Полупроводниковые материалы. Электрическая проводимость полупроводников

4.2.Полупроводниковые химические соединения

Полупроводники типа А III B V

Это химические соединения, образующиеся при взаимодействии элементов А III и B V подгрупп периодической системы Менделеева. Эти соединения характеризуются наличием у А III на внешних оболочках по 3 валентных электрона – s 2 р 1 , а у В V – 5 валентных электронов в состоянии s 2 р 3 . На каждый атом приходится – 4 электрона, как в элементах IV группы, а отсюда и одинаковые кристаллические структуры и электронные свойства этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Но отличаются типом связи – наряду с ковалентной есть и ионные, т.к. в узлах решетки располагаются положительные и отрицательные ионы.

Кристаллическая решетка соединений типа А III В V менее симметрична, чем решетка алмаза, германия, кремния. Примерами соединений этого типа могут быть: InSb – антимонид индия, InАs – арсенид индия, InР – фосфид индия, GаSb – антимонид галлия, GаАs – арсенид галлия, GаР – фосфид галлия, АlSb – антимонид алюминия.

Эти соединения имеют большую, чем у германия и кремния подвижность электронов. Электропроводность полупроводниковых соединений зависит от примесей, входящих в междоузлия или в узлы атомной решетки в виде атомов замещения (это элементы II, IV, VI групп).

Арсениды, антимониды и фосфиды индия и галлия получают сплавлением компонентов в вакууме в кварцевых ампулах. Выращивание кристаллов этих соединений – например, GаАs методом Чохральского , такое же как и Si , но с магнитным управлением, с направленной кристаллизацией. Можно использовать зонную плавку.

Карбид кремния SiC ( A IV B IV )

Получается восстановлением из SiО 2 углем при высокой температуре в электрических печах:

SiO 2 + 3 C = SiC + 2 CO .

Примеси удаляют добавлением NаСl , образующиеся хлориды улетучиваются при высокой температуре. Чистый карбид кремния бесцветен. Величина проводимости и тип зависит от примесей. Удельное сопротивление чистого карбида кремния 10 11 Ом·м, с примесями - 0,001 Ом·м.

Химическая структура и тип связи у карбида кремния такой же как у элементов IVВ подгруппы. Имеется ряд модификаций карбида кремния. Ширина запрещенной зоны карбида кремния – 2,86 эВ.

Примесь элементов V группы (P , As , Sb , Bi ) и железа в карбиде кремния дает зеленую окраску и проводимость n – типа (электронную).

Примесь элементов II группы (Са , Мg ) и III группы (В , Аl , , I n ) дает голубую окраску и проводимость р – типа. Избыток кремния в карбиде кремния дает проводимость n – типа, а избыток С – р –проводимость.

Карбид кремния применяют для нелинейных резисторов, термокомпенсаторов , силовых выпрямителей с р - n - переходом, работающих при высоких температурах (до 650 °С).

Оксиды

Из оксидов наибольшее применение получила закись меди Сu 2 О , обладающая ширной запрещенной зоны W = 0,22÷0,39 эВ. Является основой медно – закисных (купроксных ) выпрямителей. Медные пластины нагревают при 1020÷1040 °С в окислительной среде 5 мин, затем переносят в печь с температурой 600°С, где выдерживают 10 мин. Получается в итоге двойное покрытие: первое Сu 2 О (закись), второе СuО – окись. Закись меди Сu 2 О – полупроводник, а СuО – диэлектрик. Окись меди в требуемых местах вытравливают. Сu 2 О является примесным полупроводником n – типа, с интервалом рабочих температур от –40 до +60°С. Медное основание в прилегающей к пленке Сu 2 О имеет электронную проводимость, что обусловливает в слое закиси меди электронно – дырочный переход.

Меднозакисные выпрямители широко применялись в технике (в измерительных приборах, в схемах автоматических устройств и др.).

Мn 3 О 4 – закись – окись марганца – поликристаллический полупроводник с W = 1,25 эВ. Этот окисный полупроводник применяется в термисторах (термометрах сопротивления).

К оксидным полупроводникам с электронной электропроводностью относятся широко используемые радиоэлектронике ферриты и сегнетоэлектрики (сегнетова соль).

Полупроводниковые свойства проявляют те оксиды, у которых один или более ионов металла относится к элементу переходного ряда (Ti , Cu , Zn , Ni , Co , Fe , Mn , Cr , V ).

