С 3 уравнения с одной переменной. Решение линейных уравнений с одной переменной. Тождественные преобразования уравнений

При изучении русского языка в школе многие задавались вопросом: почему слово равнина пишется через а , ведь проверочное слово ровный пишется через о ? На самом деле ответ прост. Ведь равнина так называется потому, что все ее точки находятся на равном расстоянии (от уровня моря) и проверочное слово для неё — равно .

Определение: Уравнением с переменной x называется равенство вида A(x)=B(x), где A(x) и B(x) — выражения от x. Множество T значений x при подстановке которых в уравнение получается истинное числовое равенство, называют множеством истинности данного уравнения или решением данного уравнения, а каждое такое значение переменной — корнем уравнения .

Таким образом становится понятно, что основа любого уравнения это равенств о двух его частей. И когда при решении уравнений производятся над его частями это равенство всегда должно соблюдаться.

Методы решения уравнений с одной переменной

Существует огромное количество самых разнообразных видов уравнений для решения которых используются разные способы. Но для того чтобы легко решать уравнения вам необходимо знать три основных метода:

Тождественное преобразование уравнений

Разложение выражения на множители

Введение новой переменной

Тождественные преобразования уравнений

Наиболее простым и в то же время одним из самых распространенных способов решения уравнений является метод тождественных преобразований. В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными. Рассмотрим основные способы тождественных преобразований алгебраических выражений.

Примеры и формулы тождественных преобразований:

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Пример: 9x 2 + 12x + 10 = 15x + 10 → отнимем десять из обоих частей → 9x 2 + 12x = 15x

Второе тождественное преобразование : перенос членов уравнения из одной стороны в другую с обратными знаками.

Пример: 9x 2 + 12x = 15x → перенесем 15х влево → 9x 2 + 12x — 15x =0. После упрощения получаем: 9x 2 - 3x =0

Третье тождественное преобразование: обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя.

Пример: 9x 2 - 3x =0 → разделим обе части уравнения на три3x 2 - x =0

Четвертое тождественное преобразование: можно возвести обе части уравнения в нечётную степень или извлечь из обеих частей уравнения корень нечётной степени . Необходимо помнить, что:

а) возведение в чётную может привести к приобретению посторонних корней ;
б) неправильное извлечение корня чётной степени может привести к потере корней .

Пример: 49x 2 = 1225 → извлечем корень квадратный из обеих частей → | 7x | = 35

Разложение выражения на множители

Перечислим теперь некоторые наиболее распространённые приёмы разложения многочленов, как наиболее простых алгебраических , на множители.

Вынесение общего множителя за скобку

В том случае, когда все члены многочлена имеют один и тот же общий множитель, его можно вынести за скобку, получая тем самым разложение многочлена.
Пример: Разложить на множители многочлен х 5 – 2х 3 +х 2 .
Решение: Каждое слагаемое этого многочлена содержит множитель х 2 . Вынесем его за скобку и получим ответ:

х 5 – 2х 3 +х 2 = х 2 (х 3 – 2x + 1).

Применение формул сокращённого умножения

Сокращения довольно эффективно применяются при разложении многочлена на множители. Полезно помнить следующие формулы:

1.Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй.

(a+b) 2 =a 2 +2ab+b 2

2.Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй.

(a-b) 2 =a 2 -2ab+b 2

3.Произведение суммы двух величин на их разность равно разности их квадратов.

(a+b)(a-b)=a 2 -b 2

4.Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй.

(a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

5.Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй.

(a-b) 3 =a 3 -3a 2 b+3ab 2 -b 3

6. Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.

(a+b)(a 2 -ab+b 2)=a 3 +b 3

7. Произведение разности двух величин на неполный квадрат суммы равно разности их кубов.

(a-b)(a 2 +ab+b 2)=a 3 -b 3

Пример: (3х+5) 2 =9х 2 +30х+25=0

Решение: используя формулу (1) 9х 2 +30х+25= (3х+5) 2

Применение выделения полного квадрата

Без преувеличения можно сказать, что метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители, применяемых при сдаче и

Уравнение - это равенство, содержащее переменную, обозначенную буквой.

Корень уравнения (или решение уравнения) - это такое значение переменной, при котором уравнение превращается в верное равенство.

