Пифагоровы штаны во все стороны равны. Перед кредитом все равны. Обеспечительные меры как со стороны налоговых органов, так и со стороны налогоплательщиков

«Пифагоровы штаны – на все стороны равны.
Чтобы это доказать, надо снять и показать».

Этот стишок известен всем со средней школы, с тех самых пор, когда на уроке геометрии мы изучали знаменитую теорему Пифагора: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Хотя сам Пифагор никогда не носил штанов – в те времена греки их не носили. Кто же такой Пифагор?
Пифагор Самосский от лат. Pythagoras, пифийский вещатель (570-490 гг.до н.э.) – древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.
Среди противоречивых учений своих учителей Пифагор искал живой связи, синтеза единого великого целого. Он поставил себе цель - найти путь ведущий к свету истины, то есть познать жизнь в единстве. С этой целью Пифагор посетил весь древний мир. Он считал, что должен расширить и без того уже широкой кругозор, изучая все религии, доктрины и культы. Он жил среди раввинов и много узнал о тайных традициях Моисея, законодателя Израиля. Затем посетил Египет, где был посвящен в Мистерии Адониса, и, сумев пересечь долину Евфрата, он находился долго у халдеев, чтобы перенять их секретную мудрость. Пифагор посетил Азию и Африку, в том числе Индостан и Вавилон. В Вавилоне он изучил знания магов.
Заслугой пифагорейцев было выдвижение мысли о количественных закономерностях развития мира, что содействовало развитию математических, физических, астрономических и географических знаний. В основе вещей лежит Число, учил Пифагор, познать мир – значит познать управляющие им числа. Изучая числа, пифагорейцы разработали числовые отношения и нашли их во всех областях человеческой деятельности. Пифагор учил тайно и не оставил после себя письменных трудов. Пифагор придавал большое значение числу. Его философские взгляды в значительной мере обусловлены математическими представлениями. Он говорил: «Всё есть число», «все вещи суть числа», выделяя, таким образом, одну сторону в понимании мира, а именно, его измеряемость числовым выражением. Пифагор считал, что число владеет всеми вещами, в том числе и нравственными, и духовными качествами. Он учил (согласно Аристотелю): «Справедливость… есть число, помноженное само на себя». Он полагал, что в каждом предмете, помимо его изменчивых состояний, существует неизменное бытие, некая неизменная субстанция. Это и есть число. Отсюда основная идея пифагореизма: число – основа всего сущего. Пифагорейцы видели в числе и в математических отношениях объяснение скрытого смысла явлений, законов природы. По мнению Пифагора, объекты мысли более реальны, чем объекты чувственного познания, так как числа имеют вневременную природу, т.е. вечны. Они – некая реальность, стоящая выше реальности вещей. Пифагор говорит, что все свойства предмета могут быть уничтожены, или могут измениться, кроме одного лишь числового свойства. Это свойство – Единица. Единица – это бытие вещей, неуничтожимая и неразложимая, неизменное. Раздробите любой предмет на мельчайшие частицы – каждая частица будет одна. Утверждая, что числовое бытие есть единственно неизменное бытие, Пифагор пришел к выводу, что все предметы есть суть копии чисел.
Единица есть абсолютное число Единица обладает вечностью. Единице не надо находиться ни в каком отношении к чему-либо иному. Она существует сама по себе. Два есть только отношение одного к одному. Все числа есть лишь
числовые отношения Единицы, её модификации. А все формы бытия есть лишь определённые стороны бесконечности, а значит и Единицы. Первоначальное Один заключает в себе все числа, следовательно, заключает в себе элементы всего мира. Предметы – это реальные проявления абстрактного бытия. Пифагор был первым, кто обозначил космос со всеми находящимися в нем вещами, как порядок, который устанавливается числом. Этот порядок доступен разуму, осознаётся им, что позволяет совершенно по-новому видеть мир.
Процесс познания мира, по Пифагору, есть процесс познания управляющих им чисел. Космос после Пифагора стал рассматриваться как упорядоченное числом мироздания.
Пифагор учил, что душа человека бессмертна. Ему принадлежит идея о переселении душ. Он считал, что всё происходящее в мире снова и снова повторяется через определённые периоды времени, а души умерших через какое-то время вселяются в других. Душа, как число представляет собой Единицу, т.е. душа совершенна по существу. Но всякое совершенство, поскольку оно приходит в движение, обращается в несовершенство, хотя и стремится обрести вновь свое прежнее совершенное состояние. Несовершенством Пифагор называл отклонение от Единицы; поэтому Два считалось проклятом числом. Душа в человеке пребывает в состоянии сравнительного несовершенства. Она состоит из трёх элементов: разум, ум, страсть. Но если умом и страстями обладают и животные, то разумом (рассудком) наделён только человек. Какая-либо из этих трёх сторон в человеке может возобладать, и тогда человек становится по преимуществу или разумным, или здравомыслящим, или же чувственным. Соответственно он оказывается или философом, или обыкновенным человеком, или животным.
Однако вернёмся к числам. Да действительно числа являются абстрактным проявлением основного философского закона Вселенной – Единства Противоположностей.
Примечание. Абстракция служит базой для процессов обобщения и образования понятий. Она – необходимое условие категоризации. Ею формируются обобщённые образы реальности, позволяющие выделить значимые для определённой деятельности связи и отношения объектов.
Единство Противоположностей Вселенной состоят из Формы и Содержания, Форма является количественной категорией, а Содержание качественной категорией. Естественно, что числа выражают в абстракции количественную и качественную категории. Отсюда сложение (вычитание) чисел это количественная составляющая абстракции Форм, а умножение (деление) – это качественная составляющая абстракции Содержания. Числа абстракции Форм и Содержания находятся в неразрывной связи Единства Противоположностей.
Попробуем произвести математические операции, над числами установив неразрывную связь Формы и Содержания.

