Гипербола в пространстве. Определение гиперболы. Фокусы и эксцентриситет. Директориальное свойство гиперболы

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается обычно через 2а, Фокусы гиперболы обозначают буквами F 1 и F 2 , расстояние между ними - через 2с. По определению гиперболы 2а

Пусть дана гипербола. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

х 2 /a 2 + y 2 /b 2 = 1, (1)

где b = √(с 2 - а 2). Уравнение вида (I) называется каноническим уравнением гиперболы При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат -ее центром симметрии (рис. 18). Оси симметрии гиперболы называются просто ее осями, центр симметрии-центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. 18 вершины гиперболы суть точки А" и А.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2а и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженные) являются асимптотами гиперболы; их уравнения суть:

y = b/a x, y = - b/a x

Уравнение

X 2 /a 2 + y 2 /b 2 = 1 (2)

определяет гиперболу, симметричную относительно координатных осей с фокусами на оси ординат; уравнение (2),как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

x 2 /a 2 - y 2 /b 2 = 1, - x 2 /a 2 + y 2 /b 2 = 1

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуоясми (а = b) называется равносторонней,; ее каноническое уравнение имеет вид

х 2 - у 2 = а 2 или - х 2 + у 2 = а 2 .

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы ε > 1. Если М(х; у) - произвольная точка гиперболы, то отрезки F 1 М и F 2 M (см. рис. 18) называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

r 1 = εх + а, r 2 = εх - а,

фокальные радиусы точек левой ветви - по формулам

r 1 = -εх - а, r 2 = -εх + а

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

x = -a/ε, x = a/ε

называются ее директрисами (см. рис. 18). Если гипербола задана уравнением (2), то директрисы определяются уравнениями

x = -b/ε, x = b/ε

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентриситету гиперболы:

515. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная, кроме того, что:

1) ее оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с = 10 и ось 2b = 8;

3) расстояние между фокусами 2с = 6 и эксцентриситет ε = 3/2;

4) ось 2а = 16 и эксцентриситет ε = 5/4;

5) уравнения асимптот у = ±4/3х и расстояние между фокусами 2с = 20;

6) расстояние между директрисами равно 22 2/13 и расстояние между фокусами 2с = 26; 39

7) расстояние между директрисами равно 32/5 и ось 2b = 6;

8) расстояние между директрисами равно 8/3 и эксцентриситет ε = 3/2;

9) уравнения асимптот у = ± 3/4 х и расстояние между директрисами равно 12 4/5.

516. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, зная, кроме того, что:

1) ее полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2с = 10 и эксцеитриситет ε = 5/3; оч и. 12

3) уравнения асимптот у = ±12/5х и расстояние между вершинами равно 48;

4) расстояние между директрисами равно 7 1/7 и эксцентриситет ε = 7/5;

5) уравнения асимптот у = ± 4/3x и расстояние между директрисами равно 6 2/5.

517. Определить полуоси а и b каждой из следующих гипербол:

1) x 2 /9 - y 2 /4 = 1; 2) x 2 /16 - y 2 = 1; 3) x 2 - 4y 2 = 16;

4) x 2 - y 2 = 1; 5) 4x 2 - 9y 2 = 25; 6) 25x 2 -16y 2 = 1;

7) 9x 2 - 64y 2 = 1.

518. Дана гипербола 16x 2 - 9y 2 = 144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

519. Дана гипербола 16x 2 - 9у 2 = -144. Найти: 1) полуоси a и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

520. Вычислить площадь треугольника, образованного асимптотами гиперболы x 2 /4 - y 2 /9 = 1 и прямой 9x + 2y - 24 = 0.

521. Установить, какие линии определяются следующими уравнениями:

1) y = +2/3√(x 2 - 9); 2) y = -3√(x 2 + 1)

3) x = -4/3√(y 2 + 9); 4) +2/5√(x 2 + 25)

522. Дана точка M 1 (l0; - √5) на гиперболе - x 2 /80 - y 2 /20 = 1. Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1 .

523. Убедившись, что точка M 1 (-5; 9/4) лежит на гилерболе x 2 /16 - y 2 /9 = 1, определить фокальные радиусы точки M 1 .