Пример: решим уравнение (то есть найдем корень уравнения): 4x - 15 = x + 15

Итак:

4х - х = 15 + 15

3х = 30

х = 30: 3

х = 10

Результат: уравнение имеет один корень - число 10.

Уравнение может иметь и два, три, четыре и более корней.
Например, уравнение (х - 4)(х - 5)(х - 6) = 0 имеет три корня: 4, 5 и 6.

Уравнение может вовсе не иметь корней.
Например, уравнение х + 2 = х не имеет корней, т.к. при любом значении х равенство невозможно.

Равносильность уравнений.

Два уравнения являются равносильными, если они имеют одинаковые корни либо если оба уравнения не имеют корней.

Пример1 :

Уравнения х + 3 = 5 и 3х - 1 = 5 равносильны, так как в обоих уравнениях х = 2.

Пример 2 :

Уравнения х 4 + 2 = 1 и х 2 + 5 = 0 равносильны, так как оба уравнения не имеют корней.

Целое уравнение с одной переменной - это уравнение, левая и правая части которого являются целыми выражениями (о целых выражениях см.раздел «Рациональные выражения»).

Уравнение с одной переменной может быть записано в виде P (x ) = 0, где P (x ) - многочлен стандартного вида.

Например:
y 2 + 3y - 6 = 0
(здесь P (x ) представлен в виде многочлена y 2 + 3y - 6).

В таком уравнении степень многочлена называют степенью уравнения .

В нашем примере представлено уравнение второй степени (так как в нем многочлен второй степени).

Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x - переменная, a и b - некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x :

b
x = - —
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax 2 + bx + c = 0,

где x - переменная, a, b, c - некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

Если D > 0, то уравнение имеет два корня;

Если D = 0, то уравнение имеет один корень;

Если D < 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x - переменная, a, b, c, d - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx 2 + dx + e = 0,

где x - переменная, a, b, c, d, e - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;

2) уравнение n -й степени может иметь не более n корней.

Пример 1 : Решим уравнение

x 3 - 8x 2 - x + 8 = 0.

Мы видим, что это уравнение третьей степени. Значит, у него может быть от нуля до трех корней.
Найдем их и тем самым решим уравнение.
Разложим левую часть уравнения на множители:

x 2 (x - 8) - (x - 8) = 0.

Применим правило разложения многочлена способом группировки его членов. Для этого поставим перед вторыми скобками число 1:

x 2 (x - 8) - 1(x - 8) = 0.

Теперь сгруппируем многочлены x 2 и -1, являющиеся множителями многочлена x -8. Получим две группы многочленов: (x 2 -1) и (x - 8). Следовательно, наше уравнение примет новый вид:

(x - 8)(x 2 - 1) = 0.

Здесь выражение x 2 - 1 можно представить в виде x 2 - 1 2 . А значит, можем применить формулу сокращенного умножения: x 2 - 1 2 = (x - 1)(x + 1). Подставим в наше уравнение это выражение и получим:

(x - 8)(x - 1)(x + 1) = 0.

x - 8 = 0

x - 1 = 0

x + 1 = 0

Осталось найти корни нашего уравнения:

x 1 = 0 + 8 = 8

x 2 = 0 + 1 = 1

x 3 = 0 - 1 = -1.

Уравнение решено. Оно имеет три корня: 8, 1 и -1.

Пример 2 : Решим уравнение

(x 2 - 5x + 4)(x 2 - 5x +6) = 120

Это уравнение сложнее. Но его можно упростить оригинальным образом - методом введения новой переменной.
В нашем уравнении дважды встречается выражение x 2 - 5x .
Мы можем обозначить его переменной y . То есть представим, что x 2 - 5x = y .

Тогда наше уравнение обретает более простой вид:

(y + 4)(y + 6) = 120.

Раскроем скобки:

y 2 + 4y + 6y + 24 = 120

y 2 + 10y + 24 = 120

Приравняем уравнение к нулю:

y 2 + 10y + 24 - 120 = 0

y 2 + 10y - 96 = 0

Мы получили обычное квадратное уравнение. Найдем его корни. Нет необходимости производить расчеты: о том, как решать подобные уравнения, подробно написано в разделах «Квадратные уравнения» и «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу выведем результат. Квадратное уравнение y 2 + 10y - 96 = 0 имеет два корня:

y 1 = -16

y 2 = 6

Буквой y мы заменили выражение x 2 - 5x . А значит, мы уже можем подставить значения y и найти корни заданного уравнения, тем самым решив задачу:

1) Сначала применяем значение y 1 = -16:

x 2 - 5x = -16

Чтобы решить это уравнение, превращаем его в квадратное уравнение:

x 2 - 5x + 16 = 0

Решив его, мы обнаружим, что оно не имеет корней.

