Мольная поляризация. Понятие о диэлектрических свойствах молекул. Поляризация молекул. Поляризуемость и ее свойства

внутренних параметров под конкретную задачу.

Алгоритм работы нейронной сети является итеративным, его шаги называют эпохами или циклами.

Эпоха - одна итерация в процессе обучения, включающая предъявление всех примеров из обучающего множества и, возможно, проверку качества обучения на контрольном множестве.

Процесс обучения осуществляется на обучающей выборке.

Обучающая выборка включает входные значения и соответствующие им выходные значения набора данных. В ходе обучения нейронная сеть находит некие зависимости выходных полей от входных.

Таким образом, перед нами ставится вопрос - какие входные поля (признаки) нам необходимо использовать. Первоначально выбор осуществляется эвристически, далее количество входов может быть изменено.

Сложность может вызвать вопрос о количестве наблюдений в наборе данных. И хотя существуют некие правила, описывающие связь между необходимым количеством наблюдений и размером сети, их верность не доказана.

Количество необходимых наблюдений зависит от сложности решаемой задачи. При увеличении количества признаков количество наблюдений возрастает нелинейно, эта проблема носит название "проклятие размерности". При недостаточном количестве данных рекомендуется использовать линейную модель .

Аналитик должен определить количество слоев в сети и количество нейронов в каждом слое .

Далее необходимо назначить такие значения весов и смещений, которые смогут минимизировать ошибку решения. Веса и смещения автоматически настраиваются таким образом, чтобы минимизировать разность между желаемым и полученным на выходе сигналами, которая называется ошибка обучения .

Ошибка обучения для построенной нейронной сети вычисляется путем сравнения выходных и целевых (желаемых) значений. Из полученных разностей формируется функция ошибок .

Функция ошибок - это целевая функция , требующая минимизации в процессе управляемого обучения нейронной сети .

С помощью функции ошибок можно оценить качество работы нейронной сети во время обучения. Например, часто используется сумма квадратов ошибок.

От качества обучения нейронной сети зависит ее способность решать поставленные перед ней задачи.

Переобучение нейронной сети

При обучении нейронных сетей часто возникает серьезная трудность, называемая проблемой переобучения (overfitting).

Переобучение , или чрезмерно близкая подгонка - излишне точное соответствие нейронной сети конкретному набору обучающих примеров, при котором сеть теряет способность к обобщению.

Переобучение возникает в случае слишком долгого обучения, недостаточного числа обучающих примеров или переусложненной структуры нейронной сети .

Переобучение связано с тем, что выбор обучающего (тренировочного) множества является случайным. С первых шагов обучения происходит уменьшение ошибки. На последующих шагах с целью уменьшения ошибки (целевой функции) параметры подстраиваются под особенности обучающего множества . Однако при этом происходит "подстройка" не под общие закономерности ряда, а под особенности его части - обучающего подмножества. При этом точность прогноза уменьшается.

Один из вариантов борьбы с переобучением сети - деление обучающей выборки на два множества (обучающее и тестовое).

На обучающем множестве происходит обучение нейронной сети . На тестовом множестве осуществляется проверка построенной модели. Эти

Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую нейронную сеть". Этот вопрос решается в два этапа: 1. Выбор типа (архитектуры) нейронной сети. 2. Подбор весов (обучение) нейронной сети. На первом этапе следует выбрать следующее: * какие нейроны мы хотим использовать (число входов, передаточные функции); * каким образом следует соединить их между собой; * что взять в качестве входов и выходов нейронной сети. Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейронную сеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена и другие. Про все эти архитектуры скоро можно будет прочитать в специальном разделе этого учебника.

На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

Обучение нейронных сетей

Обучить нейронную сеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки. Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных. Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу.

Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров. Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.