524. Эксцентриситет гиперболы ε = 2, фокальный ра-диус ее точки М, проведенный из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом директрисы.

525. Эксцентриситет гиперболы ε = 3, расстояние от точки, М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

526. Эксцентриситет гиперболы ε = 2, центр ее лежит в начале координат, один из фокусов F(12; 0). Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 13, до директрисы, соответствующей заданному фокусу.

527. Эксцентриситет гиперболы ε = 3/2, центр ее лежит в начале координат, одна из директрис дана уравнением х = -8. Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 10, до фокуса, соответствующего заданной директрисе.

528. Определить точки гиперболы - x 2 /64 - y 2 /36 = 1, расстояние которых до правого фокуса равно 4,5.

529. Определить точки гиперболы x 2 /9 - y 2 /16 = 1, расстояние которых до левого фокуса равно 7.

530. Через левый фокус гиперболы x 2 /144 - y 2 /25 = 1 про-веден перпендикуляр к ее оси, содержащей вершины. Определить расстояния от фокусов до точек пересечения этого перпендикуляра с гиперболой.

531. Пользуясь одним циркулем, построить фокусы гиперболы x 2 /16 - y 2 /25 = 1 (считая, что оси координат изображены и масштабная единица задана).

532. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки М 1 (6; -1) и М 2 (-8; 2√2) гиперболы;

2) точка M 1 (-5; 3) гиперболы и эксцентриситет ε = √2;

3) точка M 1 (9/2;-l) гиперболы и уравнения асимптот у = ± 2.3х;

4) точка M 1 (-3 ; 5.2) гиперболы и уравнения директрис х = ± 4/3;

5) уравнения асимптот у = ±-3/4х и уравнения директрис х = ± 16/5

533. Определить эксцентриситет равносторонней гиперболы.

534. Определить эксцентриситет гиперболы, если отрезок между ее вершинами виден из фокусов сопряженной гиперболы под углом в 60°.

535. Фокусы гиперболы совпадают с фокусами эллипса x 2 /25 + y 2 /9 = 1. Составить уравнение гиперболы, если ее эксцентриситет ε = 2.

536. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса x 2 /100 + y 2 /64 = 1, а директрисы проходят через фокусы этого эллипса.

537. Доказать, что расстояние от фокуса гиперболы x 2 /a 2 - y 2 /b 2 = 1 до ее асимптоты равно b.

538. Доказать что произведение расстояний от любой точки гиперболыx x 2 /a 2 - y 2 /b 2 = 1 до двух ее асимптот есть величина постоянная, равная a 2 b 2 /(a 2 + b 2)

539. Доказать, что площадь параллелограмма, ограниченного асимптотами гиперболы x 2 /a 2 - y 2 /b 2 = 1 и прямыми, проведенными через любую ее точку параллельно асимптотам, есть величина постоянная, равная ab/2.

540. Составить уравнение гиперболы, если известны ее полуоси а и b, центр С(х 0 ;у 0) и фокусы расположены на прямой: 1) параллельной оси Ох; 2) параллельной оси Оу.

541. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16x 2 - 9у 2 - 64x - 54у - 161 =0;

2) 9x 2 - 16у 2 + 90x + 32y - 367 = 0;

3) 16x 2 - 9у 2 - 64x - 18у + 199 = 0.

542. Установить, какие линии определяются следующими уравнениями:

1) у = - 1 + 2/3√(x 2 - 4x - 5);

2) у = 7- 3/2√(х 2 - 6х + 13);

3) x = 9 - 2√(y 2 + 4y + 8);

4) Х = 5 + 3/4√(y 2 + 4y - 12).

Изобразить эти линии на чертеже.

543. Составить уравнение гиперболы, зная, что:

1) расстояние между ее вершинами равно 24 и фокусы суть F 1 (-10;2), F 2 (16; 2);

2) фокусы суть F 1 (3;4), F 2 (-3; -4) и расстояние между директрисами равно 3,6;

3) угол между асимптотами равен 90° и фокусы суть F 1 (4; -4), F 1 (- 2;2).

544. Составить уравнение гиперболы, если известны ее эксцентриситет ε = 5/4, фокус F (5; 0) и уравнение соответствующей директрисы 5х - 16 = 0.

