Килограмм в международном бюро мер и весов. Другие перспективные проекты. Физика и стандарты

Новое определение килограмма , основанное на фиксации численного значения постоянной Планка . Решение вступит в силу 20 мая 2019 года. При этом с практической точки зрения величина килограмма не изменится, но существующий «прототип» (эталон) более не будет определять килограмм, а станет очень точной гирькой с потенциально измеримой погрешностью.

Прототип килограмма

Килограмм и постоянная Планка

Эти две формулы, найденные в начале XX века, устанавливают теоретическую возможность измерения массы через энергию индивидуальных фотонов , но практические эксперименты, позволяющие связать массу и постоянную Планка, появились лишь в конце XX века.

U 1 I 2 = m g v 1 , {\displaystyle U_{1}I_{2}=mgv_{1},}

где U 1 I 2 {\displaystyle U_{1}I_{2}} - произведение электрического тока во время балансирования массы и напряжения в процессе калибровки, - произведение ускорения свободного падения g {\displaystyle g} и скорости катушки v 1 {\displaystyle v_{1}} во время калибровки весов. Если g v 1 {\displaystyle gv_{1}} независимо замерено с высокой точностью (практические особенности эксперимента также требуют высокоточного замера частоты ), предыдущее уравнение по сути определяет килограмм в зависимости от величины ватта (или наоборот). Индексы у U 1 {\displaystyle U_{1}} и I 2 {\displaystyle I_{2}} введены с тем, чтобы показать, что это виртуальная мощность (замеры напряжения и тока делаются в разное время), избегая эффектов от потерь (которые могли бы быть вызваны, например, наведёнными токами Фуко) .

Связь между ваттом и постоянной Планка использует эффект Джозефсона и квантовый эффект Холла :

Поскольку I 2 = U 2 R {\displaystyle I_{2}={\frac {U_{2}}{R}}} , где R {\displaystyle R} - электрическое сопротивление , U 1 I 2 = U 1 U 2 R {\displaystyle U_{1}I_{2}={\frac {U_{1}U_{2}}{R}}} ; эффект Джозефсона: U (n) = n f (h 2 e) {\displaystyle U(n)=nf\left({\frac {h}{2e}}\right)} ; квантовый эффект Холла: R (i) = 1 i (h e 2) {\displaystyle R(i)={\frac {1}{i}}\left({\frac {h}{e^{2}}}\right)} ,

где n {\displaystyle n} и i {\displaystyle i} - целые числа (первое связано со ступенькой Шапиро , второе - фактор заполнения плато квантового эффекта Холла), f {\displaystyle f} - частота из эффекта Джозефсона, e {\displaystyle e} - заряд электрона . После подстановки выражений для U {\displaystyle U} и R {\displaystyle R} в формулу для мощности и объединения всех целочисленных коэффициентов в одну константу C {\displaystyle C} , масса оказывается линейно связанной с постоянной Планка:

m = C f 1 f 2 h g v 1 {\displaystyle m=Cf_{1}f_{2}{\frac {h}{gv_{1}}}} .

Поскольку все остальные величины в этом уравнении могут быть определены независимо от массы, оно может быть принято за определение единицы массы после фиксации значения 6,62607015×10 −34 для постоянной Планка.

Этимология и употребление

Слово «килограмм» произошло от французского слова «kilogramme », которое в свою очередь образовалось из греческих слов «χίλιοι » (chilioi ), что означает «тысяча» и «γράμμα » (gramma ), что означает «маленький вес» Слово «kilogramme » закреплено во французском языке в 1795 году . Французское написание слова перешло в Великобританию, где впервые оно было использовано в 1797 году , в то время как в США слово стало использоваться в форме «kilogram », позднее ставшее популярным и в Великобритании Положение о мерах и весах (англ. Weights and Measures Act ) в Великобритании не запрещает использование обоих написаний .

В XIX веке французское сокращение «kilo » было заимствовано в английский язык, где стало применяться для обозначения как килограммов , так и километров .

Природа массы

Измерение массы через вес тела - действие силы тяжести на измеряемый объект вызывает деформацию пружины.

Измерение гравитационной массы - действие силы тяжести на измеряемый объект уравновешено действием силы тяжести на противовес.

Килограмм является единицей массы , величины , которая соотносится с общим представлением людей о том, насколько тяжела та или иная вещь. В терминах физики, масса характеризует два различных свойства тела: гравитационное взаимодействие с другими телами и инертность . Первое свойство выражается законом всемирного тяготения : гравитационное притяжение прямо пропорционально произведению масс. Инертность находит отражение в первом (скорость объектов остаётся неизменной до тех пор, пока на них не воздействует внешняя сила) и втором законе Ньютона: a = F/m ; то есть объект массой m в 1 кг получит ускорение a в 1 метр в секунду за секунду (около одной десятой ускорения свободного падения , вызванного притяжением Земли) , когда на этот объект действует сила (или равнодействующая всех сил) в 1 ньютон . По современным представлениям, гравитационная и инертная массы эквивалентны .