2) Теперь применяем значение y 2 = 6:

x 2 - 5x = 6

x 2 - 5x - 6 = 0

Решив это квадратное уравнение, мы увидим, что у него два корня:

x 1 = -1

x 2 = 6.

Уравнение решено. Оно имеет два корня: -1 и 6.

Метод введения новой переменной позволяет легко решать уравнения четвертой степени, которые являются квадратными относительно x 2 (такие уравнения называют биквадратными ).

х и областью определения Х . Тогда высказывательная форма вида f(x) = g(x) называется уравнением с одной переменной.

Значение переменной х из множества Х , при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней.


Множество значений переменной, при которых выражения f(x) и g(x) имеют смысл, называется областью определения уравнения
f(x) = g(x) . Множество решений уравнения является подмножеством области его определения.


Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называются равносильными.


Замена уравнения равносильным ему уравнением называется преобразованием.


Преобразования, позволяющие получать равносильные уравнения, могут быть следующими:


1. Если к обеим частям уравнения f(x) = g(x) , определенного на множестве Х , прибавить одно и то же выражение h(x) , имеющее смысл на множестве Х , то получится уравнение f(x) + h(x) = g(x) + h(x) , равносильное данному.


Из данного утверждения вытекают следствия , которые используются при решении уравнений:


1) Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.


2) Если какое-либо слагаемое ( или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.


2. Если обе части уравнения f(x) = g(x) , определенного на множестве Х , умножить на одно и то же выражение h(x) , имеющее смысл на множестве Х и не обращающееся на нем в нуль, то получится уравнение f(x) × h(x) = g(x)× h(x) , равносильное данному.


Из этого утверждения вытекает следствие:


Если обе части уравнения умножить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.


Задача. Установить, какие из следующих пар уравнений равносильны на множестве действительных чисел:


а) х 2 - 9 = 0 и (2х + 6)(х - 3) = 0;


б) (3х + 1) × 2 = 6х + 1 и х 2 + 1 = 0;


в) х 2 - х - 2 = 0 и (х - 1)(х + 2) = 0;


Решение. а) уравнения равносильны, так как оба имеют своими корнями числа 3 и -3; б) уравнения равносильны, так как оба не имеют корней, т.е. множества их решений совпадают; в) уравнения не являются равносильными, так как корнями первого уравнения являются числа -1 и 2, а второго - числа 1 и -2.


Задача. Решить уравнение и обосновать все преобразования, которые будут выполняться в процессе решения.


Решение.






























Преобразования



Обоснование преобразований



1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: .



Выполнили тождественное преобра-зование выражения в левой части уравнения.



2. Отбросим общий знаменатель:


6 - 2х = х .



Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.



3. Выражение --2х переносим в правую часть уравнения с противоположным знаком:


6 = х + 2х .



Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.



4. Приводим подобные члены в правой части уравнения: 6 = 3х .



Выполнили тождественное преобра-зование выражения.



5. Разделим обе части уравнения на 3: х = 2.



Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному.


Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.


Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.


Рассмотрим, например, уравнение х (х - 1) = 2х , х Î R . Разделим обе части на х , получим уравнение х - 1 = 2, откуда х = 3, т.е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной
х подставить 0, оно обратится в истинное числовое равенство
0 × (0 - 1) = 2 × 0. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х , то есть умножили на выражение , но при х = 0 оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.


Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое решение. Перенесем выражение 2х из правой части в левую: х (х - 1) - 2х = 0. Вынесем в левой части уравнения за скобки х и приведем подобные члены:
х (х - 3) = 0. Произведение двух множителей равно нулю в том и только в том случае, когда хотя бы один из них равен нулю, поэтому х = 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.


В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий.


Задача. Решить уравнение (х × 9) : 24 = 3, используя взаимосвязь между компонентами и результатами действий.