Сульфиды (люминофоры)

В полупроводниковой технике применяют: сульфид свинца РbS ; сульфид цинка ZnS ; сульфид кадмия СdS ; сульфид висмута Вi 2 S 3 .

Сульфид свинца имеет кристаллическую структуру с кубической решеткой. Плотность – 7,5 · 10 3 кг/м 3 , молекулярная масса – 239, температура плавления 1114 °С, W = 0,4 эВ. В зависимости от соотношения S и Рb получается проводимость: дырочная – если больше серы, электронная – если больше свинца, подвижность электронов 80 см 2 /(В·с). Сульфид свинца применяется для термоэлементов и фоторезисторов с высокой чувствительностью в ИК области спектра.

Сульфид цинка кристаллическая структура с кубической или гексагональной решеткой природного или синтетического происхождения.

Сульфид кадмия полупроводниковый кристаллический материал гексагональной структуры, молекулярная масса – 144,5; плотность – 4,82 · 10 3 кг/м 3 , ∆ W = 2,1 эВ. Применяют для фоторезисторов.

Сульфид висмута кристаллическое вещество ромбической структуры, получают сплавлением висмута с серой в нейтральной среде или в вакууме. Плотность – 7,4 · 10 3 кг/м 3 ; молекулярная масса – 514,2; W = 1,25 эВ.

C оединения типа А II В VI

Селениды

Наибольшее применение получили CdSe , PbSe , HgSe .

Селенид ртути НgSе кристаллическое вещество, получают сплавлением компонентов в вакууме при 960 °С; имеет электронную проводимость с подвижностью электронов 5000 см 2 /(В·с), W = 0,3 эВ. Применяется в датчиках э.д.с . Холла, фоторезисторах, лазерах.

Физические свойства соединений типа А II В VI

CdS

CdSe

CdTe

PbS

PbSe

PbTe

Молекулярная масса

72,0

95,0

120,5

120,0

143,0

168,0

Температура плавления,°С

1475

1250

1040

1110

1065

Ширина запрещенной зоны ∆ W , эВ

0,55

Подвижность, см 2 /(В·с)

электронов

дырок

Теллуриды

Из полупроводниковых соединений теллура в ИК – технике используют теллурид свинца РbТе , теллурид кадмия СdТе , теллурид висмута Вi 2 Те 3 .

РbТе , обладающий высокой чувствительностью к ИК – излучению, в виде теллуристо – свинцового фоторезистора используется как приемник ИК – излучения.

Органические полупроводники

Органические полупроводники – это органические соединения с сопряженными связями:

то есть, есть электроны общего пользования, значит, молекула обладает свойствами металла и к ней можно применить зонную теорию в одномерном приближении. Дискретные уровни p электронов представляют собой валентную зону. Энергия активации электронов – запрещенную зону. Проводимость внутри молекулы очень велика, т. к. p электроны обладают высокой подвижностью и небольшой энергией возбуждения.

Так жидкий бензол – диэлектрик, так как электронам трудно преодолеть энергетический барьер, связанный с межмолекулярными взаимодействиями. Если соединить молекулы бензола определенным образом, то энергетический барьер можно понизить, и соединение может быть полупроводником.

Аморфные полупроводники

К аморфным (стеклообразным) полупроводникам относятся селениды, теллуриды , сульфиды элементов V группы периодической системы, образующие соединения с аморфной структурой:

Sb 2 Te 3 , As 2 S 3 , As 2 Se 3 , As 2 Se 5 .

Для них характерен ближний порядок и зонная теория не применима. Свойства можно объяснить на основе теории валентной связи. Их проводимость мало зависит от примесей, а зависит от размеров атомов, образующих соединения. С уменьшением радиуса атома полупроводниковые свойства переходят в диэлектрические.