545. Составить уравнение гиперболы, если известны ее эксцентриситет е - фокус F(0; 13) и уравнение соответствующей директрисы 13y - 144 = 0.

546. Точка А (-3; - 5) лежит на гиперболе, фокус которой F (-2;-3), а соответствующая директриса дана уравнением x + 1 = 0. Составить уравнение этой гиперболы.

547. Составить уравнение гиперболы, если известны ее эксцентриситет ε = √5, фокус F(2;-3) и уравнение соответствующей директрисы Зх - у + 3 = 0.

548. Точка M 1 (1; 2) лежит на гиперболе, фокус которой F(-2; 2), а соответствующая директриса дана уравнением 2х - у - 1 = 0. Составить уравнение этой гиперболы.

549. Дано уравнение равносторонней гиперболы х 2 - у 2 = а 2 . Найти ее уравнение в новой системе, приняв за оси координат ее асимптоты.

550. Установив, что каждое из следующих уравнений определяет гиперболу, найти для каждой из них центр, полуоси, уравнения асимптот и построить их на чертеже: 1) ху = 18; 2) 2ху - 9 = 0; 3) 2ху + 25 = 0.

551. Найти точки пересечения прямой 2x - y - 10 = 0 и гиперболы х 2 /20 - y 2 /5 = 1.

552. Найти точки пересечения прямой 4х - 3y - 16 = 0 и гиперболы х 2 /25 - y 2 /16 = 1.

553. Найти точки пересечения прямой 2x - y + 1 = 0 и гиперболы х 2 /9 - y 2 /4 = 1.

554. В следующих случаях определить, как расположена прямая относительно гиперболы: пересекает ли, касается или проходит вне ее:

1) x - y - 3 = 0, х 2 /12 - y 2 /3 = l;

2) x - 2y + 1 = 0, х 2 /16 - y 2 /9 = l;

555. Определить, при каких значениях m прямая y = 5/2x + m

1) пересекает гиперболу x 2 /9 - y 2 /36 = 1; 2) касается ее;

3) проходит вне этой гиперболы.

556. Вывести условие, при котором прямая у = kx + m касается гиперболы х 2 /a 2 - y 2 /b 2 = 1.

557. Составить уравнение касательной к гиперболе х 2 /a 2 - y 2 /b 2 = 1 в ее точке Af, (*,; #i).

558. Доказать, что касательные к гиперболе, про-веденные в концах одного и того же диаметра, параллельны.

559. Составить уравнения касательных к гиперболе х 2 /20 - y 2 /5 = 1, перпендикулярных к прямой 4x + Зy - 7 = 0.

560. Составить уравнения касательных к гиперболе x 2 /16 - y 2 /64 = 1, параллельных прямой 10x - 3y + 9 = 0.

561. Провести касательные к гиперболе x 2 /16 - y 2 /8 = - 1 параллельно прямой 2x + 4y - 5 = 0 и вычислить расстояние d между ними.

562. На гиперболе x 2 /24- y 2 /18 = 1 найти точку М 1 , ближайшую к прямой Зx + 2y + 1 = О, и вычислить расстояние d от точки M x до этой прямой.

563. Составить уравнение касательных к гиперболе х 2 - y 2 = 16, проведенных из точки A(- 1; -7).

564. Из точки С(1;-10) проведены касательные к гиперболе x 2 /8 - y 2 /32 = 1. Составить уравнение хорды, соединяющей точки касания.

565. Из точки Р(1; -5) проведены касательные к гиперболе x 2 /3 - y 2 /5 = 1. Вычислить расстояние d от точки Р до хорды гиперболы, соединяющей точки касания.

566. Гипербола проходит через точку А(√6; 3) и касается прямой 9x + 2у - 15 == 0. Составить уравнение этой гиперболы при условии, что ее оси совпадают с осями координат.

567. Составить уравнение гиперболы, касающейся двух прямых: 5x - 6y - 16 = 0, 13x - 10y - 48 = 0, при условии, что ее оси совпадают с осями координат.

568. Убедившись, что точки пересечения эллипса x 2 /3 - y 2 /5 = 1 и гиперболы x 2 /12 - y 2 /3 = 1 являются вершинами прямоугольника, составить уравнения его сторон.

