Закон инерции формулировка. Явление инерции и закон инерции

> Первый закон Ньютона: инерция

Первый закон Ньютона и инерция . Изучите основы механики Ньютона, момент инерции движения в физике, формулировка и формула первого закона, инерциальная система.

Первый закон движения Ньютона концентрируется на инерции. Тело в состоянии покоя будет оставаться стабильным, а смещающийся объект продолжит движение.

Задача обучения

  • Разобраться в Первом законе движения.

Основные пункты

  • Три закона физики Ньютона составляют основу механики.
  • Первый закон гласит: тело в состоянии покоя останется стабильным, пока на него не повлияет внешняя сила, также и движущееся тело останется в движении, пока не почувствует внешнее воздействие.
  • Чистая внешняя сила – сумма всех факторов, влияющих на объект.
  • Наличие воздействующих сил не означает присутствие чистой внешней силы. Одинаковые по величине силы, но действующие в противоположных направлениях, могут отменить друг друга.
  • Трение – сила между перемещающимся телом и поверхностью. Это внешняя сила, влияющая на замедление.
  • Инерция – тенденция тела в движении продолжать двигаться. Зависит от массы, поэтому чем тяжелее тело, тем сложнее изменить направление движения.

Термины

  • Инертность – свойство объекта, которое вступает в сопротивление с любой трансформацией текущего положения (эквивалентно массе).
  • Равномерное движение – перемещение с неизменной скоростью.
  • Трение – сила, сопротивляющаяся относительному движению.

История

Исаак Ньютон интересовался перемещением объектов в различных условиях. В 1687 году он описал три знаменитых закона движения, применимых для характеристики физических объектов и систем. Они составляют основу механики и описывают связь сил, воздействующих на тело, и вызванные этим движения. Три закона гласят:

Если объект не испытывает никакого силового влияния, то скорость останется стабильной. Если объект пребывает в покое, то скорость равняется нулю.

Ускорение параллельно и прямо пропорционально чистой силе, влияющей на объект, и находится в направлении чистой силы и обратно пропорционально массе.

Если первый объект влияет силой на второй, то тот одновременно влияет на первый. То есть их силы одинаковы по величине и противоположны по направлению.

Первый закон движения

Итак, тело пребывает в движении или покое, пока на него не воздействует внешняя сила. То есть, движущееся тело сохранит свою скорость, если на него ничего не влияет. Это именуют равномерным движением.

Примеры

Давайте разберем Первый закон Ньютона в конкретной системе отсчета. Представьте, что вы едете на коньках в инерциальной системе. Если оттолкнетесь от одного борта, то по Первому закону Ньютона должны прибыть ко второму. Но этого не случится. Не забывайте, что движение продолжается, если на него не влияет внешняя сила. В нашем мире этой силой чаще всего выступает трение. В данном случае – трение между коньками и льдом.

А как насчет ремней безопасности? В случае автомобильной аварии, они должны защитить нас. Допустим, машина едет со скоростью 60 миль/ч. Если резко затормозить, то машина ощущает внешнюю силу и замедляется. Но на водителя это не действует, поэтому он продолжит перемещаться на прежней скорости. Ремень создает противовес и тормозит человека.

Инертность

Иногда этот закон именуют законом инерции или инерциальной системой отсчета. Она выступает свойством тела фиксироваться в состоянии покоя или смещения (с постоянной скоростью). У некоторых инерция больше, потому что эквивалентна массе. Поэтому сложнее изменить направление валуна, чем шарика для гольфа.

Явление, которому посвящена наша сегодняшняя беседа, встречается в разных жизненных ситуациях. Мы с удовольствием его используем, учитываем и частенько ругаем.

Речь пойдет об инерции. Постараемся разобраться, что скрывается за этим названием.

Что же такое инерция

Наблюдая полёт копья, брошенного рукой атлета, падение всадника через голову споткнувшейся лошади; созерцая камни, веками неподвижно лежащими на одних и тех же местах - греческие мыслители задумывались, что общего в этих явлениях?

Данная им формулировка явления инерции известна как I закон Ньютона.