2 Полупроводники «Имеется существенное различие между полупроводником, таким как германий, и хорошим проводником, таким как серебро… Электросопротивление хорошего проводника быстро уменьшается с понижением температуры, в то время как у «плохого» проводника оно возрастает и становится очень большим, когда температура приближается к абсолютному нулю» А. Х. Вильсон Электросопротивление (Ом*см):


2 Собственная проводимость Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (n) и дырок (p) равны Температурная область собственной проводимости – примеси не оказывают влияния в данной области. - При абсолютном нуле в зоне проводимости все уровни свободны (вакантны) - Зона проводимости отделена от заполненной валентной зоны энергетической щелью шириной E g. - Ширина энергетической щели равна разности между наиболее низкой точкой зоны проводимости и наиболее высокой точкой валентной зоны (края зон)


2 Собственная проводимость По мере возрастания T электроны валентной зоны вследствие термического возбуждения будут переходить в зону проводимости В валентной зоне будут образовываться дырки (вакантные состояния) Движение электронов и дырок в электрическом поле Е. Направления скоростей разные, но создаваемый ток имеет направление электрического поля


2 Собственная проводимость Температурная зависимость логарифма проводимости Ge - Примеси влияют на концентрацию носителей при низких температурах - При высоких Т концентрация определяется собственными свойствами п/п (380 – 800) К – собственная пр. (273 – 300) К – примесная пр. Ширина запрещенной зоны:


2 Запрещенная зона Ширина запрещенной зоны (i – непрямые переходы; d – прямые) Полупроводники, переход электрона в которых из зоны проводимости в валентную зону не сопровождается потерей импульса (прямой переход), называются прямозонными. Полупроводники, переход электрона в которых из зоны проводимости в валентную зону сопровождается потерей импульса (непрямой переход), называются непрямозонными






2 Закон действующих масс n(E g) - кол-во электронов, переходящих в рез- те возбуждения при Т в зону проводимости, как функцию хим. Потенциала Функция распределения Ферми-Дирака: Позволяет найти вероятность, с которой фермион занимает данный энерг. уровень.














2 Примесная проводимость Добавление примесей (легирование) Нарушенная стехиометрия Примесная проводимость превышает собственную. Примеси: донорные (отдающие) и акцепторные (принимающие) Примесными центрами могут быть: атомы или ионы химических элементов, внедренные в решетку полупроводника; избыточные атомы или ионы, внедренные в междоузлия решетки; различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.


2 Примесные состояния Примесь As в кристалле Si. Мышьяк имеет 5 валентных электронов, а кремний – 4. Четыре электрона As образуют тетраэдрические ковалентные связи, подобные связям Si, а пятый электрон осуществляет проводимость. Атом мышьяка – донор, поскольку при ионизации отдает электрон в зону проводимости (полупроводник n-типа)


2 Примесные состояния Если в кристалле 4-валентного элемента (Si, Ge) часть атомов замещена атомами 3-валентного элемента (Ga, In), то для образования четырех ковалентных связей у примесного атома не хватает одного электрона. Электрон может быть получен от атома основного элемента полупроводника за счет разрыва ковалентной связи. Разрыв связи приводит к появлению дырки. Примеси, захватывающие валентные электроны, называют акцепторными. За счет ионизации атомов исходного материала часть валентных электронов становится свободной. Однако свободных электронов значительно меньше, чем дырок. Поэтому дырки в таких полупроводниках являются основными, а электроны неосновными подвижными носителями заряда. Такие полупроводники носят название полупроводников с дырочной электропроводностью или полупроводников p-типа.


2 Электронно-дырочные переходы Создадим контакт из двух полупроводников, n-типа и p-типа (p-n переход) Слева от перехода имеются свободные дырки, их концентрация равна концентрации отрицательно ионизованных акцепторных примесных атомов. Справа от перехода имеются свободные электроны, их концентрация равна концентрации положительно заряженных донорных примесных атомов. Толщина границы между p- и n-областью может быть порядка см


2 Электронно-дырочные переходы Носители тока находятся в тепловом равновесии с донорными и акцепторными примесями. Так же в тепловом равновесии будут находиться и неосновные носители с малой концентрацией. Неоднородность концентраций в кристалле будет вызывать диффузия дырок в n-область, а электронов в p-область. Это приведет к нарушению электрической нейтральности. В результате будет создаваться избыток отрицательно заряженных ионов акцепторных атомов в p-области и положительно заряженных в n-области. Образуется двойной слой разноименных зарядов, которые создадут электрическое поле, направленное от n- к p-области


2 Электронно-дырочные переходы Электростатический потенциал будет испытывать скачок в области перехода Электрохимический потенциал постоянен по всему объему Если концы кристалла соединить в цепь, а пучок света направить на переход, то потечет ток. Фотоны будут образовывать электроны и дырки. Когда пары электрон-дырка образуются в области перехода, электрическое поле двойного слоя будет перемещать дырки в p-область, а электроны в n-область. Ток потечет из n-области в p-область. Энергия фотонов будет превращаться в электрическую энергию