Поскольку торговля и коммерция обычно имеют дело с предметами, чья масса намного значительней одного грамма, и поскольку стандарт массы, изготовленный из воды, был бы неудобен в обращении и сохранении, было предписано отыскать способ практической реализации такого определения. В связи с этим был изготовлен временный эталон массы в виде металлического предмета в тысячу раз тяжелее, чем грамм, - 1 кг.

Временный эталон был изготовлен из латуни и постепенно покрылся бы патиной , что было нежелательно, поскольку его масса не должна была меняться. В 1799 году под руководством Лефёвра-Жено и Фабброни был изготовлен постоянный эталон килограмма из пористой платины , которая химически инертна. С этого момента масса эталона стала основным определением килограмма. Сейчас этот эталон известен как kilogramme des Archives фр.  -  «архивный килограмм») .

Копия эталона 1 кг, хранится в США.

За XIX век технологии измерения массы значительно продвинулись. В связи с этим, а также в преддверии создания в 1875 году Международного бюро мер и весов , специальная международная комиссия запланировала переход к новому эталону килограмма. Этот эталон, называемый «международный прототип килограмма», был изготовлен из платиново-иридиевого сплава (более прочного, чем чистая платина) в виде цилиндра высотой и диаметром 39 мм , и с тех пор он хранится в Международном бюро мер и весов. В 1889 году было принято международное определение килограмма как массы международного прототипа килограмма ; это определение продолжит действовать до мая 2019 года.

Были изготовлены также копии международного прототипа килограмма: шесть (на данный момент) официальных копий; несколько рабочих эталонов, используемых, в частности, для отслеживания изменения масс прототипа и официальных копий; и национальные эталоны, калибруемые по рабочим эталонам . Две копии международного эталона были переданы России , они хранятся во ВНИИ метрологии им. Менделеева .

За время, прошедшее с изготовления международного эталона, его несколько раз сравнивали с официальными копиями. Измерения показали рост массы копий относительно эталона в среднем на 50 мкг за 100 лет . Хотя абсолютное изменение массы международного эталона не может быть определено с помощью существующих методов измерения, оно определённо должно иметь место . Для оценки величины абсолютного изменения массы международного прототипа килограмма приходилось строить модели, учитывающие результаты сравнений масс самого прототипа, его официальных копий и рабочих эталонов (при этом, хотя обычно участвующие в сравнении эталоны обычно предварительно промывали и чистили, но не всегда), что дополнительно усложнялось отсутствием полного понимания причин изменений масс. Это привело к пониманию необходимости ухода от определения килограмма на основе материальных предметов .

В 2011 году XXIV Генеральная конференция по мерам и весам приняла Резолюцию, в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов . В частности предлагалось, что «килограмм останется единицей массы, но его величина будет установлена путём фиксации численного значения постоянной Планка в точности равным 6,626 06X⋅10 −34 , когда она выражается единицей СИ м 2 ·кг·с −1 , которая равна Дж·с». В Резолюции отмечается, что сразу после предполагаемого переопределения килограмма масса его международного прототипа будет равна 1 кг, но это значение приобретёт погрешность и впоследствии будет определяться экспериментально. Такое определение килограмма стало возможным благодаря прогрессу физики в XX веке.

В 2014 году было проведено внеочередное сравнение масс международного прототипа килограмма, его официальных копий и рабочих стандартов; на результатах этого сравнения основаны рекомендованные значения фундаментальных постоянных CODATA 2014 и 2017 годов, на которых, в свою очередь, основывается новое определение килограмма.

Рассматривалось также альтернативное определение килограмма, основанное на результатах работы The Avogadro Project. Команда проекта, создав сферу из изотопа кремния 28 Si массой 1 кг и рассчитав количество атомов в ней, предполагает описать килограмм как определённое количество атомов данного изотопа кремния . Однако Международное бюро мер и весов не стало использовать такой вариант определения килограмма .

XXVI Генеральная конференция по мерам и весам в ноябре 2018 года одобрила новое определение килограмма, основанное на фиксации численного значения постоянной Планка . Решение вступит в силу во Всемирный день метрологии 20 мая 2019 года.

Интересно, что масса 1 м³ дистиллированной воды при 4 °C и атмосферном давлении, принятая за ровно 1000 килограммов в историческом определении 1799 года, и согласно современному определению составляет приблизительно 1000,0 килограммов .

Кратные и дольные единицы

По историческим причинам, название «килограмм» уже содержит десятичную приставку «кило», поэтому кратные и дольные единицы образуют, присоединяя стандартные приставки СИ к названию или обозначению единицы измерения «грамм» (которая в системе СИ сама является дольной: 1 г = 10 −3 кг).

Вместо мегаграмма (1000 кг), как правило, используют единицу измерения «тонна ».