«Инер­ция - это фи­зи­че­ское яв­ле­ние со­хра­не­ния ско­ро­сти тела по­сто­ян­ной, если на него не дей­ству­ют дру­гие тела или их дей­ствие ском­пен­си­ро­ва­но».

Это означает, что, благодаря инерции, тела, находящиеся в покое, продолжают покоиться, а движущиеся продолжают свое движение, пока на них не окажут воздействие внешние силы.

Например, автомобиль может находиться в покое в двух случаях, если на горизонтальном участке дороги его двигатель выключен, либо его двигатель включен, но силы сопротивления уравновесили силу тяги двигателя, т. е. скомпенсировали её.

Теперь вернемся к нашему всаднику, перелетающему через голову споткнувшейся лошади. Лошадь, споткнувшись, резко теряет скорость, а невезучий всадник… по инерции продолжает движение.

По этой же причине при ДТП водитель, пренебрегающий ремнями безопасности, получает удар о лобовое стекло.

Почему, поскользнувшись при ходьбе, мы падаем назад? Тело по инерции сохраняет прежнюю скорость, а ноги на скользком участке быстренько «убегают» вперед.

Формула силы инерции

Количественной характеристикой явления инерции является сила инерции.

Для расчета этой силы используют формулу:

  • F ин - сила инерции;
  • m - масса тела;
  • a - ускорение.

Знак минус указывает на то, что сила инерции противодействует силе, вызвавшей изменение скорости тела.

Понятие инертности в физике

Итак, инерция - это физическое явление. С ним тесно связано еще одно понятие - инертность. Под инертностью в физике понимают свойства тел противодействовать мгновенному изменению направления или скорости движения.

Любое тело не может мгновенно изменить свою скорость, однако, одни тела это делают быстрее, другие - медленнее. Для остановки гружёного и порожнего самосвалов, движущихся с одинаковой скоростью, требуется разное время.

Это происходит потому, что тело с большей массой более инертно, и ему на изменение скорости требуется больше времени. То есть мерой инертности в физике является масса тела.

Инертные люди, инертные газы

Термин «инертный» широко используется в химии. Он относится к химическим элементам, которые при обычных условиях не вступают в химические реакции. Например, благородные газы аргон, ксенон и др.

Этот термин может быть применен и к поведению человека. Инертные люди отличаются равнодушием к окружающему миру. Они противятся любым переменам, как в их собственной судьбе, так и в работе. Они ленивы и безынициативны.

Инертность вращающихся объектов

Все приведенные ранее примеры относились к поступательно движущимся телам. А как же быть с вращающимися объектами? Скажем, с вентилятором, с маховиком в двигателе внутреннего сгорания или детской игрушке. Ведь после выключения электрического вентилятора его лопасти ещё некоторое время по инерции продолжают крутиться.

Насколько тела инертны во время вращения определяет момент инерции. Он зависит от массы тела, его геометрических размеров и расстояния до оси вращения. Изменение этого расстояния влияет на скорость вращения тела. Это используют спортсмены - фигуристы, поражая зрителей продолжительным вращением с изменением скорости.

Специальные расчёты позволяют определить оптимальные размеры механизма и допустимую скорость вращения, чтобы не допустить разрыва вращающихся частей.

Т.е. момент инерции во вращательном движении играет ту же роль, что и масса при поступательном движении. Но в отличие от массы момент инерции можно изменять, как это делают фигуристы - то широко разводя руки, то прижимают их к груди.

Инерция вокруг нас

Именно это явление используют:

  • для сбрасывания ртутного столбика в медицинском термометре и выбивания пыли из ковров;
  • для продолжения движения после разбега на коньках, лыжах, велосипеде;
  • для экономии горючего при езде на автомобиле;
  • в принципе работы артиллерийских детонаторов и т. д.

Это лишь небольшая часть из всех применений инерции. Но не следует забывать о возможной опасности, которую таит это явление природы. Надпись на заднем борту грузовика «Водитель, сохраняй дистанцию», напоминает, что транспорт мгновенно остановить нельзя.

И при торможении впереди едущего автомобиля, следующая за ним машина, остановиться мгновенно не может. По этой же причине категорически запрещено перебегать дорогу перед движущимся транспортом.

Теперь вы легко ответите на вопрос, почему при торможении автомобилей обязательно включается задний красный свет, почему при повороте водитель обязательно сбрасывает скорость.

В спортзале и на катке, в цирке и в мастерской - инерция сопровождает нас всюду. Присмотритесь.

Если это сообщение тебе пригодилось, буда рада видеть тебя

). Иными словами, телам свойственна ине́рция (от лат. inertia - «бездеятельность», «косность»), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Первый закон Ньютона с точки зрения современных представлений можно сформулировать так: существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО).

Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета.

Впервые закон инерции был сформулирован Галилео Галилеем , который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково(если условия для всех тел одинаковы). В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - «покоящейся») все процессы протекают точно так же, как и в покоящейся системе.

Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

См. также

Литература

Ссылки

  • Masreliez, C J; Dynamic incremental scale transition with application to physics and cosmology , Physica Scripta (oct 2007)
  • Masreliez C. J. , Motion, Inertia and Special Relativity - a Novel Perspective, Physica Scripta, (dec 2006)

Wikimedia Foundation . 2010 .

Смотреть что такое "Инерции закон" в других словарях:

    Один из осн. законов механики, согласно к рому при отсутствии внеш. воздействий (сил) или когда действующие силы взаимно уравновешены тело сохраняет неизменным состояние своего движения или покоя относительно инерциальной системы отсчёта. В… … Физическая энциклопедия

    См. Ньютона законы … Большой Энциклопедический словарь

    См. Ньютона законы. * * * ИНЕРЦИИ ЗАКОН ИНЕРЦИИ ЗАКОН, см. Ньютона законы (см. НЬЮТОНА ЗАКОНЫ) … Энциклопедический словарь

    Квадратичных форм теорема, утверждающая, что при любом способе приведения квадратичной формы с действительными коэффициентами к сумме квадратов посредством линейной замены переменных где Q невырожденная матрица с действительными коэффициентами,… … Математическая энциклопедия

    Первый закон Ньютона (см. Ньютона законы механики) … Большой энциклопедический политехнический словарь

    Первый Ньютона закон … Естествознание. Энциклопедический словарь

    Один из основных законов механики, согласно которому при отсутствии внешних воздействий (сил) или когда действующие силы взаимно уравновешены, тело сохраняет неизменным состояние своего движения или покоя относительно инерциальной системы … Большая советская энциклопедия

    В физике первый закон Ньютона. см. статью Инерция Закон инерции в математике см. раздел «Свойства» в статье «Квадратичная форма» (закон инерции Сильвестра) … Википедия

    ЗАКОН ИНЕРЦИИ - см … Большая политехническая энциклопедия

    Сила инерции фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования… … Википедия

Книги

  • ИндуктоМеханика , Г. К. Гребенщиков. В книге представлены модели зарядов и основных взаимодействий - электрического, магнитного, гравитационного, сильного и слабого, представлены модели инертной и гравитационной масс, модель…
2014-05-26

Результаты экспериментов Галилея свидетельствовали о том, что чем меньше сопротивление движению, тем меньше изменение скорости и тем дольше движется шарик. Размышляя над такими результатами, Галилей пришел гениальному выводу: при полном отсутствии силы трения или сопротивления скорость тела постоянна, и для поддержания движения не нужно прилагать никакой силы. Математически это можно записать так: = const, если = const. Явление сохранения телом скорости при отсутствии внешних воздействий на него со стороны других тел называют инерцией, а это свойство тела — инертностью. А закон, открытый Галилеем, называют законом инерции и формулируют так: если на тело не действуют другие тела, оно движется прямолинейно и равномерно или находится в состоянии покоя.

Отметим, что физический смысл закона инерции заключается в том, что свободные друг относительно друга материальные точки (материальные точки, на которые не действуют другие тела) движутся прямолинейно и равномерно.

О том, что телу свойственно хранить любое движение, а именно прямолинейный, свидетельствует такой опыт (рис. 2). Шарик движется прямолинейно по плоской горизонтальной поверхности, сталкиваясь с препятствием, которое имеет криволинейную форму, под действием этого препятствия вынуждена двигаться по дуге. Однако когда шарик доходит до конца препятствия, она перестает двигаться криволинейно и снова начинает двигаться по прямой.

Рассматривая механические движения в доме на берегу моря и в каюте корабля, Г. Галилей обнаружил, что они осуществляются одинаково, когда корабль плывет по гладкой поверхности без ускорения. Очень важным для всего последующего развития физики оказалось утверждение Галилея о том, что никакими механическими опытами, которые проводятся внутри инерционной системы отсчета (для пассажира ней есть каюта корабля), невозможно установить, находится эта система в покое, или движется равномерно и прямолинейно. Это утверждение называют принципом относительности Галилея. Человек в каюте корабля может установить факт движения только тогда, когда она будет наблюдать внешние тела: остров, берег моря и т.д..

Инерционными Ньютон назвал такие системы, для которых единственным источником ускорения есть сила, то есть взаимодействие с другими телами. Системы отсчета, которые движутся относительно инерциальных систем с ускорением (поступательно или вращательно), он назвал неинерциальных. Ньютон, рассматривая инерциальную систему отсчета (ИСО), так и не смог указать тело, которое было бы для нее телом отсчета. Окружающие тела движутся ускоренно: дом вращается вокруг оси Земли, а вместе с ее поверхностью — вокруг Солнца. Системы отсчета, связанные с окружающими телами, неинерциальные, но их ускорения в основном очень малы. Ускорение автобуса составляет около 1 м/с2, большого корабля — несколько cм/с2, Земли — 6 мм/с2, Солнца — около 10-4 см/с2. Соответственно, чем больше масса тела отсчета, тем меньше его ускорение. Поэтому ИСО — это абстрактное понятие, если бы она существовала, то имела бы бесконечно большую массу. Очевидно, что наибольшую массу из тел, окружающих нас, имеет Солнце, поэтому связанная с ним система отсчета почти инерционной. В этой ИСО начало отсчета координат совмещают с центром Солнца, а координаты осей проводят в направлении реальных звезд, которые можно считать неподвижными.

Однако для описания многих механических явлений с земных условий ИСО связывают с Землей, пренебрегая при этом вращательными движениями Земли вокруг своей оси и вокруг Солнца. Например, изучая свободное падение, нужно было бы учитывать ускорение лаборатории (2-3 см/с2), поскольку Земля вращается вокруг своей оси. Но ускорение лаборатории в несколько сотен раз меньше ускорения свободного падения, поэтому им обычно пренебрегают. В большинстве задач Землю считают идеальным телом отсчета, а связанные с ней системы — инерционными.

Сейчас понятно, что абсолютно неподвижных тел или тел, которые движутся строго равномерно и прямолинейно, в природе не существует, поэтому инерционная система отсчета — такая же абстракция, как и материальная точка или абсолютно твердое тело. Инерционными системами отсчета называют системы, относительно которых тело движется равномерно прямолинейно или находится в покое. Время во всех ИСО измеряют одинаково. Масса тела m = const, его ускорения и силы взаимодействия не зависят от скорости ИСО. В любых ИСО все механические явления происходят одинаково при одних и тех же начальных условиях (другая формулировка принципа относительности Галилея).

1. При этом компенсируются действия воды и гребцов.

2. В чем состоит явление инерции?

2. Явление инерции состоит в том, что при компенсации действий на тело других тел или при отсутствии воздействий на тело оно может сохранять свою скорость постоянной.

3. В чем состоит первый закон Ньютона (закон инерции)?

3. Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела.

4. При каких условиях тело может двигаться прямолинейно и равномерно?

4. Тело может двигаться прямолинейно и равномерно в условиях скомпенсированного воздействия на него других тел.

5. Какие системы отсчета используются в механике?

5. Инерциальные системы отсчета.

6. На рисунке 1 показан пример поступательного движения тела (чемодана). Можно ли сказать, что все воздействия других тел на чемодан скомпенсированы?


6. Нет. Тело совершает криволинейное и неравномерное движение. При этом значение и направление вектора скорости во время движения меняется. Это значит, что воздействия на него других тел не скомпенсированы.