Какая сила не дает волчку упасть. Почему вращающийся волчок не падает? Исследование латунного волчка - тонвала

В классических волчках свободная нога вытягивается вперёд или немного присогнута внутрь к опорной ноге. Однако существует множество вариаций, где свободная нога может быть направлена в сторону или назад от опорной, или лежать сверху.

Волчок - одна из трёх базовых позиций вращений .

Классический волчок в исполнении Аманды Эворы

  • волчок может исполняться в качестве вращения в одной позиции , как со сменой ноги, так и без.
  • волчок также может исполняться в комбинированных вращениях . В зависимости от вида программ, позиция волчка может быть обязательной, например в комбинированном вращении со сменой ноги в коротких программах.
  • прыжок в волчок — вращение в волчке без смены ноги, с входом прыжком. Наиболее распространённые прыжковые заходы в волчок — чинян , Death Drop и бедуинский.
Примеры позиций волчков
Простой волчок. Самое классическое и каноническое исполнение, бедро опорной ноги параллельно льду, свободная нога либо вытянута вперёд, либо немного согнута внутрь, спина прямая и наклонена вперёд, руки тянутся вперёд.

Классификация по НСС: Простая вариация позиции волчка.

Простой волчок, низкий вариант. Бедро опорной ноги заметно ниже, чем уровень параллели льду.

Классификация по НСС: Простая вариация позиции волчка. С точки зрения судейства ничем не отличается от классического варианта.

Простой волчок, высокий вариант. Современные правила предъявляют довольно жёсткие требования к позиции волчка, бедро опорной ноги должно быть хотя бы параллельно льду. Строго говоря, из-за высокого положения опорного бедра это уже не волчок, а промежуточная позиция, близкая к волчку.

Классификация по НСС: скорее всего, такой волчок будет квалифицирован как простая вариация промежуточной позиции. Такая позиция не позволяет получать какие-либо черты, повышающие уровень сложности вращения, а равно не засчитывается в качестве выполненного волчка во вращении в одной позиции и комбинированных.

Пушка, волчок с захватом свободной ноги руками. Свободная нога распрямлена, вытянута вперёд, удерживается руками параллельно льду. Часто исполняется как в прямых, так и обратных вращениях.

Классификация по НСС: простая вариация позиции волчка. Сам по себе захват ноги не делает вариацию сложной, необходимы другие факторы, усложняющие вращение.

Складка. Волчок, в котором корпус и голова плотно сложены к опорной ноге, свободная нога или вытянута вперёд, тогда такой вариант ещё называют "пушкой", либо согнута внутрь — последний вариант ещё иногда называют Cannonball. Вариации часто исполняются как в прямых, так и обратных вращениях.

Классификация по НСС: сложная вариация позиции волчка, категория SF (Sit Forward) .

Волчок - стульчик, со свободной ногой, находящейся за опорной. Свободная нога заводится назад за опорную, и удерживается противоположной рукой за конёк или ботинок. Для усложнения вращения корпус и голову складывают к опорной ноге, или, возможно, делают какие-либо иные вариации. Исполняется как в прямых, так и обратных вращениях.

Классификация по НСС: SB (Sit Behind) .

Pancake Spin (блинчик). Конёк свободной ноги лежит на колене или бедре опорной, при этом позиции рук могут варьироваться, руки могут обхватывать опорный конёк, быть отведены в стороны или сомкнуты в замке за спиной. Вариация исполняется как в прямых, так и обратных вращениях.

Классификация по НСС: При хорошем исполнении трактуется как сложная вариация волчка категории SF (Sit Forward) . Но, эту вариацию сложно сделать так, чтобы опорное бедро было достаточно низким, и тогда эта позиция будет трактоваться как сложная промежуточная.

Волчок, с руками в замке за спиной. Корпус складывается к опорной ноге, руки находятся в замке за спиной, натянуты вверх.

Классификация по НСС: При достаточно сложном исполнении трактуется как сложная вариация волчка категории SF (Sit Forward) .

Волчок с горизонтально развёрнутым корпусом. Очень необычная и оригинальная позиция.

Классификация по НСС: Сложная вариация категории SF (Sit Forward)

Скрученный волчок. Корпус сильно скручивается так, что линия плеч становится перпендикулярна льду. Свободная нога скрещивается спереди с опорной. Распространённая вариация для обратных вращений.

Классификация по НСС: сложная вариация волчка категории SF (Sit Forward) . Существенно отличается от вариаций вроде складок.