569. Даны гиперболы x 2 /a 2 - y 2 /b 2 = 1 и какая-нибудь ее касательная: Р - точка пересечения касательной с осью Ox, Q - проекция точки касания на ту же ось. Доказать, что ОР OQ = а 2 .

570. Доказать, что фокусы гиперболы расположены по разные стороны от любой ее касательной.

571. Доказать, что произведение расстояний от фокусов до любой касательной к гиперболе x 2 /a 2 - y 2 /b 2 = 1 есть величина постоянная, равная b 2 .

572. Прямая 2x - y - 4 == 0 касается гиперболы, фокусы которой находятся в точках F 1 (-3; 0) и F 2 (3;0). Составить уравнение этой гиперболы.

573. Составить уравнение гиперболы, фокусы кото-рой расположены на оси абсцисс симметрично относительно начала координат, если известны уравнение касательной к гиперболе 15x + 16y - 36 = 0 и расстояние между ее вершинами 2а = 8.

574. Доказать, что прямая, касающаяся гиперболы в некоторой точке М, составляет равные углы с фокальными радиусами F 1 M, F 2 M и проходит внутри угла F 1 MF 2 . Х^

575. Из правого фокуса гиперболы x 2 /5 - y 2 /4 = 1 под углом α(π

576. Доказать, что эллипс и гипербола, имеющие общие фокусы, пересекаются под прямым углом.

577. Коэффициент равномерного сжатия плоскости к оси Ох равен 4/3 . Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /16 - y 2 /9 = 1. Указание. См. задачу 509.

578. Коэффициент равномерного сжатия плоскости к оси Оу равен 4/5. Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /25 - y 2 /9 = 1.

579. Найти уравнение линии, в которую преобразуется гипербола х 2 - у 2 = 9 при двух последовательных равномерных сжатиях плоскости к координатным осям, если коэффициенты равномерного сжатия плос- кости к осям Ох и Оу соответственно равны 2/3 и 5/3.

580. Определить коэффициент q равномерного сжатия плоскости к оси Ох, при котором гипербола - x 2 /25 - y 2 /36 = 1 преобразуется в гиперболу x 2 /25 - y 2 /16 = 1.

581. Определить коэффициент q равномерного сжатия плоскости к оси Оу, при котором гипербола x 2 /4 - y 2 /9 = 1 преобразуется в гиперболу x 2 /16 - y 2 /9 = 1.

582. Определить коэффициенты q 1 и q 2 двух последовательных равномерных сжатий плоскости к осям Ох и Оу, при которых гипербола x 2 /49 - y 2 /16 = 1 преобразуется в гиперболу x 2 /25 - y 2 /64 = 1.

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a) , меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними - фокусным расстоянием, середина O отрезка F_1F_2 - центром гиперболы, число 2a - длиной действительной оси гиперболы (соответственно, a - действительной полуосью гиперболы). Отрезки F_1M и F_2M , соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=\frac{c}{a} , где c=\sqrt{a^2+b^2} , называется эксцентриситетом гиперболы . Из определения (2a<2c) следует, что e>1 .

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей гиперболе, имеем:

\left||\overrightarrow{F_1M}|-|\overrightarrow{F_2M}|\right|=2a.

Записывая это уравнение в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=\pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\,

где b=\sqrt{c^2-a^2} , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2\!\!\not{\phantom{|}}\,c от нее (рис.3.41,а). При a=0 , когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы ). Здесь F и d - один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\left(x-\frac{a^2}{c}\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~c^2-a^2=b^2 , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1 :

\frac{r_1}{\rho_1}=e \quad \Leftrightarrow \quad \sqrt{(x+c)^2+y^2}= e\left(x+\frac{a^2}{c} \right).