Решение. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х × 9 = 24 × 3, или х × 9 = 72. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72: 9, или х = 8, следовательно, корнем данного уравнения является число 8.


Упражнения для самостоятельной работы


1. Уравнение 2х 4 + 4х 2 - 6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнение, а 2 и -1 не являются его корнями.


2. Установите, какие из следующих пар уравнений равносильны на множестве R :


а) 3 + 7х = -4 и 2(3 + 7х ) = -8; в) 3 + 7х = -4 и х + 2 = 0.


б) 3 + 7х = -4 и 6 + 7х = -1;


3. Решите уравнения и обоснуйте все преобразования, выполняемые в процессе их упрощения:


а) ; б) ; в) (2 - х ) × 2 - х (х + 1,5) = 4.


4. Решите уравнения, используя взаимосвязь между компонентами и результатами действий:


а) (х + 70) × 4 = 328; в) (85х + 765) : 170 = 98;


б) 560: (х + 9) = 56; г) (х - 13581) : 709 = 306.

Возьмем два выражения с переменной: 4х и 5х + 2. Соединив их знаком равенства, получим предложение 4х = 5х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание.

Например, при х = -2 предложение 4х = 5х + 2 обращается в истинное числовое равенство 4-(-2) = 5-(-2) + 2, а при х = 1 - в лож­ное 4-1 = 5-1+2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) = q(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней .

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х-1)(х+2)=0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,- 1}.

Уравнение (3х + 1) × 2 = 6х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)-2 = 6х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Определение. Два уравнения f 1 (х) = q 1 (х) и f 2 (х) = q 2 (х) называются равносильными, если множества их корней совпадают.


Например, уравнения х 2 - 9 = 0 и (2х + 6)(х - 3) = 0 равносильны так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1)-2 = 6х + 1 и х 2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Определение . Замена уравнения равносильным ему уравнением называется равносильным преобразованием.

Выясним теперь, какие преобразования позволяют получать равносильные уравнения.

Теорема 1 . Пусть уравнение f(х) = q(х) задано на множестве и h(х) - выражение, определенное на том же множестве. Тогда уравнение f(х) = q(х) (1) и f(х) + h(х) = q(х) + h(х) (2) равносильны.

Доказательство. Обозначим через Т 1 , - множество решений уравнения (1), а через Т 2 - множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т 1 = Т 2 . Чтобы убедиться в этом, необходимо показать, что любой корень из Т 1 является корнем уравнения (2) и, наоборот, любой корень из Т 2 , является корнем уравнения (1).

Пусть число а - корень уравнения (1). Тогда а Î Т 1 , и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(а) = q(а), а выражение h(х) обращает в числовое выражение h(а) имеющее смысл на множестве X. Прибавим к обеим частям истинного равенства f(а) = q(а) числовое выражение h(а). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(а) + h(а) = q(а) + h(а), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т 1 Ì Т 2.

Пусть теперь а - корень уравнения (2). Тогда а Î Т 2 , и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(а) + h(а) = q(а) + h(а). Прибавим к обеим частям этого равенства числовое выражение - h(а). Получим истинное числовое равенство f(а) = q(а), что число а - корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и кор­нем уравнения (1), т.е. Т 2 Ì Т 1 .

Так как Т 1 Ì Т 2 и Т 2 Ì Т 1 , то по определению равных множеств Т 1 = Т 2 , а значит, уравнения (1) и (2) равносильны.

Данную теорему 1 можно сформулировать иначе : если к обеим частям уравнения с областью определения Х прибавить одно и то же выраже­ние с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2. Пусть уравнение f(х) = q(х), задано на множестве Х и h(х) - выражение, которое определено на том же множестве и не об­ращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = q(х) и f(х) × h(х) = q(х) × h(х) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе : если обе части уравнения с областью определения Х умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.

Решим уравнение , х Î R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.

§ 23. Линейное уравнение с одной переменной. Решение линейных уравнений с одной переменной и уравнений, сводящихся к ним

Мы зна емо, как решать уравнения 2х = -8; х - 5; 0,01 х -17.

Каждое из этих уравнений имеет вид ах = b , где х - переменная, а и b - некоторые числа.

Числа а и b называют коэффициентами уравнения.

Если а ≠ 0, то уравнение ах = b называют уравнением первой степени с одной переменной. Поделив обе части уравнения на а, получим х = , то есть являетсяединственным корнем этого уравнения является число

Если а - 0 и b - 0, то линейное уравнение имеет вид 0х - 0. Корнем такого уравнения является любое число, так как при любом значении х значение левой и правой частей уравнения равны и равны нулю. Поэтому уравнение 0х = 0 множество корней.

Если а - 0, а b ≠ 0, то линейное уравнение примет вид 0х - b . При этом не существует никакого значения переменной х, которое бы превращало левую и правую части уравнения на одно и то же число. Ведь значение левой части уравнения при любом значении х равен нулю, а значение правой части - числу b , отличном от нуля. Поэтому уравнение 0х = b при b ≠ 0 не имеет корней.

Систематизируем данные о решения линейного уравнения ах = b в виде схемы:

Пример 1. Решить уравнение:

Р а з в ’ я з а н н я.

1) 0,2 х = 7; х = 7: 0,2; х = 35.

Ответ: - 4.

3)0х = 7; уравнение не имеет корней.

Ответ: корней не имеет.

Процесс решения многих уравнений является сводом этих уравнений к лилейным путем равносильных преобразований по свойствам уравнений.

Пример 2. Решить уравнение:

1) 3(х + 1) - 2х = 6 - 4х;

Р а з в ’ я з а н н я.

1. Избавимся от знаменателей (если они есть):

1)3(х + 3) - 2х = 6 - 4х.

Умножим обе частили уравнения на 6 (6 - наименьший общий знаменатель дробей). Имеем:

3(х + 1) + 2(5 - х) = х + 13.

2. Раскроем скобки (если они есть):

3х + 9 - 2х = 6 - 4х;

3х + 3 + 10 - 2х = х + 13.

3. Перенесем слагаемые, содержащие переменную, в левую часть, а остальные - в правую, изменив знаки этих слагаемых на противоположные:

3х - 2х + 4х = 6 - 9;

3х - 2х - х = 13 - 3 - 10.

4. Сведем подобные слагаемые:

5. Решим полученное линейное уравнение:

Ответ: -0,6.

х - любое число.

Ответ: любое число.

Пример 3. Решить уравнение 5(х + г) = 3х - 7р в отношении х.

Р а з в ’ я з а н н я. Раскроем скобки в левой части уравнения: 5х + 5р - 3х - 7р. Перенесем слагаемое 3х в левую часть, а 5р - в правую. Имеем: 5х - 3х = -7р - 5р; 2х = -12р. Тогда х = (-12р) : 2; х = (-12: 2)г; х = -6р.

Ответ: -6р.

Какое уравнение называют линейным уравнением с одной переменной? Приведите примеры линейных уравнений. В каком случае уравнение ах - b имеет единственный корень? В любом случае корнем уравнения ах - b -любое число? В каком случае уравнение ах = b не имеет корней?

848. (Устно) Какое из уравнений является линейным:

5) х + 7 = х 2 ;

849. (Устно) Сколько корней имеет уравнение:

850. Выясните, какое из данных уравнений имеет только одно решение, не имеет решений, имеет бесконечное множество решений:

851. (Устно) Решите уравнение:

2) 0,5 х = -2,5;

3) -2,5 х = 7,5;

852. Решите уравнение:

6) -0,01 х = 0,17;

8)-1,2 х = -4,2;

853. Найдите корень уравнения:

6) 0,1 х = 0,18.

854. Определите, что должно быть записано справа в уравнении вместо пробелов, если известно его корень:

855. Найдите корень уравнения:

1) 7х + 14 = 0;

2) 0, 3х - 21 = 0,5 х - 23;

3) 1х + 3 = 6х - 13;

4) 5х + (3х - 7) = 9;

5) 47 = 10 - (9х + 2);

6) (3х + 2) - (8х + 6) = 14.

856. Решите уравнение:

2) 1,4 х - 12 = 0,9 х + 4;

3) 3х + 14 = 5х - 16;

4) 12 - (5х + 10) = -3;

5) 6 - (8х + 11) = -1;

6) (3х - 4) - (6 - 4х) = 4.

857. Какое из уравнений равносильно уравнению 5х = 10:

3) х + 2 = х + 1;

5) х = 8 - 3х;

6)1х - 7 = 4х?

858. Являются ли уравнения равносильными:

1) 4х - х = 17 3х = 17;

2) 5х - 9 = 3х и 6х = 21;

3) 2х = -12 и х + 6 = 0;

4) 12х = 0 15х = 15?

859.

1) 3х + 7 равен -2;

2) 4(х + 1) равно значению выражения 5х - 9?

860. При каком значении у:

1) значение выражения 5у - 13 равна -3;

2) значения выражений 3(в - 2) и 13у - 8 равны между собой?

861. Решите уравнение:

2) 2х - у = 1;

862. Найдите корень уравнения:

863. Составьте линейное уравнение, корнем которого является:

1) число -2;

2) число -0,2.

864. Составьте линейное уравнение:

1) не имеет корней;

2) корнем которого является любое число.

865. Составьте линейное уравнение, корнем которого было бы:

1) число -8;

2) любое число.

866. Найдите корень уравнения:

1)(4х - 2) + (5х - 4) - 9 - (5 - 11х);

2) (7 - 8х) - (9 - 12х) - (5х + 4) = -16;

3) 3(4х - 5) - 10(2х - 1) = 33;

4) 9(3(х + 1) 2х) = 7(х + 1).

867. Решите уравнение:

1) (9х - 4) + (15х - 5) = 18 - (25 - 22х);

2) (10х + 6) - (9 - 9х) + (8 - 11х) = -19;

3) 7(х - 1) - 3(2х + 1) = -х - 15;

4) 5(4(х - 1) - 3х) = 9х.

868.

1) 2х + а = х + а;

2) b + х = с - х;

3) 6х + 2m = х - 8m ;

4) 9а + х = 3b - 2х.

Р а з в ’ я з а н н я.

4) 9a - х = 3b - 2х; х + 2х = 3b - 9а; 3х = 3(b - 3a). Поделим обе части уравнения на 3. Получим: х = b - 3а.

Ответ: b - 3а.

869. Решите уравнение относительно х:

1) 7х + m = 2х + m ;

2) а + х = 2m - х;

3) 3х + b = 9b - х;

4) 5р + 2х = 10 - 3х.

870. Являются ли равносильными уравнения:

1) 2х - 4 = 2 и 5(х - 3) + 1 = 3х - 8;

2) 5х + 3 = 8 и 7(х - 2) + 20 = 4х + 3;

3) 5х = 0 и 0 х = 5;

4) 7х + 1 = 7х 2 и 5(х + 1) = 5х + 5;

5) 0: х = 7 и 0 ∙ х = 7;

6) 3(х - 2) = 3х - 6 и 2(х + 7) - 2(х + 1) + 12?

871. При каком значении у значение выражения:

1) 5у + 7 в три раза больше значения выражения у + 5;

2) 2у - 4 на 7,4 больше значения выражения 3 - 7у?

872. При каком значении х значение выражения:

1) 7х + 8 вдвое больше значения выражения х + 7;

2) 5х - 8 па 17,2 меньше значения выражения х + 2 ?

873. Составьте уравнение, которое было бы равносильно уравнению 7(2х - 8) = 5(7х - 8) - 15х.

874. При каком значении а уравнение:

1) 2ах = 16 имеет корень, равный 4;

2) 3х имеет корень, равный ;

3) 5(а + 1)х = 40 имеет корень, равный -1 ?

875. При каком значении b корнем уравнения:

1) 3b х = -24 является число -4;

2) (2а - 5)х = 45 с число 3?

876. Решите уравнение:

1) 4х + 7 = 3(х - 2) + х:

2) 2х + 5 - 2(х - 4) + 13;

3) 2х(1 - 3х) + 5х(3 - х) = 17х - 8х 2 ;

4) (7х - 3 + 2х 2 - 4х - 5) - (6х 3 - х 2 + 2х) = 3х 2 - (6х - х 3).

877. Найдите корень уравнения:

1) 3(х - 2) + 4х = 7(х -1) + 1;

2) 2(х + 1) + х = 6(х + 3);

3) 3х(2 + х) - 4 (1 - х 2) = 7х 2 + 6х;

4) (х 2 + 4х - 8) - (7х - 2х 2 - 5) = 3х 2 - (3х + 3).

878. Решите уравнение.