Ломаный волчок (Broken Leg Sit Spin). Нога развёрнута и сильно вынесена в сторону от опорной. Вариация только для прямых вращений.

Классификация по НСС: При достаточно хорошем и сложном исполнении засчитывается как сложная вариация волчка категории SS (Sit Sideways)

Волчок, с прямой свободной ногой, скрещенной сзади от опорной. Довольно эффектная позиция, для обратных вращений.

Классификация по НСС: При хорошем исполнении засчитывается как сложная вариация волчка категории SB (Sit Behind)

Чинян. Чинян — прыжок во вращение, с принятием позиции волчка в воздухе. Чинян, это именно сам прыжок, а не вращение, начинающееся с этого прыжка (так, чинян может предшествовать вращениям стоя, не обязательно волчкам). Ключевой критерий — должна быть принята позиция волчка в воздухе, бедро ноги, с которой делается прыжок, в какой-то момент должно быть параллельно льду.

Классификация по НСС: использование чиняна в качестве захода на вращение (как в составе элемента "прыжок во вращение", так и любого другого вращения с заходом прыжком), при достаточно хорошем исполнении, повышает уровень сложности.

Некоторые вопросы, связанные с судейством

  • позиция волчка может считаться исполненной только в том случае, если было сделано не менее двух непрерывных оборотов в базовой (то есть, достаточно низкой) позиции. Если этот критерий не выполнен для вращения в волчке, то элемент будет записан как "вращение без уровня" (с нулевой оценкой). Если засчитанной позиции не будет в комбинированном вращении со сменой ноги, то элемент получит уровень не выше 1, а в короткой программе так же будет снижено GOE элемента.
  • категория сложной вариации вращения — понятие, введённое в сезоне 2010-11. Сложные вариации волчков классифицируются по категориям по положению свободной ноги относительно опорной (спереди, сбоку или сзади). В течении всей программы не более двух попыток исполнения сложных вариаций одной категории могут повысить уровни вращений, и только при условии, если эти две вариации одной категории существенно разные.
  • черты сложности для волчков (на сезон 2010-11): 8 оборотов в одной вариации позиции (в том числе, в простых вариациях), сложные вариации (как сложные позиции, так и подпрыжки), смена ребра (с сезона 2010-11 только в прямых вращениях и только с ребра назад-внутрь на вперёд-наружу), обратный вход во вращение. Прим.: требования к чертам сложности требуют отдельного детального рассмотрения.

Видео 1. Эксперимент с вращением более лёгкого волчка.
Экспериментальные данные приведены в таблице 1.

Таблица 1. Экспериментальные данные для вращения более лёгкого волчка. Измерения времени сделаны для каждого 10-го оборота.
Обороты переводятся в расстояние


График математической модели скорости приведён на рис. 3.
График математической модели координаты приведён на рис. 4.


Рис. 3. График математической модели скорости для ИДВУСД волчка в первом опыте. Экспериментальные данные скорости обозначены синими точками.



Рис. 4. График математической модели координаты для ИДВУСД волчка в первом опыте. Экспериментальные данные координаты обозначены синими точками.

3. Исследование второго (более тяжёлого) волчка.

Движение (вращение) второго волчка будем фиксировать видеосъёмкой с частотой кадров: 600 кадров в секунду.

Вес волчка: 0,015 кг.
Диаметр волчка равен 0,057 метра.

Рис. 5. Общий вид второго, более тяжёлого волчка.

Видео 2. Эксперимент с вращением более тяжёлого волчка.
Экспериментальные данные приведены в таблице 2.

Таблица 2. Экспериментальные данные для вращения более тяжёлого волчка. Измерения времени сделаны для каждого 10-го оборота.


График математической модели скорости приведён на рис. 6.
График математической модели координаты приведён на рис. 7.


Рис. 6. График математической модели скорости для ИДВУСД волчка во втором опыте. Экспериментальные данные скорости обозначены синими точками.


Рис. 7. График математической модели координаты для ИДВУСД волчка во втором опыте. Экспериментальные данные координаты обозначены синими точками.


4. Сравнение графиков скорости для первого и второго опытов.

На рисунке 8 показаны два графика скорости – для лёгкого и для более тяжёлого волчка.
График математической модели скорости для более лёгкого волчка построен зелёными точками. График математической модели скорости для более тяжёлого волчка построен голубыми точками.


Рис. 8. Графики скорости для лёгкого и тяжёлого волчков. Экспериментальные данные координаты обозначены синими точками.