2 От песка до процессора Кремний (Si) и Песок (SiO 2) Восстановление: SiO 2 + 2C = Si + 2CO Технический кремний: % чистоты Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3): 3SiCl 4 + 2H 2 + Si 4SiHCl 3 2SiHCl 3 SiH 2 Cl 2 + SiCl 4 2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3 2SiH 3 Cl SiH 4 + SiH 2 Cl 2 SiH 4 Si + 2H 2 99, %


2 От песка до процессора Фотолитография «свет-шаблон- фоторезист» На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом. Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон Удаление отработанного фоторезиста.


2 От песка до процессора Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски. Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент


2 От песка до процессора Для соединения логических элементов пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.


2 От песка до процессора Осталось хитрым способом соединить «остатки» транзисторов принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов».


Полупроводниковый кристалл представляет собой систему, состоящую из атомных ядер и электронов, в большей или меньшей степени связанных с ядрами.  

Полупроводниковый кристалл или комплект кристаллов, на которых реализуется центральный процессор ЭВМ (С. Обязательными компонентами микропроцессора являются арифметико-логическое устройство (А. Они характеризуются скоростью, длиной слова (внутренней и внешней), архитектурой (А. Эффективность микропроцессора определяется сочетанием этих характеристик, а не только временем цикла. Большинство микропроцессоров имеет фиксированную систему команд. Микропрограммируемые процессоры оснащаются управляющим запоминающим устройством, в котором хранится микропрограмма или встроенные программы, определяющие набор реализуемых команд. Такие процессоры могут быть однокристальными или разрядно-модульными (В.  

Полупроводниковые кристаллы отличаются от диэлектрических большими значениями показателя преломления (до - 9), что требует во многих случаях нанесения просветляющих покрытий. Оптические свойства полупроводников весьма сильно зависят от температуры. Полупроводниковые кристаллы являются перспективными оптическими материалами ввиду возможности синтеза большего числа полупроводниковых соединений с самыми различными оптическими характерист иками.  

Полупроводниковые кристаллы, используемые в этих диодах, не претерпели каких-либо существенных конструктивных изменений, однако отсутствие герметичного корпуса требует особенно тщательной их защиты от воздействия окружающей среды. Для этого используют окисные или другие диэлектрические пленки, которые получают в процессе изготовления полупроводникового активного элемента в сочетании с последующим нанесением лаков или смол, служащих также и для защиты кристаллов от случайных механических воздействий, а также герметизацию всей схемы. Надо отметить также сложность монтажа диодов с круглым керамическим держателем в схему, так как трудно добиться полного совмещения полоски на держателе с полоской на подложке, в результате чего в передающем тракте возникают ступеньки, увеличивающие потери в схеме. В связи с тем, что теплопроводность материалов, применяемых для изготовления подложек микросхем, значительно ниже (за исключением бериллиевой керамики), чем у металлов, мощность рассеяния у приборов с керамическим теплоотводом меньше, чем у диодов в корпусах с металлическими кристал-лодержателями.  

Полупроводниковый кристалл представляет собой систему, состоящую из огромного числа атомных ядер и электронов.  

Полупроводниковые кристаллы выращивают в горизонтальных лодочках по тому или иному варианту метода Бриджмена - Стокбаргера.  

Полупроводниковый кристалл с прямоугольным поперечным сечением 1X2 мм2 и длиной 2 см содержит 10 см-3 акцепторов. Затем этот кристалл легируется донорами с концентрацией 5 - Ю16 см-3.  

Полупроводниковый кристалл способен заменить не одну лампу, а целый ламповый блок со множеством различных деталей, стать основой для аппаратуры принципиально нового типа, где функции электронных приборов выполняют небольшие группы различных молекул.  

Полупроводниковый кристалл чаще всего изготавливается из кремния. Благодаря сложной технологической обработке кристалла в нем создаются электронные молекулы, соединенные в электрическую схему. Это позволяет в одном кристалле (размером примерно 5x5 мм) создавать сотни тысяч взаимосвязанных электронных молекул, выполняющих сложные преобразования информации. Стремление исследователей создать еще более компактные интегральные схемы приводит к поискам решений, в которых элементами этих схем будут молекулы вещества в обычном их понимании.  