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2r\varphi (рис.3.41,б) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi} , где p=\frac{p^2}{a} - фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси - луч с началом в точке F_2 , принадлежащий прямой F_1F_2 , но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,\varphi) , принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a . Выражаем расстояние между точками M(r,\varphi) и F_1(2c,\pi) (см. пункт 2 замечаний 2.8):

F_1M=\sqrt{(2c)^2+r^2-2\cdot(2c)^2\cdot r\cdot\cos(\varphi-\pi)}=\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2+4cr\cdot\cos\varphi+4c^2=4a^2+4ar+r^2 \quad \Leftrightarrow \quad a\left(1-\frac{c}{a}\cos\varphi\right)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=\frac{c}{a},~b^2=c^2-a^2,~p=\frac{b^2}{a} :

R=\frac{c^2-a^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( e>1 для гиперболы, 0\leqslant e<1 для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0 , находим абсциссы точек пересечения: x=\pm a . Следовательно, вершины имеют координаты (-a,0),\,(a,0) . Длина отрезка, соединяющего вершины, равна 2a . Этот отрезок называется действительной осью гиперболы, а число a - действительной полуосью гиперболы. Подставляя x=0 , получаем y=\pm ib . Длина отрезка оси ординат, соединяющего точки (0,-b),\,(0,b) , равна 2b . Этот отрезок называется мнимой осью гиперболы, а число b - мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при a=b ), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox"y" (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y"=\frac{a^2}{2x"} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол \varphi=-\frac{\pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

\left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y",\\ y&=-\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y"\end{aligned}\right. \quad \Leftrightarrow \quad \left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot(x"+y"),\\ y&=\frac{\sqrt{2}}{2}\cdot(y"-x")\end{aligned}\right.

Подставляя эти выражения в уравнение \frac{x^2}{a^2}-\frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

\frac{\frac{1}{2}(x"+y")^2}{a^2}-\frac{\frac{1}{2}(y"-x")^2}{a^2}=1 \quad \Leftrightarrow \quad 2\cdot x"\cdot y"=a^2 \quad \Leftrightarrow \quad y"=\frac{a^2}{2\cdot x"}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе . то и точки M"(x,y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=\frac{p}{1-e\cos\varphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e , тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина \gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: \operatorname{tg}\frac{\gamma}{2}=\frac{b}{2} . Учитывая, что e=\frac{c}{a} и c^2=a^2+b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2+b^2}{a^2}=1+{\left(\frac{b}{a}\right)\!}^2=1+\operatorname{tg}^2\frac{\gamma}{2}.

Чем больше e , тем больше угол \gamma . Для равносторонней гиперболы (a=b) имеем e=\sqrt{2} и \gamma=\frac{\pi}{2} . Для e>\sqrt{2} угол \gamma тупой, а для 1

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 и называются сопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O"(x_0,y_0) , оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O"(x_0,y_0) .

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

\begin{cases}x=a\cdot\operatorname{ch}t,\\y=b\cdot\operatorname{sh}t,\end{cases}t\in\mathbb{R},

где \operatorname{ch}t=\frac{e^t+e^{-t}}{2} - гиперболический косинус, a \operatorname{sh}t=\frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству \operatorname{ch}^2t-\operatorname{sh}^2t=1 .


Пример 3.21. Изобразить гиперболу \frac{x^2}{2^2}-\frac{y^2}{3^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - действительная полуось, b=3 - мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

\frac{4^2}{2^2}-\frac{y^2}{3^2}=1 \quad \Leftrightarrow \quad y^2=27 \quad \Leftrightarrow \quad y=\pm3\sqrt{3}.

Следовательно, точки с координатами (4;3\sqrt{3}) и (4;-3\sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2\cdot c=2\cdot\sqrt{a^2+b^2}=2\cdot\sqrt{2^2+3^2}=2\sqrt{13}

эксцентриситет e=\frac{c}{a}=\frac{\sqrt{13}}{2} ; фокальныи параметр p=\frac{b^2}{a}=\frac{3^2}{2}=4,\!5 . Составляем уравнения асимптот y=\pm\frac{b}{a}\,x , то есть y=\pm\frac{3}{2}\,x , и уравнения директрис: x=\pm\frac{a^2}{c}=\frac{4}{\sqrt{13}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Определение 7.2. Геометрическое место точек плоскости, для которых разность расстояний до двух фиксированных точек есть величина постоянная, называют гиперболой .

Замечание 7.2. Говоря о разности расстояний, подразумевают, что из большего расстояния вычитается меньшее. Это значит, что на самом деле для гиперболы постоянным является модуль разности расстояний от любой ее точки до двух фиксированных точек. #

Определение гиперболы аналогично определению эллипса . Различие между ними лишь в том, что для гиперболы постоянна разность расстояний до фиксированных точек, а для эллипса - сумма тех же расстояний. Поэтому естественно, что у этих кривых много общего как в свойствах, так и в используемой терминологии.