У волчков (маховиков) ещё много тайн. Ведь, та мат модель, которую я привёл - это не единственный вариант движения волчков (маховиков). Следует продолжить поиски, и исследовать волчки из различных материалов и даже магнитов.

5. Исследование латунного волчка - тонвала.

Движение (вращение) латунного волчка будем фиксировать видеосъёмкой с частотой кадров: 600 кадров в секунду.
Для определения пройденного расстояния, на плоскость диска волчка наклеим метку красного цвета.
Вес волчка: 0,104 кг.
Диаметр волчка равен 0,05 метра.


Рис. 9. Общий вид латунного волчка.

Видео 3. Эксперимент с вращением латунного волчка.
Экспериментальные данные приведены в таблице 3.

Таблица 3. Экспериментальные данные для вращения латунного волчка. Измерения времени сделаны для каждого 10-го оборота.


График математической модели скорости приведён на рис. 10.
График математической модели координаты приведён на рис. 11.


Рис. 10. График математической модели скорости для ИДВУСД латунного волчка. Экспериментальные данные скорости обозначены синими точками.



Рис. 11. График математической модели координаты для ИДВУСД латунного волчка. Экспериментальные данные координаты обозначены синими точками.

Крутящийся волчок завораживает! Можно, как на огонь костра, долго смотреть на это явление, испытывая неугасающий интерес, любопытство и еще какие-то непонятные чувства… В понимании теории классического волчка и адекватном ее применении на практике, возможно, «зарыта собака»...

Использования и покорения гравитации… А, возможно, нам просто иногда так хочется думать, когда мы видим явления, которые не можем сразу понять и дать им объяснение.

Приступаем к ответу на вопрос заголовка статьи. Я разбил текст ответа на краткие пронумерованные пункты с целью максимально облегчить восприятие информации с возможностью отвлечений в процессе чтения и легкого последующего возврата к тексту и смыслу статьи. Переходите к следующему пункту только после понимания сути предыдущего.

Обратимся к рисунку, на котором изображен классический волчок.

1. Неподвижная абсолютная система координат Ox 0 y 0 z 0 показана на рисунке лиловым цветом. Центром прямоугольной Декартовой системы координат является точка O , на которую опирается крутящийся волчок.

2. Подвижная система координат Cxyz изображена на рисунке синим цветом. Оси этой системы не вращаются вместе с волчком, но повторяют все остальные его движения! Центром этой прямоугольной системы координат является точка C , которая лежит на средней плоскости диска волчка и является его центром масс.

3. Относительное движение волчка - это движение (вращение) относительно подвижной системы координатCxyz .

4. Переносное движение — это движение волчка вместе с подвижной системой координат Cxyz относительно неподвижной системыOx 0 y 0 z 0 .

5. Вектора сил и моментов показаны на рисунке зеленым цветом.

6. Диск волчка имеет массу m и весG = m * g , где g - ускорение свободного падения.

7. То, что некрутящийся волчок падает на бок, как правило, никого не удивляет. Волчок падает на бок из-за действия опрокидывающего момента M опр = G * P , который неизбежно возникнет при любом самом незначительном отклонении оси волчка z от вертикальной оси z 0 . Здесь P - плечо силы G , измеренное по осиy .

8. Согласно рисунку падение невращающегося волчка происходит вокруг оси x !

Относительно абсолютной неподвижной системы координат Ox 0 y 0 z 0 ось x при падении двигается плоскопараллельно по цилиндрической поверхности радиусом OC .

Ось y при этом перекатывается по окружности радиусом OC , меняя направление в абсолютном пространстве вместе с осью z , которая поворачивается вокруг точки O .

Рассматривая падение волчка в абсолютном пространстве относительно точки C , можно сделать вывод, что волчок и жестко связанная с ним система координат Cxyz совершает поворот вокруг оси x в направлении действия опрокидывающего момента M опр .

9. Рассмотрим движение произвольной материальной точки, принадлежащей диску крутящегося волчка. Для этого выделим точку A , имеющую массу m A и лежащую, например, в плоскости Cxy на периферии диска на расстоянии R от центра масс точки C .

10. Полагаем, что изначально точка A имеет линейную скорость относительного движенияV A отн , обусловленную только вращательным движением волчка вокруг оси z . Вектор скорости V A отн параллелен оси x .

11. Помним, что на волчок, крутящийся по часовой стрелке с очень большой угловой скоростью ω отн вокруг оси z , по-прежнему действует момент M опр , возникший в результате неизбежного изначального отклонения оси z от вертикали.