Прямозонные полупроводниковые кристаллы обладают очень высоким однофотонным поглощением при зона-зонном переходе. Поэтому необходимо очень точно подстраивать частоту излучения, чтобы потери, вносимые межзонным поглощением, не погубили процесс четырехволнового поглощения. В настоящее время в прямозонных полупроводниках наиболее часто используются процессы многофотонного, в частности двухфотоиного, поглощения, например, в кристаллах CdS и CdSe. При этом коэффициент поглощения определяется мощностью падающего излучения и может регулироваться за счет ее изменения. Возникающая же плазма свободных носителей по-прежнему приводит к изменению показателя преломления.  

Пьезоэлектрические полупроводниковые кристаллы типа А2В6 и А3В5 (ZnS, CdS, ZnO, GaAs и др.) представляют особый интерес из-за удачного сочетания пьезоэлектрических и полупроводниковых свойств.  

Использовался полупроводниковый кристалл, на заднюю грань которого было нанесено высокоотражаюшее покрытие 3i, а передняя грань была просветлена. Излучение лазера объективом / направлялось в кристалл BaTiOa (пятно с d 1 мм), после прохождения которого оно с помощью зеркал Зг и Зз формировало петлю накачки и вновь попадало в кристалл.  

Рассмотрим полупроводниковый кристалл с шириногс запрещенной зоны ДЕ и выясним, какова природа первого возбужденного состояния в нем. IB валентной зоне заняты электронами, а зона проводимости совершенно пуста.  

Некоторые изолирующие и полупроводниковые кристаллы обладают способностью изменять свою проводимость под действием ядерных излучений. Это свойство используют на практике в так называемых кристаллических детекторах. Различают два типа кристаллических детекторов: диэлектрические кристаллические счетчики и полупроводниковые кристаллические счетчики.  

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.


Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

4 Электрические свойства "p-n" перехода "p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются. При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью. 5 Полупроводниковые приборы. Яркая зависимость электропроводимости полупроводников от температуры используется в приборах называемых термосопротивлениями или термисторами. Они используются для измерения температуры в различных машинах и агрегатах, для измерения температуры почвы на различной глубине, всюду, где необходимо поддерживать постоянную температуру. Чувствительные термисторы можно вводить непосредственно в кровеносный сосуд. Полупроводник с одним "p-n" переходом называется полупроводниковым диодом. При наложении эл.поля в одном направлении сопротивление полупроводника велико,в обратном - сопротивление мало.
Полупроводниковые диоды - основные элементы выпрямителей переменного тока В полупроводниковых транзисторах также используются свойства "р-n "переходов. - транзисторы используются в схемотехнике радиоэлектронных приборов. 6 Вопросы на закрепление изученной темы. - Какие вещества называются полупроводниками? Приведите примеры полупроводников. - Какова зависимость сопротивления полупроводника от температуры? - Как зонная теория объясняет различие в проводимости проводников, полупроводников и диэлектриков? - Объясните механизм собственной и примесной проводимости полупроводников. - Что такое термистор? фоторезистор? - Что такое р-n-переход? Каково его основное свойство? - Как устроен и где применяется полупроводниковый диод? .

), и веществами, [фактически не проводящими электрического тока (изоляторы или диэлектрики).

Для полупроводников характерна сильная зависимость их свойств и характеристик от микроскопических количеств содержащихся в них примесей. Изменяя количество примеси в полупроводнике от десятимиллионных долей процента до 0,1-1%, можно изменить их проводимость в миллионы раз. Другое важнейшее свойство полупроводников состоит в том, что электрический ток переносится в них не только отрицательными зарядами - электронами, но и равными им по величине положительными зарядами - дырками.

Если рассматривать идеализированный полупроводниковый кристалл, абсолютно свободный от каких-нибудь примесей, то его способность проводить электрический ток будет определяться так называемой собственной электропроводностью.

Атомы в кристалле полупроводника связаны между собой с помощью электронов внешней электронной оболочки. При тепловых колебаниях атомов тепловая энергия распределяется между электронами, образующими связи, неравномерно. Отдельные электроны могут получать количество тепловой энергии, достаточное для того, чтобы «оторваться» от своего атома и получить возможность свободно перемещаться в кристалле, т. е. стать потенциальными носителями тока (по-другому можно сказать, что они переходят в зону проводимости). Такой уход электрона нарушает электрическую нейтральность атома, у него возникает положительный заряд , равный по величине заряду ушедшего электрона. Это вакантное место называют дыркой.