Кратные Дольные
величина название обозначение величина название обозначение
10 1 г декаграмм даг dag 10 −1 г дециграмм дг dg
10 2 г гектограмм гг hg 10 −2 г сантиграмм сг cg
10 3 г килограмм кг kg 10 −3 г миллиграмм мг mg
10 6 г мегаграмм Мг Mg 10 −6 г микрограмм мкг µg
10 9 г гигаграмм Гг Gg 10 −9 г нанограмм нг ng
10 12 г тераграмм Тг Tg 10 −12 г пикограмм пг pg
10 15 г петаграмм Пг Pg 10 −15 г фемтограмм фг fg
10 18 г эксаграмм Эг Eg 10 −18 г аттограмм аг ag
10 21 г зеттаграмм Зг Zg 10 −21 г зептограмм зг zg
10 24 г иоттаграмм Иг Yg 10 −24 г иоктограмм иг yg
применять не рекомендуется не применяются или редко применяются на практике

См. также

Примечания

Комментарии

  1. Написание kilogram является современной формой, используемой Международным бюро мер и весов, (NIST), Национальным метрологическим бюро (англ. National Measurement Office ) Великобритании, Национальным научно-исследовательским советом Канады , и (англ. ) Австралии.
  2. В профессиональной метрологии ускорение, вызванное притяжением Земли, принимается как стандартное ускорение свободного падения (обозначается символом g ), которое определяется как точно 9,80665 м/с². Выражение 1 м/с² означает, что каждую секунду скорость изменяется на 1 метр в секунду.
  3. В соответствии с теорией относительности и использовавшейся в первые десятилетия после её создания терминологией, масса тела m возрастает при увеличении скорости его движения согласно формуле m = γm 0 , где m 0 - масса покоящегося тела, а γ - Лоренц-фактор , значение которого определяется отношением скорости тела к скорости света . Этот эффект пренебрежимо мал, когда тела движутся с обычными для земных условий скоростями, которые на много порядков меньше скорости света, и с высокой точностью выполняется γ = 1 . В современной физике используется другая терминология: массой принято называть только не зависящую от скорости движения тела величину m 0 , а зависящей от скорости величине γm 0 специального наименования не присваивают и самостоятельного физического смысла не придают .
  4. Эта же директива определила литр как «единицу измерения объёма как для жидкостей, так и для твёрдых тел, которая равна объёму куба [со стороной] в десятую часть метра». Оригинальный текст: «Litre , la mesure de capacité, tant pour les liquides que pour les matières sèches, dont la contenance sera celle du cube de la dixièrne partie du mètre. »
  5. Современные измерения показывают, что температура, при которой вода имеет наибольшую плотность, составляет 3,984 °C. Однако учёные конца XVIII века использовали значение 4 °C.
  6. Временный эталон килограмма был изготовлен в соответствии с единственным неточным измерением плотности воды, сделанным ранее Антуаном Лавуазье и Рене Жюст Гаюи , которое показало, что один кубический дециметр дистиллированной воды при 0 °C имеет массу в 18 841 гран согласно французской системе мер (англ. Units of measurement in France ), которой скоро предстояло исчезнуть. Более новое и аккуратное измерение, проведённое Лефёвром-Жино и Фабброни показало, что масса кубического дециметра воды при температуре 4 °C составляет 18 827,15 гран

Источники

  1. Деньгуб В. М. , Смирнов В. Г. Единицы величин. Словарь-справочник. - М. : Издательство стандартов, 1990. - С. 61. - 240 с. - ISBN 5-7050-0118-5 .
  2. Unit of mass (kilogram) (англ.) . SI Brochure: The International System of Units (SI) . BIPM . Проверено 11 ноября 2015.
  3. Положение о единицах величин, допускаемых к применению в Российской Федерации (неопр.) . Федеральный информационный фонд по обеспечению единства измерений . Росстандарт . Проверено 28 февраля 2018.
  4. Historic Vote Ties Kilogram and Other Units to Natural Constants
  5. Verifications (англ.) . Resolution 1 of the 25th CGPM (2014) . BIPM . Проверено 8 октября 2015.

Международный прототип без защитного чехла

В сентябре 2014 года исполняется 125 лет с момента появления на свет международного прототипа килограмма . Решение о создании эталона было принято на Генеральной конференции мер и весов 7-9 сентября 1889 года в Париже.

Он хранится в Международном бюро мер и весов около Парижа и представляет собой цилиндр диаметром и высотой 39,17 мм из платино-иридиевого сплава (90% платины, 10% иридия). Такой состав выбран из-за высокой плотности платины, так что эталон можно сделать относительно маленького размера: меньше спичечного коробка по высоте.


Национальный прототип килограмма Великобритании в защитном корпусе, 18-я копия международного прототипа

Масса международного прототипа примерно соответствует 1 литру воды при температуре 4°C, а его вес зависит от высоты над уровнем моря и силы гравитации.