12. Точка, обладающая массой, не может мгновенно изменить свою скорость потому, что для этого ей необходимо придать ускорение, равное бесконечности - что считается невозможным из-за действия закона инерции. Это означает, что нарастание скорости V A пер , вызванной действием опрокидывающего моментаM опр , будет происходить какое-то время и крутящийся волчок успеет повернуться на некоторый угол. Для упрощения объяснения процесса условно примем, что переносная скорость точки A V A пер достигнет своего максимума в момент, когда точка A повернется на угол 90° (¼ оборота) и будет пересекать ось x .

13. На рисунке векторы переносной скорости точки A V A пер в различные моменты времени при разных углах поворота показаны пурпурным цветом, а вектор относительной скорости V A отн в начальном положении точки изображен коричневым цветом.

14. В соответствии с вышесказанным, если посмотреть на рисунок, становится очевидным, что волчок начнет опрокидывание не вокруг оси x , авокруг осиy !

15. Из-за возникшего переносного движения (опрокидывания), когда точка A , совершив оборот вокруг оси z , вернется в начальное положение на ось y , вектор ее абсолютной скорости V A будет повернут вниз в сторону опрокидывания, то есть в сторону переносного движения относительно вектора относительной скорости V A отн .

16. Любое изменение скорости может быть обусловлено только действием ненулевого ускорения! В данном случае это ускорение называется кориолисовым ускорением a кор . Оно направлено по линии действия скоростиV A пер переносного движения, его вызвавшего. Векторa кор параллелен оси z .

17. Переносное движение, вызвавшее кориолисово ускорение a кор , рождает соответственно и силу инерции F кор , которая действует в направлении противоположном направлению вектора a кор .

18. В свою очередь кориолисова сила инерцииF кор создает момент относительно оси x M гир = F кор * R , называемый гироскопическим моментом. Именно гироскопический моментM гир , противодействуя опрокидывающему моменту M опр , уравновешивает систему и не позволяет крутящемуся волчку завалиться на бок!!!

19. Волчок, не успев повернуться вокруг одной оси, начинается поворот вокруг другой и так далее пока есть вращение, пока действует кинетический момент H = ω отн * m * R 2 /2 !

Образно можно сказать так: как только крутящийся волчок начинает падать под действием момента силы тяжестиM опр , поворачиваясь вокруг некоторой оси,так через мгновение вокруг этой же оси возникает гироскопический моментM гир , препятствующий этому повороту. Так и «играют в догонялки» эти два момента - один роняет волчок, другой его удерживает от падения…

20. Ось z , жестко связанная с осью вращения волчка, описывает при этом в абсолютной координатной системеOx 0 y 0 z 0 конус с вершиной в точке O . Такое круговое движение осиz со скоростьюω пер называется прецессией.

21. На векторной диаграмме, изображенной на рисунке ниже, показаны, уравновешивающие друг друга, опрокидывающий момент силы тяжести M опр и гироскопический моментM гир .

M опр = M гир = H * ω пер

Гироскопический моментM гир по самому короткому пути пытается повернуть вектор кинетического момента H в направлении вектора угловой скорости переносного вращенияω пер . При этом прецессия - векторω пер - стремится повернуть тот же вектор H и совместить его по другому кратчайшему пути с вектором опрокидывающего момента силы тяжестиM опр . Эти два действия и определяют основу явления, имя которого — гироскопический эффект.

Пока есть вращение (ω отн ≠0 ), волчок обладает кинетическим моментомH , который обеспечивает существование гироскопического моментаM гир , который в свою очередь компенсирует действие момента силы тяжестиM опр , который и породил возникновение гироскопического моментаM гир

Такая вот история о «доме, который построил Джек», только круг - замкнутый, и существует он пока «крутится волчок - забава детства»!

Заложил основы теории волчка Леонард Эйлер (Россия), решив задачу для волчка с центром тяжести в точке опоры. Развил теорию Жозеф Луи Лагранж (Франция), решив задачу с волчком у которого центр тяжести находится на оси вращения, но не в точке опоры. Наиболее далеко в решении вопроса о теории волчка продвинулась Софья Васильевна Ковалевская (Россия), которая решила задачу для волчка с центром тяжести не лежащем на оси вращения.

…А, может быть, вращение волчка происходит совершенно по иным причинам, а не по изложенной выше теории, о которой поведал миру Лагранж? Может быть, эта модель и описывает «правильно» процесс, но физическая сущность в другом? Как знать…, но математического решения задачи в общем виде до сих пор нет, и крутящийся волчок еще не раскрыл человечеству абсолютно все свои секреты.