Так как вакантное место может быть занято электроном соседней связи, дырка также может перемещаться внутри кристалла и являться уже положительным носителем тока. Естественно, что электроны и дырки при этих условиях возникают в равных количествах, и электропроводность такого идеального кристалла будет в равной степени определяться как положительными, так и отрицательными зарядами.

Если на место атома основного полупроводника поместить атом примеси, во внешней электронной оболочке которого содержится на один электрон больше, чем у атома основного полупроводника, то такой электрон окажется как бы лишним, ненужным для образования межатомных связей в кристалле и слабо связанным со своим атомом. Достаточно в десятки раз меньше энергии, чтобы оторвать его от своего атома и превратить в свободный электрон. Такие примеси называют донорными, т. е. отдающими «лишний» электрон. Атом примеси заряжается, разумеется, положительно, но дырки при этом не появляется, так как дыркой может быть только вакансия электрона в незаполненной межатомной связи, а в данном случае все связи заполнены. Этот положительный заряд остается связанным со своим атомом, неподвижным и, следовательно, в процессе электропроводности участия принимать не может.

Введение в полупроводник примесей, внешняя электронная оболочка которых содержит меньшее количество электронов, чем в атомах основного вещества, приводит к появлению незаполненных связей, т. е. дырок. Как было сказано выше, эта вакансия может быть занята электроном из соседней связи, и дырка получает возможность свободного перемещения по кристаллу. Иными словами, движение дырки - это последовательный переход электронов из одной соседней связи в другую. Такие примеси, «принимающие» электрон, называют акцепторными.

С увеличением количества примесей того или иного типа электропроводность кристалла начинает приобретать все более ярко выраженный электронный или дырочный характер. В соответствии с первыми буквами латинских слов negativus и positivus электронную электропроводность называют электропроводностью я-типа, а дырочную - р-типа, отмечая этим, какой тип подвижных носителей заряда для данного полупроводника является основным, а какой - неосновным.

При электропроводности, обусловленной наличием примесей (т. е. примесной), в кристалле по-прежнему остается 2 типа носителей: основные, появляющиеся главным образом за счет введения в полупроводник примесей, и неосновные, обязанные своим появлением тепловому возбуждению. Содержание в 1 см3 (концентрация) электронов п и дырок р для данного полупроводника при данной температуре есть величина постоянная: n- p=const. Это значит, что, увеличивая за счет введения

Если приложить к структуре металл - диэлектрик полупроводник n-типа напряжения (указанной на рисунке полярности), то в приповерхностном слое полупроводника возникает электрическое поле, отталкивающее электроны. Этот слой оказывается обедненным электронами и будет обладать более высоким сопротивлением. При изменении полярности напряжения электроны будут притягиваться электрическим полем и у поверхности создастся обогащенный слой с пониженным сопротивлением.

В полупроводнике р-типа, где основными носителями являются положительные заряды - дырки, та полярность напряжения, которая отталкивала электроны, будет притягивать дырки и создавать обогащенный слой с пониженным сопротивлением. Схема полярности в этом случае приведет к отталкиванию дырок и образованию приповерхностного слоя с повышенным сопротивлением.

Следующее важное свойство полупроводников - их сильная чувствительность к температуре и облучению. С ростом температуры повышается средняя энергия колебания атомов в кристалле, и все большее количество связей будет подвергаться разрыву. Будут появляться все новые и новые пары электронов и дырок. При достаточно высоких температурах собственная (тепловая) проводимость может сравняться с примесной или даже значительно превзойти ее. Чем выше концентрация примесей, тем при более высоких температурах будет наступать этот эффект.

Разрыв связей может осуществляться также за счет облучения полупроводника, например, светом, если энергия световых квантов достаточна для разрыва связей. Энергия разрыва связей у разных полупроводников различна, поэтому они по-разному реагируют на те или иные участки спектра облучения.

В качестве основных полупроводниковых материалов используют кристаллы кремния и германия, а в роли примесей - бор, фосфор, индий, мышьяк, сурьму и многие другие элементы, сообщающие полупроводникам необходимые свойства. Получение полупроводниковых кристаллов с заданным содержанием примесей - сложнейший технологический процесс, проводимый в особо чистых условиях с использованием оборудования высокой точности и сложности.блоках электронной вычислительной машины. Инженеры не могут сегодня обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить