, соединенному с грузом, и судят об изменении длины проволоки в процессе ее нагревания или охлаждения.

Расширение небольшого стального шара, нагретого на газовой горелке, можно заметить по его прохождению через кольцо. Холодный шар легко проходит через кольцо, а нагретый застревает в нем. Когда шар остынет, он снова проходит через кольцо.

Как же объяснить, почему тела при нагревании расширяются?

Молекулярная картина теплового расширения

Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Е р0 (в точке r 0) при уменьшении г и сравнительно медленно растет при увеличении r .

При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии r 0 , соответствующем минимальному значению потенциальной энергии Е р0 . По мере нагревания молекулы начинают совершать колебания около положения равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по-прежнему соответствовало бы расстоянию r 0 . Это означало бы общую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной , среднее положение колеблющейся молекулы соответствует расстоянию r 1 > r 0 .

Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются.

Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения , и т. д. При этом увеличивается и среднее расстояние между молекулами, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r 2 > r 1 , r 3 > r 2 и т. д.

При нагревании тела среднее расстояние между колеблющимися молекулами увеличивается, поэтому увеличиваются и размеры тела.

Тепловое расширение — изменение линейных размеров и формы тела при изменении его температуры. Для характеристики теплового расширения твёрдых тел вводят коэффициент линейного теплового расширения.

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом.

Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Е р0 (в точке r 0) при уменьшении r и сравнительно медленно растет при увеличении r .

Рисунок 2.5

При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии r 0 , соответствующем минимальному значению потенциальной энергии Е р0 . По мере нагревания молекулы начинают совершать колебания около положения равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по-прежнему соответствовало бы расстоянию r 0 . Это означало бы общую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной , среднее положение колеблющейся молекулы соответствует расстоянию r 1 > r 0 .

Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются. Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения , и т. д. При этом увеличивается и среднее расстояние между молекулами, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r 2 > r 1 , r 3 > r 2 и т. д.

Применительно к твердым телам, форма которых при изменении температуры (при равномерном нагревании или охлаждении) не меняется, различают изменение линейных размеров (длины, диаметра и т. п.) — линейное расширение и изменение объема — объемное расширение. У жидкостей при нагревании форма может меняться (например, в термометре ртуть входит в капилляр). Поэтому в случае жидкостей имеет смысл говорить только об объемном расширении.


Основной закон теплового расширения твердых тел гласит, что тело с линейным размером L 0 при увеличении его температуры на ΔT расширяется на величину ΔL , равную:

ΔL = αL 0 ΔT, (2.28)

где α — так называемый коэффициент линейного теплового расширения .

Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Коэффициент линейного расширения зависит от природы вещества, а также от температуры. Однако, если рассматривать изменения температуры в не слишком широких пределах, зависимостью α от температуры можно пренебречь и считать температурный коэффициент линейного расширения величиной постоянной для данного вещества. В этом случае линейные размеры тела, как вытекает из формулы (2.28), зависят от изменения температуры следующим образом:

L = L 0 (1 +αΔT ) (2.29)

Из твердых тел сильнее всех расширяется воск, превышая в этом отношении многие жидкости. Коэффициент теплового расширения воска в зависимости от сорта в 25 - 120 раз больше чем у железа. Из жидкостей сильнее других расширяется эфир. Однако есть жидкость, расширяющаяся в 9 раз сильнее эфира - жидкая углекислота (СО3) при +20 градусах Цельсия. Ее коэффициент расширения в 4 раза больше, чем у газов.

Наименьшим коэффициентом теплового расширения из твердых тел обладает кварцевое стекло - в 40 раз меньше, чем железо. Кварцевую колбу раскаленную до 1000 градусов можно смело опускать в ледяную воду, не опасаясь за целостность сосуда: колба не лопается. Малым коэффициентом расширения, хотя и большим, чем у кварцевого стекла, отличается также алмаз.

Из металлов, меньше всего расширяется сорт стали, носящий название инвар, коэффициент его теплового расширения в 80 раз меньше, чем у обычной стали.

В приведенной ниже таблице 2.1 показаны коэффициенты объемного расширения некоторых веществ.

Таблица 2.1 - Значение изобарического коэффициента расширения некоторых газов, жидкостей и твёрдых тел при атмосферном давлении

Коэффициент объёмного расширения Коэффициент линейного расширения
Вещество Тем-ра, °С α×10 3 , (°C) -1 Вещество Тем-ра, °С α×10 3 , (°C) -1
Газы Алмаз 1,2
Графит 7,9
Гелий 0-100 3,658 Стекло 0-100 ~9
Кислород 3,665 Вольфрам 4,5
Жидкости Медь 16,6
Вода 0,2066 Алюминий
Ртуть 0,182 Железо
Глицерин 0,500 Инвар (36,1% Ni) 0,9
Этиловый спирт 1,659 Лед -10 o до 0 о С 50,7

Контрольные вопросы

1. Дать характеристику распределению нормальных колебаний по частотам.

2. Что такое фонон?

3. Объяснить физический смысл температуры Дебая. Чем определяется значение температуры Дебая для данного вещества?

4. Почему при низких температурах решёточная теплоёмкость кристалла не остается постоянной?

5. Что называется теплоёмкостью твёрдого тела? Чем она определяется?

6. Объяснить зависимость решёточной теплоёмкости кристалла Cреш от температуры T.

7. Получить закон Дюлонга-Пти для молярной теплоёмкости решётки.

8. Получить закон Дебая для молярной теплоёмкости решётки кристалла.

9. Какой вклад вносит электронная теплоемкость в молярную теплоемкость металла?

10. Что называется теплопроводностью твёрдого тела? Чем она характеризуется? Чем осуществляется теплопроводность в случаях металла и диэлектрика.

11. Как зависит коэффициент теплопроводности кристаллической решётки от температуры? Объяснить.

12. Дать определение теплопроводности электронного газа. Сравнить χ эл и χ реш в металлах и диэлектриках.

13. Дать физическое объяснение механизму теплового расширения твёрдых тел? Может ли КТР быть отрицательным? Если да, то объяснить причину.

14. Объяснить температурную зависимость коэффициента теплового расширения.

При нагревании тел растет средняя кинетическая энергия поступательного движения молекул и среднее расстояние между молекулами. Поэтому все вещества при нагревании расширяются, а при охлаждении сжимаются. Различают линейное и объемное расширение.

Изменение одного определенного размера твердого тела при изменениях температуры называетсялинейным расширением (или сжатием).

Где – длина стержня при 0 0 ,

Коэффициент линейного расширения. Размерность = О С -1 .

Длина тела при любой температуре t: ;

При объемном расширении увеличивается объем: , где: – объем тела при 0 0 C.

Объем тела при любой температуре t: , где:

Коэффициент объемного расширения;

Экспериментально установлено, что . Поэтому .

Аналогично для площади поверхности твердого тела: .

В жидкостях есть одно замечательное исключение: вода при нагревании от 0 0 C до +4 0 C сжимается, а при охлаждении от +4 0 C до 0 0 C – расширяется. Коэффициент объемного расширения воды сильно меняется при изменении температуры.

Примеры тепловых расширений:

Вода при замерзании расширяется и разрывает горные породы, металлические трубы и другие технические конструкции.

В автоматике применяются биметаллические пластины, использующие различие коэффициентов линейного расширения каждой из двух пластин. При нагревании биметаллическая пластина теряет устойчивость, нажимает на переключатель, в результате чего исполнительный механизм срабатывает.

Тепловые расширения важно учитывать при прокладывании рельсов, натягивании проводов, сооружении мостов и т.д. Выводы из электроламп и радиоламп производят из материала, у которого коэффициент линейного расширения близок к коэффициенту линейного расширения стекла.

Плавление и кристаллизация.
Диаграмма фазовых состояний

Переход вещества из твердого состояния в жидкоесостояние называется плавлением, а переход из жидкого состояния в твердое –отвердеванием или кристаллизацией. Плавление и отвердевание происходит при одной и той же температуре, называемойтемпературой плавления. Давление практически не влияет на величину температуры плавления. Температуру плавления вещества при нормальном атмосферном давлении называютточкой плавления.

При плавлении твердого тела увеличивается расстояния между частицами, образующими кристаллическую решетку, и происходит разрушение самой решетки. У подавляющего большинства веществ объем при плавлении увеличивается, а при отвердевании уменьшается.

Область, в которой вещество однородно по всем физическим и химическим свойствам, называется фазой состояния этого вещества. Жидкая и твердая фазы вещества при одинаковой температуре могут оставаться в равновесии сколь угодно долгое время (лед и вода при 0 0 C). Поэтому пока все вещество не расплавится, его температура остается неизменной , равной температуре плавления.

Теплотой плавления называется количество теплоты, которое необходимо подвести к телу массой m, находящемуся при температуре плавления , чтобы его расплавить.

Где – удельная теплота плавления.

1 Дж/кг.

На рисунке 34 показаны графики изменения температуры вещества при плавлении и отвердевании. Отрезок (рисунок 34а) выражает количество теплоты, полученное веществом при нагревании в твердом состоянии (от до T ПЛ), отрезок - при плавлении и отрезок - при нагревании в жидком состоянии. Отрезок (рисунок 34б) выражает количество теплоты, отданное веществом при охлаждении в жидком состоянии (от до ), отрезок - при отвердевании и отрезок - при охлаждении в твердом состоянии.

Рисунок 34. Графики изменения температуры вещества при плавлении и отвердевании

Многие твердые вещества обладают запахом. Это доказывает, что твердые вещества могут переходить в газообразное состояние, минуя жидкое. Испарение твердых тел называетсявозгонкой или сублимацией (от латинского “сублимате” - возносить). В пищевой промышленности используется обладающий таким свойством “сухой лед” (СО 2). Возможен и обратный процесс – рост кристаллов из газообразного вещества (лед на окнах, зарастание перемычек ПЗУ).

Для каждого вещества можно составить диаграмму состояний в координатах Р и Т (рисунок 35), на основании которой можно легко определить, в каком состоянии будет находиться это вещество при тех или иных внешних условиях. Каждая точка диаграммы соответствует равновесному состоянию вещества, в которых оно может находиться сколь угодно долго.

Кривая KC – зависимость давления насыщающего пара от температуры. Точка K – критическая точка.

Кривая CA – зависимость от температуры давления насыщающих паров, находящихся в равновесном состоянии с поверхностью твердого тела.

Кривая KC – линия равновесия жидкой и газообразной фаз. Прямая BC – линия равновесия жидкой и твердой фаз. Кривая AC – линия равновесия твердой и газообразной фаз.

Точка C изображает равновесие между всеми тремя фазами, ее называют тройной точкой. У гелия нет тройной точки.

Контрольные вопросы:

1. Расскажите о тепловом расширении твердых тел.

2. Что такое плавление и кристаллизация? Что такое теплота плавления?

3. Что такое возгонка вещества?

4. Расскажите о диаграмме состояний вещества.