Когда изготовляли международный прототип, вместе с ним сделали 40 копий из того же платино-иридиевого сплава. Их разослали по национальным бюро мер и весов в разных странах, чтобы учёным не приходилось обращаться к основному эталону каждый раз для проведения измерений.

Национальные прототипы сверяют с основным прототипом каждые 40 лет. Последняя проверка проходила в 1989 году, и тогда максимальная разница в весе составила 50 микрограммов. Эти девиации беспокоят учёных. Они понимают, что масса конкретного образца изменяется со временем из-за физических повреждений и появления прочих артефактов.


Национальный прототип хранится в сейфе Национальной физической лаборатории

К сожалению, для международного прототипа нынешний юбилей, скорее всего, станет последним. Сейчас подходят к завершению два эксперимента по созданию более точных эталонов массы. Их цель - определить массу через естественную природную константу, а не через эталонный образец.

Один из экспериментов предполагает определение килограмма через постоянную Планка. Для этого измеряют ток, проходящий через [проводную] катушку в магнитном поле, по отношению к силе гравитации, действующей на килограмм, объясняют специалисты Национальной физической лаборатории Великобритании, где в честь 125-летия килограмма открыли праздничный раздел на сайте. Именно в Великобритании в 1975 году начали эксперимент по ватт-балансу, который сейчас продолжают в Канаде.

Другой метод предлагают немецкие специалисты: в рамках проекта Авогадро создают кремниевую сферу размером с грейпфрут, которая содержит около 50 септиллионов атомов кремния-28.


Кремниевая сфера Авогадро

Поскольку известны масса кремния и плотность вещества, то эталонное значение килограмма можно привязать к объёму сферы и, соответственно, к постоянной Авогадро.


Измерение массы сферы Авогадро

Килограмм остался последней единицей СИ, которая выражается через физический эталон. Это указывает на то, что 125 лет назад физики очень грамотно выбрали материал для изготовления прототипа. И даже если скоро его выведут из использования, он сослужил хорошую службу за эти годы.

Действующее до мая 2019 года определение килограмма принято III Генеральной конференцией по мерам и весам (ГКМВ) в 1901 году и формулируется так :

Килограмм - единица массы, равная массе международного прототипа килограмма.

Килограмм пока остаётся последней единицей СИ, которая определена на основе объекта, изготовленного человеком. Однако, XXVI Генеральная конференция по мерам и весам (13 - 16 ноября 2018 года) одобрила новое определение килограмма , основанное на фиксации численного значения постоянной Планка . Решение вступит в силу 20 мая 2019 года. При этом с практической точки зрения величина килограмма не изменится, но существующий «прототип» (эталон) более не будет определять килограмм, а станет очень точной гирькой с потенциально измеримой погрешностью.

Прототип килограмма

Килограмм и постоянная Планка

Эти две формулы, найденные в начале XX века, устанавливают теоретическую возможность измерения массы через энергию индивидуальных фотонов , но практические эксперименты, позволяющие связать массу и постоянную Планка, появились лишь в конце XX века.

U 1 I 2 = m g v 1 , {\displaystyle U_{1}I_{2}=mgv_{1},}

где U 1 I 2 {\displaystyle U_{1}I_{2}} - произведение электрического тока во время балансирования массы и напряжения в процессе калибровки, - произведение ускорения свободного падения g {\displaystyle g} и скорости катушки v 1 {\displaystyle v_{1}} во время калибровки весов. Если g v 1 {\displaystyle gv_{1}} независимо замерено с высокой точностью (практические особенности эксперимента также требуют высокоточного замера частоты ), предыдущее уравнение по сути определяет килограмм в зависимости от величины ватта (или наоборот). Индексы у U 1 {\displaystyle U_{1}} и I 2 {\displaystyle I_{2}} введены с тем, чтобы показать, что это виртуальная мощность (замеры напряжения и тока делаются в разное время), избегая эффектов от потерь (которые могли бы быть вызваны, например, наведёнными токами Фуко) .

Связь между ваттом и постоянной Планка использует эффект Джозефсона и квантовый эффект Холла :

Поскольку I 2 = U 2 R {\displaystyle I_{2}={\frac {U_{2}}{R}}} , где R {\displaystyle R} - электрическое сопротивление , U 1 I 2 = U 1 U 2 R {\displaystyle U_{1}I_{2}={\frac {U_{1}U_{2}}{R}}} ; эффект Джозефсона: U (n) = n f (h 2 e) {\displaystyle U(n)=nf\left({\frac {h}{2e}}\right)} ; квантовый эффект Холла: R (i) = 1 i (h e 2) {\displaystyle R(i)={\frac {1}{i}}\left({\frac {h}{e^{2}}}\right)} ,

где n {\displaystyle n} и i {\displaystyle i} - целые числа (первое связано со ступенькой Шапиро, второе - фактор заполнения плато квантового эффекта Холла), f {\displaystyle f} - частота из эффекта Джозефсона, e {\displaystyle e} - заряд электрона . После подстановки выражений для U {\displaystyle U} и R {\displaystyle R} в формулу для мощности и объединения всех целочисленных коэффициентов в одну константу C {\displaystyle C} , масса оказывается линейно связанной с постоянной Планка:

m = C f 1 f 2 h g v 1 {\displaystyle m=Cf_{1}f_{2}{\frac {h}{gv_{1}}}} .