После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения. Примеры готовых нейронных сетей

Описанные выше процессы обучения и применения нейронных сетей можно увидеть в действии прямо сейчас. Фирмой Ward Systems Group подготовлено несколько простых программ, которые написаны на основе библиотеки NeuroWindows. Каждая из программ позволяет пользователю самостоятельно задать набор примеров и обучить на этом наборе определенную нейронную сеть. Затем можно предлагать этой нейронной сети новые примеры и наблюдать ее работу.

Итак, сегодня мы продолжим обсуждать тему нейронных сетей на нашем сайте, и, как я и обещал в первой статье (), речь пойдет об обучении сетей . Тема эта очень важна, поскольку одним из основных свойств нейронных сетей является именно то, что она не только действует в соответствии с каким-то четко заданным алгоритмом, а еще и совершенствуется (обучается) на основе прошлого опыта. И в этой статье мы рассмотрим некоторые формы обучения, а также небольшой практический пример.

Давайте для начала разберемся, в чем же вообще состоит цель обучения. А все просто – в корректировке весовых коэффициентов связей сети. Одним из самых типичных способов является управляемое обучение . Для его проведения нам необходимо иметь набор входных данных, а также соответствующие им выходные данные. Устанавливаем весовые коэффициенты равными некоторым малым величинам. А дальше процесс протекает следующим образом…

Мы подаем на вход сети данные, после чего сеть вычисляет выходное значение. Мы сравниваем это значение с имеющимся у нас (напоминаю, что для обучения используется готовый набор входных данных, для которых выходной сигнал известен) и в соответствии с разностью между этими значениями корректируем весовые коэффициенты нейронной сети. И эта операция повторяется по кругу много раз. В итоге мы получаем обученную сеть с новыми значениями весовых коэффициентов.

Вроде бы все понятно, кроме того, как именно и по какому алгоритму необходимо изменять значение каждого конкретного весового коэффициента. И в сегодняшней статье для коррекции весов в качестве наглядного примера мы рассмотрим правило Видроу-Хоффа , которое также называют дельта-правилом .

Дельта правило (правило Видроу-Хоффа).

Определим ошибку :

Здесь у нас – это ожидаемый (истинный) вывод сети, а – это реальный вывод (активность) выходного элемента. Помимо выходного элемента ошибки можно определить и для всех элементов скрытого слоя нейронной сети, об этом мы поговорим чуть позже.

Дельта-правило заключается в следующем – изменение величины весового коэффициента должно быть равно:

Где – норма обучения. Это число мы сами задаем перед началом обучения. – это сигнал, приходящий к элементу k от элемента j . А – ошибка элемента k .

Таким образом, в процессе обучения на вход сети мы подаем образец за образцом, и в результате получаем новые значения весовых коэффициентов. Обычно обучение заканчивается когда для всех вводимых образцов величина ошибки станет меньше определенной величины. После этого сеть подвергается тестированию при помощи новых данных, которые не участвовали в обучении. И по результатам этого тестирования уже можно сделать выводы, хорошо или нет справляется сеть со своими задачами.

С корректировкой весов все понятно, осталось определить, каким именно образом и по какому алгоритму будут происходить расчеты при обучении сети. Давайте рассмотрим обучение по алгоритму обратного распространения ошибок.

Алгоритм обратного распространения ошибок.

Этот алгоритм определяет два “потока” в сети. Входные сигналы двигаются в прямом направлении, в результате чего мы получаем выходной сигнал, из которого мы получаем значение ошибки. Величина ошибки двигается в обратном направлении, в результате происходит корректировка весовых коэффициентов связей сети. В конце статьи мы рассмотрим пример, наглядно демонстрирующий эти процессы.

Итак, для корректировки весовых значений мы будем использовать дельта-правило, которое мы уже обсудили. Вот только необходимо определить универсальное правило для вычисления ошибки каждого элемента сети после, собственно, прохождения через элемент (при обратном распространении ошибок).

Я, пожалуй, не буду приводить математические выводы и расчеты (несмотря на мою любовь к математике 🙂), чтобы не перегружать статью, ограничимся только итоговыми результатами:

Функция – это функция активности элемента. Давайте использовать логистическую функцию, для нее:

Подставляем в предыдущую формулу и получаем величину ошибки:

В этой формуле:

Наверняка сейчас еще все это кажется не совсем понятным, но не переживайте, при рассмотрении практического примера все встанет на свои места 😉

Собственно, давайте к нему и перейдем.

Перед обучением сети необходимо задать начальные значения весов – обычно они инициализируются небольшими по величине случайными значениями, к примеру из интервала (-0.5, 0.5). Но для нашего примера возьмем для удобства целые числа.

Рассмотрим нейронную сеть и вручную проведем расчеты для прямого и обратного “потоков” в сети.

На вход мы должны подать образец, пусть это будет (0.2, 0.5) . Ожидаемый выход сети – 0.4 . Норма обучения пусть будет равна 0.85 . Давайте проведем все расчеты поэтапно. Кстати, совсем забыл, в качестве функции активности мы будем использовать логистическую функцию:

Итак, приступаем…

Вычислим комбинированный ввод элементов 2 , 3 и 4 :

Активность этих элементов равна:

Комбинированный ввод пятого элемента:

Активность пятого элемента и в то же время вывод нейронной сети равен:

С прямым “потоком” разобрались, теперь перейдем к обратному “потоку”. Все расчеты будем производить в соответствии с формулами, которые мы уже обсудили. Итак, вычислим ошибку выходного элемента:

Тогда ошибки для элементов 2 , 3 и 4 равны соответственно:

Здесь значения -0.014, -0.028 и -0.056 получаются в результате прохода ошибки выходного элемента –0.014 по взвешенным связям в направлении к элементам 2 , 3 и 4 соответственно.

И, наконец-то, рассчитываем величину, на которую необходимо изменить значения весовых коэффициентов. Например, величина корректировки для связи между элементами 0 и 2 равна произведению величины сигнала, приходящего в элементу 2 от элемента 0 , ошибки элемента 2 и нормы обучения (все по дельта-правилу, которое мы обсудили в начале статьи):

Аналогичным образом производим расчеты и для остальных элементов:

Теперь новые весовые коэффициенты будут равны сумме предыдущего значения и величины поправки.

На этом обратный проход по сети закончен, цель достигнута 😉 Именно так и протекает процесс обучения по алгоритму обратного распространения ошибок. Мы рассмотрели этот процесс для одного набора данных, а чтобы получить полностью обученную сеть таких наборов должно быть, конечно же, намного больше, но алгоритм при этом остается неизменным, просто повторяется по кругу много раз для разных данных)

По просьбе читателей блога я решил добавить краткий пример обучения сети с двумя скрытыми слоями:

Итак, добавляем в нашу сеть два новых элемента (X и Y), которые теперь будут выполнять роль входных. На вход также подаем образец (0.2, 0.5) . Рассмотрим алгоритм в данном случае:

1. Прямой проход сети. Здесь все точно также как и для сети с одним скрытым слоем. Результатом будет значение .

2. Вычисляем ошибку выходного элемента:

3. Теперь нам нужно вычислить ошибки элементов 2, 3 и 4.

В последние годы обучение нейронной сети становится все более популярным. Его применяют в самых различных областях деятельности: технике, медицине, физике, технике, бизнесе, геологии. Почему стала такой популярной объясняется тем, что работа и обучение нейронной сети предполагают решение практических задач, с которыми она успешно справляется.

Причины популярности

Успех внедрения в практику нейронных сетей специалисты объясняют несколькими причинами:

  • богатыми возможностями;
  • простотой применения;
  • привлекательностью.

Подробнее остановимся на каждом пункте.

Обучение нейронной сети с учителем является мощным методом моделирования, который позволяет рассматривать самые сложные зависимости.

Учатся нейронные сети на примерах. Пользователю нужно подобрать представительные данные, потом запустить алгоритм обучения, автоматически воспринимающий структуру введенных данных.

Потребуется некий изначальный набор эвристических знаний об отборе и подготовке данных, выборе необходимой интерпретации результатов. Только тогда обучение многослойных нейронных сетей будет успешным. Но этот уровень намного проще, чем при использования классических статистических методик.

Обучение сверточной нейронной сети привлекает пользователей, так как основываются они на несложной биологической модели нервных систем. Совершенствование подобных нейробиологических моделей приведет к созданию уникальных мыслящих компьютеров.

Сфера применения

Обучение нейронной сети позволяет распознавать тексты, речь, осуществлять семантический поиск. Среди областей их применения выделим системы, которые помогают принимать решения, анализировать курсы акций, тексты, контролировать безопасность всемирной паутины.

Особенности образовательного процесса

Прежде чем вести речь о том, как осуществляется бучение нейронной сети, остановимся на их особенностях. Нейронные искусственные сети, аналогично биологическим, представляют собой вычислительную систему с масштабным количеством функционирующих параллельно простых процессоров, имеющих большое число связей.

В отличие от биологических аналогов, нейронные искусственные сети проявляют множество качеств, которые свойственны мозгу: обобщение, анализ, выборка данных из потока информации.

Они могут менять свое поведение в зависимости от внешней среды. После проведения анализа первоначальных данных они самостоятельно настраиваются и обучаются, обеспечивая правильную реакцию.

Образующаяся сеть обладает стойкостью к некоторым отклонениям исходных данных, поэтому нет искажений из-за внешних помех.

В середине прошлого века группой исследователей были синтезированы физиологические и биологические подходы, создана первая искусственная нейронная система.

Без обучения сложно было в полном объеме осознавать строение, свойства и предназначение сетей. Казалось бы, удалось найти ключ к искусственному интеллекту. Но иллюзии человека развеялись достаточно быстро. Сети легко справлялись с решением некоторых задач, анализировали данные. Но они не справлялись с другими задачами, то есть оказались весьма ограниченными в использовании.

Именно поэтому было продолжено обучение нейронной сети, формирование научного фундамента для подобной деятельности.

В конце двадцатого века были открыты фирмы, которые занимались созданием прикладного программного обеспечения для создания искусственных сетей. Именно в это время появилось и машинное обучение. Нейронные сети доказали свою эффективность при решении сложнейших задач, например с их помощью проводится проверка платежеспособности клиентов банка.

Методы обучения

Для того чтобы сеть решала задачи, поставленные перед нею, необходимо ее обучить. Такую способность принято считать основным свойством мозга. Какие методы обучения нейронных сетей являются наиболее эффективными? Под обучающим процессом для таких систем подразумевают процесс настройки структуры связей между отдельными нейронами и синоптическими связями, которые влияют на сигналы коэффициентов. Созданные комплексы позволяют эффективно решать поставленную перед сетями задачу. В основном обучение нейронной сети происходит на какой-то выборке. Как решали подобную проблему? Были разработаны специальные алгоритмы обучения нейронных сетей. Они позволяют повышать эффективность реакции на входящие сигналы, расширять области их применения.

Парадигмы обучения

Глубинное обучение нейронных сетей осуществляется на следующих парадигмах:

  • с учителем;
  • без наставника;
  • смешанная форма.

Первая из них характеризуется известными правильными ответами к каждому входному варианту, веса подстраиваются так, чтобы свести к минимуму возможность появления ошибки.

Самообучение дает возможность распределить по категориям исходные образцы, это достигается путем раскрытия природы данных и внутренней структуры.

Смешанный вид рассматривается в качестве синтеза двух предыдущих подходов. Обучить нейронную сеть означает сообщить ей ту информацию, которую мы хотим от нее получить. Данный процесс аналогичен обучению ребенка азбуке. Ему показывают букву, а потом спрашивают: «Что это за буква?» Если ответ будет неправильный, ребенку снова объясняют, как правильно.

Процесс повторяется до тех пор, пока в его памяти не останется верная информация. Такая процедура именуется «обучением с учителем».

Сущность процесса

Разберемся, как функционируют искусственные нейронные сети. Обучение их осуществляется по аналогичной схеме. Изначально берется определенная база данных, содержащая какие-то примеры (совокупность изображений букв).

Если показать на вход нейронной сети букву «А», она дает определенный ответ, который может быть и неверным. В виде желаемого выхода в задаче предлагаемой классификации используют набор (1,0,0,…), в котором на выходе с меткой «А» находится 1, а на всех остальных выходах - метка 0.

При определении разности между реальным и желаемым ответом сети, получаем 33 числа - это вектор возможной ошибки. Неоднократно можно показывать ей одну и ту же букву. Поэтому процесс обучения рассматривается как многократное повторение одинаковых упражнений (тренировка), следовательно, можно сказать, что осуществляется достаточно глубокое обучение.

Нейронная сеть без обучения не готова к работе. Только после многократной демонстрации примеров знания постепенно стабилизируются, системы дают правильные ответы на предлагаемые вопросы.

В подобных ситуациях говорят о том, что проведено глубокое обучение. Нейронные сети постепенно снижают величину ошибки. Когда ее величина будет сведена к нулю, тренировки приостанавливают. Образованную нейронную сеть считают пригодной для применения на новых исходных данных.

Информация о задаче, которой обладает сеть, находится в наборе примеров. Именно поэтому результативность обучения нейронной сети связана с тем количеством примеров, которое содержится в обучающем комплексе. Есть также зависимость и от полноты описания задачи.

Например, нейронная система не сможет предсказать финансовый кризис, если не было представлено сценариев в обучающей выборке. Профессионалы утверждают, что для качественной тренировки сети необходимо продемонстрировать ей не менее десятка примеров.

Процесс обучения является наукоемким и сложным. После его завершения можно использовать сеть для практических целей.

Главной особенностью мозга человека является воспроизведение усвоенной информации в тех ситуациях, когда это необходимо. Обученная сеть владеет большим объемом сведений, что позволяет получать правильный ответ и для новых изображений.

Для конструирования обучающего процесса нужно иметь представление о модели внешней среды, в которой работает нейронная сеть.

Подобная модель определяет задачу обучения. Также необходимо осознать, как можно модифицировать основные параметры сети, как пользоваться настройками. Суть обучения предполагает процедуру, в которой применяются правила обучения для отладки алгоритмов.

Алгоритмы обучения нейронных сетей

В настоящее время используют несколько их вариантов:

  • сопряженных градиентов;
  • обратное распространение;
  • Квази-Ньютоновский;
  • псевдо-обратный;
  • обучение Кохонена;
  • Левенберга-Маркара;
  • векторный квантователь;
  • метод К-ближайших соседей (KNN)
  • установка явных отклонений.

Это далеко не все алгоритмы обучения нейронных сетей, применяемые в настоящее время.

После того как будет выявлено количество слоев и число в каждом из них элементов, необходимо определить показатели для этой сети, которые бы свели к минимуму ошибку прогноза, предлагаемого ею.

Данный процесс можно рассмотреть в качестве подгонки модели, реализуемой сетью, к представленным обучающим сведениям.

Важные моменты

Ошибку для определенной конфигурации сети высчитывают с помощью подгона через нее всех существующих наблюдений и сравнения с целевыми показателями выдаваемых значений.

Лучше использовать те алгоритмы, которые дают возможность обучать нейронную сеть за минимальное количество шагов. Они предполагают небольшое количество переменных величин. Причина такого выбора в том, что в настоящее время обучение нейронных сетей осуществляется на компьютерах, которые имеют незначительную производительность, ограниченный объем памяти.

Разновидности

Стохастические методы предполагают существенное число шагов в процессе обучения. Именно поэтому их практически невозможно использовать для современных нейронных сетей крупных размерностей.

Экспоненциальный рост точности перебора с увеличением в алгоритмах масштабной оптимизации размерности задачи не допускает применения подобных систем в обучающем процессе.

Метод сопряженных градиентов отличается высокой чувствительностью к точности проводимых вычислений. В частности, при решении заданий оптимизации масштабной закономерности. Они нуждаются в использовании дополнительных переменных величин.

Все алгоритмы обучения нейронных систем, применяемые в настоящее время, основываются на оценочной функции. Это позволяет давать общую оценку качества работоспособности всей сети.

Они считаются довольно простыми, поэтому не дают за незначительное время хорошей системы управления, не подходят для анализа сложных систем.

Варианты ускорения обучающего процесса

Так как нейронные сети считают одним из проявлений искусственного интеллекта, они довольно часто применяются при распознавании образов, решении задач оптимизации.

Создано множество моделей таких сетей, которые справляются с разнообразными прикладными задачами. Для каждой из них есть свои алгоритмы и методы обучения. Несмотря на такое многообразие, работы по совершенствованию алгоритмов, созданию новых моделей не прекращаются, а вот сама теория сетей пока недостаточно формализована.

Этапы разработки

Выделяют два основных этапа, которые используются при разработке нейронных сетей. Структурный синтез предполагает выбор определенной модели, а также анализ предварительной структуры, алгоритма обучения.

Параметрический синтез включает не только процесс обучения нейронной сети, но и качественную проверку результатов. С ее учетом можно принимать решение о возвращении на первоначальные стадии параметрического либо структурного анализа.

Неполная сформированность этапов приводит к множеству проблем у созданной сети. Например, на стадии структурного синтеза в ходе выбора модели, структуры, алгоритма, потребуются большие усилия, помощь опытных компьютерных разработчиков.

На стадии параметрического синтеза во время обучения возникает ограниченность вычислительных ресурсов. Задачи со сложной структурой потребуют от нейронных систем больших усилий, поэтому процесс предполагает значительные временные затраты.

Есть определенные методики, позволяющие уменьшить такие затраты на обучение нейронных многослойных сетей. Они базируются на принципе достаточности, в котором ошибка системы не может превышать определенного показателя. Например, к таким методам причисляют коррекцию шагов модернизации весовых коэффициентов, преобразование распознаваемых классов.

Производится обучение нейронной сети до той поры, пока ее ошибка не достигнет нулевого значения. Это связано с большой затратой временных ресурсов, ведь не сразу удается обнаружить ошибку, устранить причину ее появления.

Заключение

Определить результативность обучения нейронной сети можно, используя конкретную задачу, желаемый результат.

Например, если предлагается определенное задание, связанное с классификацией, то для его решения потребуется многослойная нейронная сеть. Для ее обучения подойдет современный алгоритм обратного распространения ошибки.

Оценку возможной погрешности, возникающий в ходе обучающего процесса, осуществляют двумя способами: глобальным и локальным. Второй вариант предполагает наличие ошибок нейронов выходного слоя. Для глобального вида предполагается присутствие на i-м обучающем наборе ошибок всей сети.

Подобное обучение является трудозатратным. Оно достигается только в редких случаях. Принцип достаточности состоит в полном отказе от поиска идеала при выполнении конкретной задачи. Если перенести его на процедуру обучения нейронной современной сети, то идеальная точность наблюдается далеко не всегда.

Для распознавания объекта, а также его класса, особенностей, допускается, чтобы ошибка сети в наборе не превышала показателя δ. Такая величина будет считаться максимальным показателем, при котором сохраняется точность проводимых вычислений.

Особую эффективность нейросетевой подход демонстрирует при выполнении заданий, связанных с экспертной оценкой, обработкой информации разного вида.