Подписывайтесь на анонсы статей в окнах, расположенных в конце каждой статьи или вверху каждой страницы, и не забывайте подтверждать подписку.

П одтвердить подписку необходимо кликом по ссылке в письме, которое придет к вам на указанную почту (может прийти в папку « Спам» )!!!

С интересом прочту Ваши комментарии, уважаемые читатели!

Дети порой бывают очень любопытными и иногда задают вопросы, на которые очень сложно ответить. Например, почему люди не падают с Ведь она круглая, вращается вокруг своей оси да еще и перемещается в бескрайних просторах Вселенной среди огромного количества звезд. Почему при этом человек может спокойно ходить, сидеть на диване и совершенно не беспокоиться? К тому же некоторые народы так и живут «вверх ногами». Да и бутерброд, который уронили, падает на землю, а не летит в небо. Может, что-то притягивает нас к Земле и мы не может оторваться?

Почему люди не падают с поверхности Земли?

Если ребенок начал задавать подобные вопросы, то можно рассказать ему о гравитации, или по-другому - о земном притяжении. Ведь именно это явление заставляет любой предмет стремиться к поверхности Земли. Благодаря гравитации человек не падает и не улетает.

Земное притяжение позволяет населению планеты спокойно перемещаться по ее поверхности, возводить здания и всевозможные сооружения, кататься на санках или лыжах с горы. Благодаря гравитации предметы падают вниз, а не летят вверх. Чтобы проверить это на деле, достаточно подбросить мяч. Он в любом случае упадет на землю. Вот почему люди не падают с поверхности Земли.

А как же Луна?

Конечно, земное притяжение не позволяет человеку падать с Земли. Но возникает другой вопрос - почему Луна на нее не падает? Ответ очень прост. Луна движется постоянно по орбите нашей планеты. Если же спутник Земли остановится, то он обязательно упадет на поверхность планеты. Это также можно проверить, проведя небольшой эксперимент. Для этого нужно привязать веревочку к гайке и раскрутить ее. Она будет перемещаться в воздухе до тех пор, пока не остановится. Если же прекратить раскручивание, то гайка просто упадет. Стоит также отметить, что гравитация Луны примерно в 6 раз слабее земного притяжение. Именно по этой причине здесь ощущается невесомость.

есть у всех

Силой притяжения обладают практически все предметы: животные, машины, здания, люди и даже мебель. И человек не притягивается к другому человеку только потому, что наша гравитация достаточно мала.

Сила притяжения напрямую зависит от расстояния между отдельными телами, а также от их массы. Так как человек весит очень мало, он притягивается не к другим предметам, а именно к Земле. Ведь ее масса значительно больше. Земля очень большая. Масса нашей планеты огромна. Естественно, и сила притяжения велика. Благодаря этому все предметы притягиваются именно к Земле.

Когда было открыто земное притяжение?

Для детей бывают неинтересны скучные факты. Но история открытия земного притяжения достаточно странная и забавная. был открыт Исааком Ньютоном. Ученый сидел под яблоней и размышлял о Вселенной. В этот момент ему на голову упал плод. В результате этого ученый осознал, что все предметы падают именно вниз, потому что существует сила притяжения. продолжил свои исследования. Ученый установил, что сила гравитации зависит от массы тел, а также от расстояния между ними. Он также доказал, что на большом расстоянии предметы не способны влиять друг на друга. Так и возник закон гравитации.

Все ли падает вниз: небольшой эксперимент

Чтобы ребенок мог лучше понять, почему люди не падают с поверхности Земли, можно провести небольшой эксперимент. Для этого потребуются:

  1. Картон.
  2. Стакан.
  3. Вода.

Стакан необходимо наполнить жидкостью до самых краев. После этого емкость следует накрыть картоном так, чтобы внутрь не попал воздух. После этого нужно перевернуть стакан дном вверх, придерживая при этом картон рукой. Лучше всего проводить эксперимент над раковиной.

Что же произошло? Картон и вода остались на месте. Дело в том, что внутри емкости совершенно нет воздуха. Картон и вода неспособны преодолеть давление воздуха снаружи. Именно по этой причине они остаются на своих местах.

Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно или даже наклонно, не опрокидывается, вопреки всем ожиданиям? Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть на него не действует?