Фиксированные точки в определении гиперболы (обозначим их F 1 и F 2) называют фокусами гиперболы . Расстояние между ними (обозначим его 2с) называют фокальным расстоянием , а отрезки F 1 M и F 2 M, соединяющие произвольную точку M на гиперболе с ее фокусами, - фокальными радиусами .

Вид гиперболы полностью определяется фокальным расстоянием |F 1 F 2 | = 2с и значением постоянной величины 2а, равной разности фокальных радиусов, а ее положение на плоскости - положением фокусов F 1 и F 2 .

Из определения гиперболы следует, что она, как и эллипс, симметрична относительно прямой, проходящей через фокусы, а также относительно прямой, которая делит отрезок F 1 F 2 пополам и перпендикулярна ему (рис. 7.7). Первую из этих осей симметрии называют действительной осью гиперболы , а вторую - ее мнимой осью . Постоянную величину а, участвующую в определении гиперболы, называют действительной полуосью гиперболы .

Середина отрезка F 1 F 2 , соединяющего фокусы гиперболы, лежит на пересечении ее осей симметрии и поэтому является центром симметрии гиперболы, который называют просто центром гиперболы .

Для гиперболы действительная ось 2а должна быть не больше, чем фокальное расстояние 2с, так как для треугольника F 1 MF 2 (см. рис. 7.7) справедливо неравенство ||F 1 M| - |F 2 M| | ≤ |F 1 F 2 |. Равенство а = с выполнено только для тех точек M, которые лежат на действительной оси симметрии гиперболы вне интервала F 1 F 2 . Отбрасывая этот вырожденный случай, далее будем предполагать, что а

Уравнение гиперболы . Рассмотрим на плоскости некоторую гиперболу с фокусами в точках F 1 и F 2 и действительной осью 2а. Пусть 2с - фокальное расстояние, 2c = |F 1 F 2 | > 2а. Согласно замечанию 7.2, гипербола состоит из тех точек M(х; у), для которых | |F 1 M| - - |F 2 M| | = 2а. Выберем прямоугольную систему координат Oxy так, чтобы центр гиперболы находился в начале координат , а фокусы располагались на оси абсцисс (рис. 7.8). Такую систему координат для рассматриваемой гиперболы называют канонической , а соответствующие переменные - каноническими .


В канонической системе координат фокусы гиперболы имеют координаты F 1 (c; 0) и F 2 (-с; 0). Используя формулу расстояния между двумя точками, запишем условие ||F 1 M| - |F 2 M|| = 2а в координатах |√((х - с) 2 + у 2) - √((х + с) 2 + у 2)| = 2а, где (x; у) - координаты точки M. Чтобы упростить это уравнение, избавимся от знака модуля: √((х - с) 2 + у 2) - √((х + с) 2 + у 2) = ±2а, перенесем второй радикал в правую часть и возведем в квадрат: (х - с) 2 + у 2 = (х + с) 2 + у 2 ± 4а √((х + с) 2 + у 2) + 4а 2 . После упрощения получим -εх - а = ±√((х + с) 2 + у 2), или

√((х + с) 2 + у 2) = |εх + а| (7.7)

где ε = с/а. Возведем в квадрат вторично и снова приведем подобные члены: (ε 2 - 1)х 2 - у 2 = с 2 - а 2 , или, учитывая равенство ε = с/а и полагая b 2 = c 2 - a 2 ,

x 2 /a 2 - y 2 /b 2 = 1 (7.8)

Величину b > 0 называют мнимой полуосью гиперболы .