Поскольку все остальные величины в этом уравнении могут быть определены независимо от массы, оно может быть принято за определение единицы массы после фиксации значения 6,62607015×10 −34 для постоянной Планка.

Этимология и употребление

Слово «килограмм» произошло от французского слова «kilogramme », которое в свою очередь образовалось из греческих слов «χίλιοι » (chilioi ), что означает «тысяча» и «γράμμα » (gramma ), что означает «маленький вес» Слово «kilogramme » закреплено во французском языке в 1795 году . Французское написание слова перешло в Великобританию, где впервые оно было использовано в 1797 году , в то время как в США слово стало использоваться в форме «kilogram », позднее ставшее популярным и в Великобритании Положение о мерах и весах (англ. Weights and Measures Act ) в Великобритании не запрещает использование обоих написаний .

В XIX веке французское сокращение «kilo » было заимствовано в английский язык, где стало применяться для обозначения как килограммов , так и километров .

Природа массы

Килограмм является единицей массы , величины , которая соотносится с общим представлением людей о том, насколько тяжела та или иная вещь. В терминах физики, масса характеризует два различных свойства тела: гравитационное взаимодействие с другими телами и инертность . Первое свойство выражается законом всемирного тяготения : гравитационное притяжение прямо пропорционально произведению масс. Инертность находит отражение в первом (скорость объектов остаётся неизменной до тех пор, пока на них не воздействует внешняя сила) и втором законе Ньютона: a = F/m ; то есть объект массой m в 1 кг получит ускорение a в 1 метр в секунду за секунду (около одной десятой ускорения свободного падения , вызванного притяжением Земли) , когда на этот объект действует сила (или равнодействующая всех сил) в 1 ньютон . По современным представлениям, гравитационная и инертная массы эквивалентны .

Поскольку торговля и коммерция обычно имеют дело с предметами, чья масса намного значительней одного грамма, и поскольку стандарт массы, изготовленный из воды, был бы неудобен в обращении и сохранении, было предписано отыскать способ практической реализации такого определения. В связи с этим был изготовлен временный эталон массы в виде металлического предмета в тысячу раз тяжелее, чем грамм, - 1 кг.

Французский химик Луи Лефёвр-Жино (англ. Louis Lefèvre-Gineau ) и итальянский натуралист Джованни Фабброни (англ. kilogramme des Archives 1889 году было принято международное определение килограмма как массы международного прототипа килограмма ; это определение продолжит действовать до мая 2019 года.

Были изготовлены также копии международного прототипа килограмма: шесть (на данный момент) официальных копий; несколько рабочих эталонов, используемых, в частности, для отслеживания изменения масс прототипа и официальных копий; и национальные эталоны, калибруемые по рабочим эталонам . Две копии международного эталона были переданы России , они хранятся во ВНИИ метрологии им. Менделеева .

За время, прошедшее с изготовления международного эталона, его несколько раз сравнивали с официальными копиями. Измерения показали рост массы копий относительно эталона в среднем на 50 мкг за 100 лет . Хотя абсолютное изменение массы международного эталона не может быть определено с помощью существующих методов измерения, оно определённо должно иметь место . Для оценки величины абсолютного изменения массы международного прототипа килограмма приходилось строить модели, учитывающие результаты сравнений масс самого прототипа, его официальных копий и рабочих эталонов (при этом, хотя обычно участвующие в сравнении эталоны обычно предварительно промывали и чистили, но не всегда), что дополнительно усложнялось отсутствием полного понимания причин изменений масс. Это привело к пониманию необходимости ухода от определения килограмма на основе материальных предметов .

В 2011 году XXIV Генеральная конференция по мерам и весам приняла Резолюцию, в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов . В частности предлагалось, что «килограмм останется единицей массы, но его величина будет установлена путём фиксации численного значения постоянной Планка в точности равным 6,626 06X⋅10 −34 , когда она выражается единицей СИ м 2 ·кг·с −1 , которая равна Дж·с». В Резолюции отмечается, что сразу после предполагаемого переопределения килограмма масса его международного прототипа будет равна 1 кг, но это значение приобретёт погрешность и впоследствии будет определяться экспериментально. Такое определение килограмма стало возможным благодаря прогрессу физики в XX веке.

В 2014 году было проведено внеочередное сравнение масс международного прототипа килограмма, его официальных копий и рабочих стандартов; на результатах этого сравнения основаны рекомендованные значения фундаментальных постоянных CODATA 2014 и 2017 годов, на которых, в свою очередь, основывается новое определение килограмма.

Решение вступит в силу во Всемирный день метрологии 20 мая 2019 года.

Интересно, что масса 1 м³ дистиллированной воды при 4 °C и атмосферном давлении, принятая за ровно 1000 килограммов в историческом определении 1799 года, и согласно современному определению составляет приблизительно 1000,0 килограммов .

Кратные и дольные единицы

По историческим причинам, название «килограмм» уже содержит десятичную приставку «кило», поэтому кратные и дольные единицы образуют, присоединяя стандартные приставки СИ к названию или обозначению единицы измерения «грамм» (которая в системе СИ сама является дольной: 1 г = 10 −3 кг).

10 −2 г 10 −3 г 10 −6 г 10 −9 г 10 −12 г 10 −15 г 10 −18 г 10 −21 г 10 −24 г

Назад

История килограмма

7 апреля 1795 года во Франции было утверждено официальное определение грамма, новой единицы массы, под которой стали понимать вес кубического сантиметра чистой воды, находящегося при температуре 0°С. К слову, сама идея привязать определение массы к объему воды была вовсе не нова. Впервые она была озвучена английским философом Дж. Уилкинсоном в 1668 году. Однако, на практике грамм в силу своей малой величины оказался неудобен в использовании в торговле. По этой причине была продолжена работа над определением килограмма, равного, соответственно, массе одного литра чистой воды.

Спустя несколько лет кропотливых исследований химик Луи Лефевр-Жино и натуралист Джованни Фабброни уточнили условия наиболее стабильного состояния воды. По мнению ученых, наибольшей плотностью и, следовательно, устойчивостью вода обладала при температуре 4°С. Полученные результаты были учтены в 1799 году в процессе переопределения килограмма. В том же году был отлит и первый эталон новой единицы массы, выполненный в форме платиновой . Однако, в последствии выяснилось, что масса гири превышала массу эталонного литра воды на 0,028 грамм. В 1889 году в Лондоне был отлит металлический цилиндр, ставший новым эталоном килограмма. Изделие из сплава иридия и платины размером с солонку было доставлено в Париж, где подверглось окончательной обработке. И по сей день эталон килограмма в условиях вакуума хранится в Международном бюро мер и весов.

В конце ХХ столетия ученые забили тревогу. Эталон взвесили на весах Ватта: предельно точный механизм позволил определить массу цилиндра с точностью до 10 микрограмм. Результаты взвешивания оказались неутешительными. Выяснилось, что масса цилиндра с годами стала меньше. И хотя за все время своего существования Парижский эталон потерял всего 50 микрограмм — 1/ 200 000 000 от своего изначального веса — стало очевидно, что необходимо определить новую физическую константу килограмма. Ведь от точности эталона зависит точность его копий, и, следовательно, точность производимых измерений во всем мире.

На сегодняшний день килограмм остается единственной единицей , эталоном которой служит предмет, изготовленный людьми. Современные ученые ищут основу для переопределении килограмма в мире атомов, среди фундаментальных физических постоянных. Так, существуют предложения связать его массу с числом Авогадро или постоянной Планка. Планируется, что окончательное решение по переопределению килограмма будет вынесено к 2018 году.

ГОСУДАРСТВЕННЫЙ ПЕРВИЧНЫЙ ЭТАЛОН

ЕДИНИЦЫ МАССЫ (килограмм)


Эталонные весы с наибольшим пределом взвешивания 1 кг

Утвержден Постановлением Госстандарта СССР от 6.12.1984 г. № 4109, хранится во ВНИИМ им. Д.И.Менделеева. Эталон предназначен для воспроизведе­ния, хранения и передачи размера еди­ницы массы, получаемого на основании периодических сличений с Международ­ным прототипом килограмма. Основу эталона составляют копии № 12 и № 26 Международного прототипа кило­грамма, который хранится в Междуна­родном бюро мер и весов. Копии были изготовлены фирмой «Джонсон, Маттей и К 0 » из платино-иридиевого сплава в ви­де прямого круглого цилиндра с высотой, равной диаметру, подогнаны по массе и исследованы в МБМВ, переданы России в 1889 г

В составе эталона:

Национальный прототип килограмма - копия № 12 Международного прототипа килограмма;

Национальный прототип килограмма - копия № 26 Международного прототипа килограмма;

Эталонная гиря массой 1 кг и набор эта­лонных гирь массой от 1 до 500 г из пла- тино-иридиевого сплава;

Эталонные весы-компараторы с наи­большими пределами взвешивания 1 кг; 200, 25 и 3 г.

Область применения:

Метрологическое обеспечение единства измерений массы во всех областях науки и производственной деятельности: машиностроение, приборостроение, микроэлектроника, транспорт, оборонная промышленность, научные исследования, системы контроля и учета продукции, сельское хозяйство и др.

