На 0 делить можно или нельзя. Почему нельзя делить на ноль? Наглядный пример. Вобще-то уже все поделили до нас

Деление на ноль в математике - деление, при котором делитель равен нулю. Такое деление может быть формально записано ⁄ 0 , где - это делимое.

В обычной арифметике (с вещественными числами) данное выражение не имеет смысла, так как:

  • при ≠ 0 не существует числа, которое при умножении на 0 даёт, поэтому ни одно число не может быть принято за частное ⁄ 0 ;
  • при = 0 деление на ноль также не определено, поскольку любое число при умножении на 0 даёт 0 и может быть принято за частное 0 ⁄ 0 .

Исторически одна из первых ссылок на математическую невозможность присвоения значения ⁄ 0 содержится в критике Джорджа Берклиисчисления бесконечно малых.

Логические ошибки

Поскольку при умножении любого числа на ноль в результате мы всегда получаем ноль, при делении обеих частей выражения × 0 = × 0, верного вне зависимости от значения и, на 0 получаем неверное в случае произвольно заданных переменных выражение = . Поскольку ноль может быть задан не явно, но в виде достаточно сложного математического выражения, к примеру в форме разности двух значений, сводимых друг к другу путём алгебраических преобразований, такое деление может быть достаточно неочевидной ошибкой. Незаметное внесение такого деления в процесс доказательства с целью показать идентичность заведомо разных величин, тем самым доказывая любое абсурдное утверждение, является одной из разновидностей математического софизма .

В информатике

В программировании, в зависимости от языка программирования, типа данных и значения делимого, попытка деления на ноль может приводить к различным последствиям. Принципиально различны последствия деления на ноль в целой и вещественной арифметике:

  • Попытка целочисленного деления на ноль всегда является критической ошибкой, делающей невозможным дальнейшее исполнение программы. Она приводит либо к генерации исключения (которое программа может обработать сама, избежав тем самым аварийной остановки), либо к немедленной остановке программы с выдачей сообщения о неисправимой ошибке и, возможно, содержимого стека вызовов. В некоторых языках программирования, например, в Go, целочисленное деление на нулевую константу считается синтаксической ошибкой и приводит к аварийному прекращению компиляции программы.
  • В вещественной арифметике последствия могут быть различным в разных языках:
  • генерация исключения или остановка программы, как и при целочисленном делении;
  • получение в результате операции специального нечислового значения. Вычисления при этом не прерываются, а их результат впоследствии может быть интерпретирован самой программой или пользователем как осмысленное значение или как свидетельство некорректности вычислений. Широко используется принцип, согласно которому при делении вида ⁄ 0 , где ≠ 0 - число с плавающей запятой, результат оказывается равен положительной или отрицательной (в зависимости от знака делимого) бесконечности - или, а при = 0 в результате получается специальное значению NaN (сокр. от англ. not a number - «не число»). Такой подход принят в стандарте IEEE 754, который поддерживается многими современными языками программирования.

Случайное деление на ноль в компьютерной программе порой становится причиной дорогих или опасных сбоев в работе управляемого программой оборудования. К примеру, 21 сентября 1997 года в результате деления на ноль в компьютеризированной управляющей системе крейсера USS Yorktown (CG-48) Военно-морского флота США произошло отключение всего электронного оборудования в системе, в результате чего силовая установка корабля прекратила свою работу .

См. также

Примечания

Функция = 1 ⁄ . Когда стремится к нулю справа, стремится к бесконеч­ности; когда стремится к нулю слева, стремится к минус бесконечности

Если на обычном калькуляторе поделить какое-либо число на ноль, то он вам выдаст букву Е или слово Error, то есть «ошибка».

Калькулятор компьютера в аналогичном случае пишет (в Windows XP) : «Деление на нуль запрещено».

Всё согласуется с известным со школы правилом, что на ноль делить нельзя.

Разберёмся, почему.

Деление — это математическая операция, обратная умножению. Деление определяется через умножение.

Поделить число a (делимое, например 8) на число b (делитель, например число 2) — значит найти такое число x (частное), при умножении которого на делитель b получается делимое a (4 · 2 = 8), то есть a разделить на b значит решить уравнение x · b = a.

Уравнение a: b = x равносильно уравнению x · b = a.

Мы заменяем деление умножением: вместо 8: 2 = x пишем x · 2 = 8.

8: 2 = 4 равносильно 4 · 2 = 8

18: 3 = 6 равносильно 6 · 3 = 18

20: 2 = 10 равносильно 10 · 2 = 20

Результат деления всегда можно проверить умножением. Результатом умножения делителя на частное должно быть делимое.

Аналогично попробуем поделить на ноль.

Например, 6: 0 = … Нужно найти такое число, которое при умножении на 0 даст 6. Но мы знаем, что при умножении на ноль всегда получается ноль. Не существует числа, которое при умножении на ноль дало бы что-то другое кроме нуля.

Когда говорят, что на ноль делить нельзя или запрещено, то имеется в виду, что не существует числа, соответствующего результату такого деления (делить-то на ноль можно, разделить — нельзя:)).

Зачем в школе говорят, что на ноль делить нельзя?

Поэтому в определении операции деления a на b сразу подчёркивается, что b ≠ 0.

Если всё выше написанное вам показалось слишком сложным, то совсем на пальцах: Разделить 8 на 2 означает узнать, сколько нужно взять двоек, чтобы получилось 8 (ответ: 4). Поделить 18 на 3 означает узнать, сколько нужно взять троек, чтобы получить 18 (ответ: 6).

Поделить 6 на ноль означает узнать, сколько нужно взять нулей, чтобы получить 6. Сколько ни бери нулей, всё равно получится ноль, но никогда не получится 6, т. е. деление на ноль не определено.

Интересный результат получается, если попробовать поделить число на ноль на калькуляторе андроида. На экране отобразится ∞ (бесконечность) (или — ∞, если делите отрицательное число). Данный результат является неверным, т. к. не существует числа ∞. По-видимому, программисты спутали совершенно разные операции — деление чисел и нахождение предела числовой последовательности n/x, где x → 0. При делении же нуля на нуль будет написано NaN (Not a Number — Не число).

«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 - 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 - 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 - 3 — это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания.

Деление на ноль

Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль?

В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Функция «деление» не определена для области значений, в которой делитель равен нулю. Делить можно, но результат — не определён

Дельть на ноль нельзя. Математика 2 класса средней школы.

Если мне не изменяет память, то ноль можно представить как бесконечно малую величину, так что бесконечность будет. А школьное «ноль — ничего» — это просто упрощение, их таких в школьной математике ууууууу сколько) . Но без них никак, все в свое время.

Войдите, чтобы написать ответ

Деление на ноль

Частное от деления на ноль какого-либо числа, отличного от нуля, не существует.

Рассуждения здесь следующие: так как в этом случае никакое число не может удовлетворить определению частного.

Напишем, например,

какое бы число ни взять на пробу (скажем, 2, 3, 7), оно не годится потому что:

\[ 2 · 0 = 0 \]

\[ 3 · 0 = 0 \]

\[ 7 · 0 = 0 \]

Что будет если поделить на 0?

д., а нужно получить в произведении 2,3,7.

Можно сказать, что задача о делении на нуль числа, отличного от нуля, не имеет решения. Однако число, отличное от нуля, можно разделить, на число, как угодно близкое к нулю, и чем ближе делитель к нулю, тем больше будет частное. Так, если будем делить 7 на

\[ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000} \]

то получим частные 70, 700, 7000, 70 000 и т. д., которые неограниченно возрастают.

Поэтому часто говорят, что частное от деления 7 на 0 «бесконечно велико», или «равно бесконечности», и пишут

\[ 7: 0 = \infin \]

Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным 7 (или приближается к 7), то частное неограниченно увеличивается.

Евгений ШИРЯЕВ, преподаватель и руководитель Лаборатории математики Политехнического музея , рассказал "АиФ" о делении на ноль:

1. Юрисдикция вопроса

Согласитесь, особенную провокационность правилу придает запрет. Как это нельзя? Кто запретил? А как же наши гражданские права?

Ни конституция, ни Уголовный кодекс, ни даже устав вашей школы не возражают против интересующего нас интеллектуального действия. А значит, запрет не имеет юридической силы, и ничто не мешает прямо тут, на страницах "АиФ", попробовать что-нибудь разделить на ноль. Например, тысячу.

2. Разделим, как учили

Вспомните, когда вы только узнали, как делить, первые примеры решали с проверкой умножением: результат, умноженный на делитель, должен был совпасть с делимым. Не совпал - не решили.

Пример 1. 1000: 0 =...

Забудем на минуту про запретное правило и сделаем несколько попыток угадать ответ.

Неправильные отсечёт проверка. Перебирайте варианты: 100, 1, −23, 17, 0, 10 000. Для каждого из них проверка даст один и тот же результат:

100 · 0 = 1 · 0 = − 23 · 0 = 17 · 0 = 0 · 0 = 10 000 · 0 = 0

Ноль умножением все превращает в себя и никогда - в тысячу. Вывод сформулировать несложно: никакое число не пройдет проверку. Т. е. ни одно число не может быть результатом деления ненулевого числа на ноль. Такое деление не запрещено, а просто не имеет результата.

3. Нюанс

Чуть не упустили одну возможность опровергнуть запрет. Да, мы признаем, что ненулевое число не разделится на 0. Но может быть, сам 0 сможет?

Пример 2. 0: 0 = ...

Ваши предложения для частного? 100? Пожалуйста: частное 100, умноженное на делитель 0, равно делимому 0.

Еще варианты! 1? Тоже подходит. И −23, и 17, и все-все-все. В этом примере проверка на результат будет положительной для любого числа. И, по-честному, решением в этом примере надо называть не число, а множество чисел. Всех. А так недолго договориться и до того, что Алиса - это не Алиса, а Мэри-Энн, а обе они - сон кролика.

4. Что там про высшую математику?

Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось - ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать - дело безнадежное и невозможное. А значит... интересное! Дубль два.

Пример 3. Придумать, как разделить 1000 на 0.

А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать то, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:

Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:

1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.

Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:

Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.

В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:

При этом подразумевается аналогичная замена и для делимого:

1000 ↔ { 1000, 1000, 1000,... }

Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.

Посмотрим на последовательность частных:

Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:

Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:

При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.

5. И здесь нюанс с двумя нулями

Что будет результатом деления двух последовательностей положительных чисел, сходящихся к нулю? Если они одинаковые, то тождественная единица. Если к нулю быстрее сходится последовательность-делимое, то в частном - последовательность с нулевым пределом. А когда элементы делителя убывают гораздо быстрее, чем у делимого, последовательность частного будет сильно расти:

Неопределенная ситуация. И так и называется: неопределенность вида 0/0 . Когда математики видят последовательности, подходящие под такую неопределенность, они не бросаются делить два одинаковых числа друг на друга, а разбираются, какая из последовательностей быстрее бежит к нулю и как именно. И в каждом примере будет свой конкретный ответ!

6. В жизни

Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:

Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.

А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.

Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R = 0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!

Практически все школьники знают простое арифметическое правило «На ноль делить нельзя!» и никто из них не задумывается, почему с нулем невозможно выполнить такое математическое действие, как деление.

Попробуем разобрать этот арифметический принцип. Деление является одним из известных нам арифметических действий – сложение, вычитание, умножение и деление. Вычитание – действие обратное сложению, деление – умножению. Используя эти действия, можно проверить правильность решения задач, однако, эти арифметические действия не являются равноправными. С точки зрения математической науки полноценными из четырех действия являются только сложение и умножение, которые включаются в определение понятия чисел. Остальные действия – вычитание и деление – вытекают и базируются на двух первых.

Рассмотрим пример с вычитанием. Что значит разность двух чисел, например, «3-2»? Даже младший школьник скажет, что из числа «3» мы отнимаем число «2» и получаем «1». Однако математики видят решение этого простого примера совсем по-иному: никакого вычитания не существует, есть одно действие – сложение. Запись «3-2» представляет собой число, которое при сложении с числом «2», даст «3». Математическая запись этой задачи имеет вид уравнения с одним неизвестным «х» и выглядит следующим образом: «х+2=3». Как мы видим, никакого вычитания нет, а действие сложения позволяет нам найти подходящее неизвестное число.

Под таким же «соусом» можно рассмотреть деление. Например, «10:5» можно рассматривать следующим образом: десять яблок делим между пятью детьми. Если это действие представить, как видят его истинные математики, мы получим следующую запись: «5×х=10».

Теперь попытаемся совершить действие деления, но только с нулем. Например, запись «2:0» представим в виде уравнения с неизвестным: «0×х=2». Другими словами, нам нужно найти такое число, умножив которое на «0», мы получим «2». Вот тут и возникает основная трудность: в силу вступает неотъемлемое свойство «0» - при умножении любого числа на «0» всегда получается «0». То есть, в арифметике не существует такого числа, которое при умножении на «0», дало бы число, отличное от нуля. А значит, наша задача не имеет решения. Запись «а:0» (где а – любое число, отличное от нуля) бессмысленна, поэтому в математике вопрос «Почему на ноль делить нельзя » демонстрирует одно из основных свойств этого «неопределенного» числа.

Почему ноль нельзя делить на ноль?

Мы доказали, что любое число нельзя разделить на ноль. А как же быть с самим нулем – можно ли «0» разделить на «0»? Ведь, если представить деление на ноль через умножение: «0×х=0», то пример решается, ведь умножать на «0» допускается. Пусть х=0, тогда наше уравнение имеет следующий вид: 0×0=0. Получается, что можно выполнить такое действие, как: 0:0=0? Попробуем разрешить эту путаницу. Вместо неизвестного числа «х» возьмем любое число, например, «2». Получим «0×2=0». Все верно? Значит, выражение «0:0=2» имеет смысл? Но выходит, что такое действие можно совершать с любыми числами: 0:0=10, 0:0=350, 0:0=10259…

Если для совершения действия деления на ноль подходят любые числа, то нам нет смысла выбирать из них какое-то одно. А значит, мы не сможем определенно сказать, какому из существующих чисел соответствует запись «0:0». Отсюда следует ее бессмысленность и получается, что ноль нельзя делить на ноль!

Вот такая особенность операции деления на ноль, а точнее операции умножения.

Некоторые любознательные могут задать вопрос: почему делить на ноль нельзя, а вычитать его можно? На этот вопрос ответить можно, только объяснение связано уже не с числами, а с математическими множествами и операциями над ними, которые изучаются в университетском курсе математики.

Как объяснить ребенку, почему нельзя делить на ноль?

Детские вопросы – самые сложные для взрослых. Найти на них ответ иногда очень сложно, а ответить доступно для ребенка бывает просто невозможно.

К такому вопросу относится и вопрос «Почему на ноль делить нельзя? », ответ на который не знают даже взрослые - просто их так учили в школе и над ответом никто не задумывался.

Начнем с простого. Математика, как наука, зародилась очень давно. Чтобы как-то уметь с ней обращаться наши предки придумали числа, которые что-то обозначали. Только ноль не обозначал «ничего», т.е. пустоту. Например, у тебя есть 5 мелков, если отдать другу все 5 мелков, то у тебя ничего не останется, т.е. ноль.

Теперь о делении на ноль. Если деление представить в виде ножа, разрезающего все на равные кусочки, то целое можно разделить на две, три, четыре… и т.д. равные части. Однако что-либо разделить на ноль одинаковых частей невозможно, ведь их просто не существует.

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки

В школе нас всех учат простому правилу, что делить на ноль нельзя. При этом, когда мы задаем вопрос: «Почему?», нам отвечают: «Это просто правило и его надо знать». В этой статье я постараюсь вам объяснить, почему нельзя делить на ноль. Почему не правы те люди, которые говорят, что на ноль делить можно и тогда получится бесконечность.

Почему нельзя делить на ноль?

Формально, в математике, существует только два действия. Сложение и умножение чисел. Ну что же тогда с вычитанием и делением? Рассмотрим такой пример. 7-4=3, все мы знаем, что семь минус четыре будет равняться трём. На самом деле этот пример можно, формально, рассматривать, как способ решить уравнения x+4=7. То есть, мы подбираем такое число, которое в сумме с четверкой даст 7. Тогда мы не долго подумаем и поймем, что это число равно трём. То же самое с делением. Допустим 12/3. Это будет то же самое, что и х*3=12.

Мы подбираем такое число, которое при умножении на 3 даст нам 12. В данном случаем это получится четыре. Это достаточно очевидно. Что же с примерами вида 7/0. Что будет если мы запишем семь делить на ноль? Это значит, что мы, как будто, решаем уравнение вида 0*х=7. Но это уравнение не имеет решения, ведь если ноль умножить на любое число, то получиться всегда ноль. То есть решения нет. Это записывают либо словами решений нет, либо значком, который означает пустое множество.

Другими словами

Вот смысл этого правила. Делить на ноль нельзя, потому что соответствующее уравнение, ноль умножить на икс равное семи или любому числу, которое мы пытаемся делить на ноль, не имеет решений. Самые внимательные могут сказать, что если мы поделим ноль на ноль, то получится достаточно справедливо, что, если 0*X=0. Все замечательно, ноль умножаем на какое-то число, получаем ноль. Но тогда у нас решением может быть любое число. Если мы посмотрим х=1, 0*1=0, х=100500, 0*100500=0. Здесь подойдет любое число.

Так почему мы должны выбирать какое-то одно из них? У нас действительно нет каких-то соображений, по которым мы можем взять из этих чисел выбрать одно и сказать, что это решения уравнений. Поэтому решений бесконечно много и это тоже неоднозначная задача, в которой считается, что решений нет.

Бесконечность

Выше я рассказал вам причины, по которым делить нельзя, теперь хочу поговорить с вами о . Давайте попробуем с осторожностью подойти к операции деления на ноль. Поделим число 5 сначала на два. Мы знаем, что получится десятичная дробь 2.5. Теперь уменьшим делитель и поделим 5 на 1, будет 5. Теперь 5 мы поделим на 0,5. Это то же самое, что и пять поделим на одну вторую, или то же самое, что и 5*2, то будет 10. Обратите внимание, результат деления, то есть частное, увеличивается: 2,5, 5, 10.

Теперь давайте поделим 5 на 0.1, это будет то же самое, что и 5*10=50, частная снова увеличилась. При этом делитель мы уменьшали. Если мы поделим 5 на 0.01, это будет, то же самое, что и 5*100=500. Смотрите. Чем меньше мы делаем делитель, тем больше становится частное. Если мы 5 поделим на 0.00001, получиться 500000.

Подведем итог

Что же тогда такое деление на ноль, если смотреть вот в этом смысле? Заметим, как мы уменьшали наше частное? Если нарисовать ось, то на ней видно, что у нас сначала была двойка, потом единичка, потом 0.5, 0.1, и так далее. Мы приближались к нолю все ближе и ближе справа, но до ноля мы так и не дошли. Берем все меньше и меньше число и делим на него наше частное. Становится все больше и больше. В данном случае пишут, что мы делим 5 на Х, где икс бесконечно мал. То есть он становиться все ближе и ближе к нолю. Вот как раз-таки в этом случае при делении пятерки на Х мы получим бесконечность. Бесконечно большое число. Здесь возникает нюанс.

Если мы приближаемся к нолю справа, то это бесконечно мало у нас будет положительным, и мы получаем плюс бесконечность. Если же мы приближаемся к иксу слева, то есть если мы сначала поделим на -2, потом на -1, на -0.5, на -0.1 и так далее. У нас будет получаться отрицательное частное. И тогда пять деленное на икс, где икс будет бесконечно малым, но уже слева, будет равно минус бесконечности. В данном случае пишут: икс стремится к нолю справа, 0+0, показывая, что к нолю мы стремимся справа. Допустим если мы к тройке стремились справа, в данном случае пишут икс стремится слева. Соответственно к тройке мы бы стремились слева, записывая это как икс стремится к 3-0.

Как график функций может помочь

Понять это лучше помогает график функции, который мы проходили еще все в школе. Функция называется обратная зависимость, а график её это гипербола. Выглядит гипербола следующим образом. Это кривая, асимптотами которой являются ось икс и игрек. Асимптота-это прямые, к которым кривая стремится, но никогда их не достигнет. Такая вот математическая драма. Мы видим, что чем ближе мы подходим к нолю, тем больше становится наше значение игрек. Чем меньше становится икс, то есть, при стремлении, иксе к нолю справа игрек становиться все больше и больше, и устремляется в плюс бесконечность. Соответственно, при стремлении к нолю слева, когда икс стремится к нолю слева, т.е икс стремиться к 0-0, игрек стремится у нас к минус бесконечности. По-правильному это записывается так. Игрек стремится к минус бесконечности, при Х стремящимся к нолю слева. Соответственно мы запишем игрек стремится к плюс бесконечности, при иксе стремящимся к нолю справа. То есть, по сути, мы не делим на ноль, мы делим на бесконечно малую величину.

И те, кто говорят, что делить на ноль можно, мы просто получим бесконечность, они просто имею в виду, что делить можно не на ноль, а можно делить на число близкое к нолю, то есть на бесконечно малую величину. Тогда мы получим плюс бесконечность, если мы делим на бесконечно малое положительное и минус бесконечность мы делим на бесконечно малое отрицательное.

Я надеюсь, что эта статья помогла вам разобраться в вопросе, который мучает большинство с детства, почему же нельзя делить на ноль. Почему нас заставляют учить какое-то правило, а ничего не объясняют. Надеюсь статья помогла вам разобраться в том, что действительно на ноль делить нельзя, а те, кто говорят, что на ноль делиться можно, на самом деле имеют в виду, что можно делить на бесконечно малую величину.