Здесь имеет место весьма любопытное взаимодействие сил. Теория волчка непроста, и углубляться в нее мы не станем. Наметим лишь основную причину, вследствие которой вращающийся волчок не падает.

На рис. 26 изображен волчок, вращающийся в направлении стрелок. Обратите внимание на часть A его ободка и на часть B, противоположную ей. Часть A стремится двигаться от вас, часть B – к вам. Проследите теперь, какое движение получают эти части, когда вы наклоняете ось волчка к себе. Этим толчком вы заставляете часть A двигаться вверх, часть B – вниз; обе части получают толчок под прямым углом к их собственному движению. Но так как при быстром вращении волчка окружная скорость частей диска очень велика, то сообщаемая вами незначительная скорость, складываясь с большой круговой скоростью точки, дает равнодействующую, весьма близкую к этой круговой, – и движение волчка почти не меняется. Отсюда понятно, почему волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.

Рисунок 26. Почему волчок не падает?

Рисунок 27. Вращающийся волчок, будучи подброшен, сохраняет первоначальное направление своей оси.

Сущность этого объяснения непосредственно связана с законом инерции. Каждая частица волчка движется по окружности в плоскости, перпендикулярной к оси вращения. По закону инерции частица в каждый момент стремится сойти с окружности на прямую линию, касательную к окружности. Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения. Отсюда следует, что все плоскости в волчке, перпендикулярные к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т. е. сама ось вращения, также стремится сохранить свое направление.



Не будем рассматривать всех движений волчка, которые возникают при действии на него посторонней силы. Это потребовало бы чересчур подробных объяснений, которые, пожалуй, покажутся скучными. Я хотел лишь разъяснить причину стремления всякого вращающегося тела сохранять неизменным направление оси вращения.

Этим свойством широко пользуется современная техника. Различные гироскопические (основанные на свойстве волчка) приборы – компасы, стабилизаторы и др. – устанавливаются на кораблях и самолетах.

Таково полезное использование простой, казалось бы, игрушки.

Искусство жонглеров

Многие удивительные фокусы разнообразной программы жонглеров основаны тоже на свойстве вращающихся тел сохранять направление оси вращения. Позволю себе привести выдержку из увлекательной книги английского физика проф. Джона Перри «Вращающийся волчок».

Рисунок 28. Как летит монета, подброшенная с вращением.

Рисунок 29. Монета, подброшенная без вращения, падает в случайном положении.

Рисунок 30. Подброшенную шляпу легче поймать, если ей было сообщено вращение около оси.

Однажды я показывал некоторые из моих опытов перед публикой, пившей кофе и курившей табак в великолепном помещении концертного зала „Виктория“ в Лондоне. Я старался заинтересовать моих слушателей, насколько мог, и рассказывал о том, что плоскому кольцу надо сообщить вращение, если его желают бросить так, чтобы можно было наперед указать, куда оно упадет; точно так же поступают, если хотят кому‑нибудь бросить шляпу так, чтобы он мог поймать этот предмет палкой. Всегда можно полагаться на сопротивление, которое оказывает вращающееся тело, когда изменяют направление его оси. Далее я объяснял моим слушателям, что, отполировав гладко дуло пушки, никогда нельзя рассчитывать на точность прицела; вследствие этого теперь делают нарезные дула, т. е. вырезают на внутренней стороне дула пушек спиралеобразные желоба, в которые приходятся выступы ядра или снаряда, так что последний должен получить вращательное движение, когда сила взрыва пороха заставляет его двигаться по каналу пушки. Благодаря этому снаряд покидает пушку с точно определенным вращательным движением.

Это было все, что я мог сделать во время этой лекции, так как я не обладаю ловкостью в метании шляп или дисков. Но после того, как я закончил свою лекцию, на подмостки выступили два жонглера, – и я не мог пожелать лучшей иллюстрации упомянутых выше законов, нежели та, которую давал каждый отдельный фокус, показанный этими двумя артистами. Они бросали друг другу вращающиеся шляпы, обручи, тарелки, зонтики… Один из жонглеров бросал в воздух целый ряд ножей, ловил их опять и снова подбрасывал с большой точностью вверх; моя аудитория, только что прослушав объяснение этих явлений, ликовала от удовольствия; она замечала вращение, которое жонглер сообщал каждому ножу, выпуская его из рук так, что мог наверное знать, в каком положении нож снова вернется к нему. Я был тогда поражен, что почти все без исключения жонглерские фокусы, показанные в тот вечер, представляли иллюстрацию изложенного выше принципа».