Современные эталоны - это, как правило, сложные аппаратурные комплексы. А эталон массы был и остается гирей - платиново-иридиевой "образца 1889 года" (именно тогда Международное бюро мер и весов изготовило 42 эталона килограмма). Сущность самой измерительной операции также осталась прежней и сводится к сравнению двух масс при взвешивании. Конечно, изобретены сверхчувствительные весы, растет точность взвешивания, благодаря которой появляются новые научные открытия (так, например, были открыты аргон и другие инертные газы).

Эту килограммовую гирю из платины и иридия сделала в 1889 году парижская ювелирная фирма по заказу Международного бюро мер и весов. Всего таких эталонов было изготовлено 42, а стран, подписавших тогда конвенцию о принятии метрической системы, - 17. По мере “подключения” к новой системе измерений других стран им вручали эталон килограмма.

Килограмм никак не связан ни с физическими константами, ни с какими-либо природными явлениями. Поэтому эталон берегут тщательнее: не дают пылинке на него сесть, ведь пылинка - это уже несколько делений на чувствительных весах. Международный прототип эталона достают из хранилища не чаще одного раза в пятнадцать лет, российский - раз в пять лет. Все работы ведутся со вторичными эталонами (только их допускается сравнивать с основным), от вторичного эталона значение массы передается рабочим эталонам, от них - к образцовым наборам гирь.
Эталонные весы во ВНИИМ им. Д. И. Менделеева установлены на специальном фундаменте в 700 тонн, не связанном со стенами здания, чтобы исключить влияние вибраций. Температура в помещении, где за сутки на весы устанавливаются две килограммовые гири, поддерживается с точностью до 0,01 о С, а все операции ведутся из соседней комнаты с помощью манипуляторов. Погрешность эталона массы России не превышает +0,002 мг.



Государственный первичный эталон единицы массы Государственный эталон единицы массы - килограмм - является самым древним из всех государственных эталонов, хотя в современном его составе он был утвержден в 1968 г. Размер килограмма был впервые задан при установлении метрической системы через размер его дольной единицы - грамма, определенного как масса дистиллированной воды при температуре таяния льда в объеме куба с ребром 1/100 метра. Позднее перешли к более удобному размеру единицы - килограмму, как массе воды в объеме кубического дециметра. В качестве нормальных условий была принята температура +4°С, при которой вода имеет наибольшую плотность. В 1889 г. по результатам тщательных измерений массы 1 дм3 воды во Франции был изготовлен первый прототип килограмма - платино-иридиевая гиря в виде цилиндра высотой 39 мм, равной ее диаметру, впоследствии названная архивным килограммом. Дальнейшие успехи точного взвешивания позволили установить, что масса архивного килограмма на 0,028 г больше массы 1 дм воды и что определить массу платинового килограмма можно в тысячу раз точнее, чем массу 1 дмводы. В 1878-83 гг. были изготовлены 43 новые килограммовые гири по образцу архивного килограмма из платиноиридиевого сплава. Одна из этих гирь, масса которой оказалась наиболее близкой к архивному килограмму, в 1899 г. на I ГКМВ была принята в качестве международного прототипа килограмма, который и определяет в настоящее время размер единицы массы для всех стран Метрической конвенции. Россия получила в 1889 году две копии (№12 и №26) международного килограмма. Первый Государственный эталон единицы массы в нашей стране был утвержден в 1918 г. Им являлся один из национальных прототипов, приобретенных Россией в 1889 г., - копия №12 международного прототипа килограмма. В МБМВ за 1883 -1889 гг. была произведена окончательная подгонка всех прототипов и их исследование. Вся процедура изготовления прототипа №12 и его исследования подробно изложена в сертификате МБМВ на этот прототип, согласно которому масса прототипа №12 на 1889 г. составляла1кг + (0,068± 0,002) мг. Все национальные прототипы каждые 25 - 35 лет должны сличаться в МБМВ с международным прототипом килограмма (или с его свидетелями). Передача размера килограмма (или его дольных частей) от прототипа №12 ко вторичным эталонам (эталонным гирям) до 1966 г. осуществлялась при помощи эталонных весов №1 с нагрузкой до 1 кг. Однако весы не входили тогда в состав Государственного эталона килограмма.Действующий в настоящее время Государственный первичный эталонединицы массы - килограмма утвержден в 1968 г. в составе следующих средств измерений: 1) копия №12 международного прототипа килограмма; 2) эталонные весы №1 и №2. Прототип №12 обеспечивает воспроизведение и хранение единицы массы национальном масштабе - масштабе всей страны. При этом используются сложные приемы бережливого хранения вещественного килограмма и ювелирная техника работы на эталоне. Даже при самом тщательном и осторожном применении прототипа неизбежно его взаимодействие с внешними объектами, неизбежен износ (изменение массы). Поэтому для его применения и хранения были выбраны особые правила и приемы, прежде всего - максимальное сокращение его перемещений и использование для передачи размера единицы нескольких эталонов-копий, сличение которых с прототипом №12 производится методом совокупных измерений. Для минимизации изменений массы прототипа он хранится на кварцевой пластинке под двумя стеклянными колпаками в стальном шкафу особого сейфа, находящегося в термостатированном помещении. Годовое колебание температуры в помещении не превышает 2°С. Важным элементом Государственного первичного эталона килограмма являются эталонные весы, при помощи которых осуществляется передача размера единицы вторичным эталонам - эталонам-копиям массой в 1 кг. Сличения проводятся примерно 1 раз в 10 лет. Эталонные весы являются одним из наиболее точных измерительных устройств. Как и большинство высокоточных весов, эталонные весы №1 и №2 являются равноплечными призменными рычажными весами. Весы №2 имеют ряд преимуществ по сравнению с весами №1 в части конструкции и снабжены автоматическим регистрирующим устройством. Управление обоими "эталонными" весами производится дистанционно при помощи манипуляторов, которые позволяют освобождать коромысла весов (и перемещать в них гири) из другого помещения, с расстояния почти 4 м.Для уменьшения влияний температурных и воздушных колебаний в процессе измерений, а также попадании всевозможных пылинок, эталонные весы заключены в специальный стеклянный кожух. Специальное устройство позволяет измерять дистанционно температуру воздуха внутри весов с погрешностью 0,002°С. Использование методики, основанной на способе Гаусса, позволяет обеспечивать на государственном первичном эталоне воспроизведение единицы массы в 1 кг и передачу ее размера вторичным эталонам с СКО результата, не превышающим 0,007 мг при условии соблюдения установленных правил хранения и применения эталонов массы. Государственный первичный эталон единицы массы хранится и применяется во ВНИИМ им. Д. И. Менделеева. Опыт применения национальных прототипов килограмма из платиноиридиевого сплава на протяжении более 80 лет показал, что эти гири обладают высокой стабильностью массы; по исследованиям МБМВ эти гири обеспечат хранение единицы массы с погрешностью не более 10 -8 в течение нескольких столетий их применения. В настоящее время, однако, остается принципиальное несовершенство эталона, связанное с искусственным определением единицы массы. Стремясь заменить его естественным эталоном и получить гарантию определенной стабильности, ученые ведут поиски путей существенного повышения точности определения атомной единицы массы с тем, чтобы выразить килограмм через массу какой-либо элементарной частицы или атома. Германские ученые стремятся вывести единицу массы через трудоемкий подсчет количества атомов, содержащихся в килограммовом кристалле кремния. Речь идет об основном изотопе кремния - 28, отделением которого от прочих изотопов немецкие ученые занимаются совместно в сотрудничестве с российскими физиками-ядерщиками, разработавшими наиболее эффективные методы центрифужного получения высокообогащенных радиоактивных элементов. Американские ученые пошли по другому пути: их идея заключается в том, чтобы точно измерить в ваттах величину электромагнитной мощности, необходимой для уравновешивания эталонного килограмма (так называемый ваттовый баланс). Окончательное решение – какой из этих двух вариантов определения килограмма взять за основу – остается за Международным комитетом мер и весов.

Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом . Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике.

Энергия движений движ
Масса - килограмм (кг, kg) микрограмм (мкг) = 10 –9 кг миллиграмм (мг) = 10 –6 кг грамм (г) = 10 –3 кг центнер метрический (ц) = 100 кг тонна метрическая (т, тн) = 1000 кг
Сила - ньютон (Н, N) Размерность: Н = кг·м/с2 килоньютон (кН) = 1000 Н меганьютон (МН) = 106 Н
Энергия, работа, количество теплоты - джоуль (Дж, J) Размерность: Дж = Н·м = кг·м2/с2 килоджоуль (кДж) = 1000 Дж мегаджоуль (МДж) = 106 Дж
Масса (мера механической инертности тел, т.е. инерционности; мера взаимодействия тел с гравитационным полем) m килограмм (кг)
Сила (мера взаимодействия тел) F = m · a ньютон (Н = кг · м / с2)
Работа (мера воздействия на тело, вызывающего изменение его состояния, в механике - вызывающего перемещение под действием силы, внешней или внутренней) A = F · s
Энергия (мера способности тела совершить работу) E = A джоуль (Дж = Н · м) кг · м2 / с2
Кинетическая энергия E к = m · v 2 / 2
Потенциальная энергия в гравитационном поле E п = m · g · Δh, где g - ускорение свободного падения, Δh - разность высот, между которыми переместилось тело массой m.
Энергия Е физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие
Сила F векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нем деформаций
Джоуль J Работа, произведенная силой в 1 ньютон при перемещении ею тела на расстояние 1 метр в направлении действия

Механическая работа – физическая величина, равная произведению силы на путь, пройденный телом вдоль направления этой силы. Единица измерения работы – 1 джоуль (1 Дж = 1 Н·м).

Энергия тела – физическая величина, показывающая работу, которую может совершить это тело. Энергия измеряется теми же единицами, что и работа – джоулями.