Итак, мы установили, что любая точка на гиперболе с фокусами F 1 (с;0) и F 2 (-с; 0) и действительной полуосью а удовлетворяет уравнению (7.8). Но надо также показать, что координаты точек вне гиперболы этому уравнению не удовлетворяют. Для этого мы рассмотрим семейство всех гипербол с данными фокусами F 1 и F 2 . У этого семейства гипербол оси симметрии являются общими. Из геометрических соображений ясно, что каждая точка плоскости (кроме точек, лежащих на действительной оси симметрии вне интервала F1F2, и точек, лежащих на мнимой оси симметрии) принадлежит некоторой гиперболе семейства, причем только одной, так как разность расстояний от точки до фокусов F 1 и F 2 меняется от гиперболы к гиперболе. Пусть координаты точки M(х; у) удовлетворяют уравнению (7.8), а сама точка принадлежит гиперболе семейства с некоторым значением ã действительной полуоси. Тогда, как мы доказали, ее координаты удовлетворяют уравнению Следовательно, система двух уравнений с двумя неизвестными

имеет хотя бы одно решение. Непосредственной проверкой убеждаемся, что при ã ≠ а это невозможно. Действительно, исключив, например, x из первого уравнения:

после преобразований получаем уравнение

которое при ã ≠ а не имеет решений, так как . Итак, (7.8) есть уравнение гиперболы с действительной полуосью а > 0 и мнимой полуосью b = √(с 2 - а 2) > 0. Его называют каноническим уравнением гиперболы .

Вид гиперболы. По своему виду гипербола (7.8) заметно отличается от эллипса. Учитывая наличие двух осей симметрии у гиперболы, достаточно построить ту ее часть, которая находится в первой четверти канонической системы координат. В первой четверти, т.е. при x ≥ 0, у ≥ 0, каноническое уравнение гиперболы однозначно разрешается относительно у:

у = b/a √(x 2 - а 2). (7.9)

Исследование этой функции y(x) дает следующие результаты.

Область определения функции - {x: x ≥ а} ив этой области определения она непрерывна как сложная функция, причем в точке x = а она непрерывна справа. Единственным нулем функции является точка x = а.

Найдем производную функции y(x): y"(x) = bx/a√(x 2 - а 2). Отсюда заключаем, что при x > а функция монотонно возрастает. Кроме того, , а это означает, что в точке x = a пересечения графика функции с осью абсцисс существует вертикальная касательная. Функция y(x) имеет вторую производную y" = -ab(x 2 - а 2) -3/2 при x > а, и эта производная отрицательна. Поэтому график функции является выпуклым вверх, а точек перегиба нет.

Указанная функция имеет наклонную асимптоту, это вытекает из существования двух пределов:


Наклонная асимптота описывается уравнением y = (b/a)x.

Проведенное исследование функции (7.9) позволяет построить ее график (рис. 7.9), который совпадает с частью гиперболы (7.8), содержащейся в первой четверти.

Так как гипербола симметрична относительно своих осей, вся кривая имеет вид, изображенный на рис. 7.10. Гипербола состоит из двух симметричных ветвей, расположенных по разные

стороны от ее мнимой оси симметрии. Эти ветви не ограничены с обеих сторон, причем прямые у = ±(b/a)x являются одновременно асимптотами и правой и левой ветвей гиперболы.

Оси симметрии гиперболы различаются тем, что действительная пересекает гиперболу, а мнимая, будучи геометрическим местом точек, равноудаленных от фокусов, - не пересекает (поэтому ее и называют мнимой). Две точки пересечения действительной оси симметрии с гиперболой называют вершинами гиперболы (точки A(a; 0) и B(-a; 0) на рис. 7.10).

Построение гиперболы по ее действительной (2a) и мнимой (2b) осям следует начинать с прямоугольника с центром в начале координат и сторонами 2a и 2b, параллельными, соответ-ственно, действительной и мнимой осям симметрии гиперболы (рис. 7.11). Асимптоты гиперболы являются продолжениями диагоналей этого прямоугольника, а вершины гиперболы - точками пересечения сторон прямоугольника с действительной осью симметрии. Отметим, что прямоугольник и его положение на плоскости однозначно определяют форму и положение гиперболы. Отношение b/a сторон прямоугольника определяет степень сжатости гиперболы, но вместо этого параметра обычно используют эксцентриситет гиперболы. Эксцентриситетом гиперболы называют отношение ее фокального расстояния к действительной оси. Эксцентриситет обозначают через ε. Для гиперболы, описываемой уравнением (7.8), ε = c/a. Отметим, что если эксцентриситет эллипса может принимать значения из полуинтервала }