Так рассмотрим числовой ряд.
1,2,3,4,5,6,7,8,9 . 1+2= 3 (3) 4+5=9 (9)… (6) 7+8=15 -1+5=6 (9). Далее 10 – (1+0) + 11 (1+1) = (1+2= 3) - 12 –(1+2=3) (3) 13-(1+3= 4) + 14 –(1+4=5) = (4+5= 9) (9) …15 –(1+5=6) (6) … 16- (1+6=7) + 17 – (1+7 =8) (7+8=15) – (1+5= 6) … (18) – (1+8=9) (9). 19 – (1+9= 10) (1) -20 – (2+0=2) (1+2=3) 21 –(2+1=3) (3) – 22- (2+2= 4) 23-(2+3=5) (4+5=9) (9) 24- (2+4=6) 25 – (2+5=7) 26 – (2+6= 8) – 7+ 8= 15 (1+5=6) (6) И т.д.
Отсюда мы наблюдаем циклическое преобразование Форм, которому соответствует цикл Содержания –1-й –цикл - 3-9-6 - 6-9-3 2-й цикл – 3-9- 6 -6-9-3 и т.д.
6
9 9
3

Циклы отображают выворот тора Вселенной, где Противоположностями чисел абстакции Форм и Содержания являются 3 и 6, где 3 определяет Сжатие, а 6 - Растяжение. Компромиссом для их взаимодействия является число 9.
Далее 1,2,3,4,5,6,7,8,9 . 1х2=2 (3) 4х5=20 (2+0=2) (6) 7х8=56 (5+6=11 1+1= 2) (9) и т.д.
Цикл выглядит так 2-(3)-2-(6)- 2- (9)… где 2 является составляющим элементом цикла 3-6-9.
Далее таблица умножения:
2х1=2
2х2=4
(2+4=6)
2х3=6
2х4=8
2х5=10
(8+1+0 = 9)
2х6=12
(1+2=3)
2х7=14
2х8=16
(1+4+1+6=12;1+2=3)
2х9=18
(1+8=9)
Цикл -6,6- 9- 3,3 – 9.
3х1=3
3х2=6
3х3=9
3х4=12 (1+2=3)
3х5=15 (1+5=6)
3х6=18 (1+8=9)
3х7=21 (2+1=3)
3х8=24 (2+4=6)
3х9=27 (2+7=9)
Цикл 3-6-9; 3-6-9; 3-6-9.
4х1=4
4х2=8 (4+8=12 1+2=3)
4х3=12 (1+2=3)
4х4=16
4х5=20 (1+6+2+0= 9)
4х6=24 (2+4=6)
4х7=28
4х8= 32 (2+8+3+2= 15 1+5=6)
4х9=36 (3+6=9)
Цикл 3,3 – 9 - 6,6 - 9.
5х1=5
5х2=10 (5+1+0=6)
5х3=15 (1+5=6)
5х4=20
5х5=25 (2+0+2+5=9)
5х6=30 (3+0=3)
5х7=35
5х8=40 (3+5+4+0= 12 1+2=3)
5х9=45 (4+5=9)
Цикл -6,6 – 9 - 3,3- 9.
6х1= 6
6х2=12 (1+2=3)
6х3=18 (1+8=9)
6х4=24 (2+4=6)
6х5=30 (3+0=3)
6х6=36 (3+6=9)
6х7=42 (4+2=6)
6х8=48 (4+8=12 1+2=3)
6х9=54 (5+4=9)
Цикл – 3-9-6; 3-9-6; 3-9.
7х1=7
7х2=14 (7+1+4= 12 1+2=3)
7х3=21 (2+1=3)
7х4=28
7х5=35 (2+8+3+5=18 1+8=9)
7х6=42 (4+2=6)
7х7=49
7х8=56 (4+9+5+6=24 2+4=6)
7х9=63 (6+3=9)
Цикл – 3,3 – 9 – 6,6 – 9.
8х1= 8
8х2=16 (8+1+6= 15 1+5=6.
8х3=24 (2+4=6)
8х4=32
8х5=40 (3+2+4+0 =9)
8х6=48 (4+8=12 1+2=3)
8х7=56
8х8=64 (5+6+6+4= 21 2+1=3)
8х9=72 (7+2=9)
Цикл -6,6 – 9 – 3,3 – 9.
9х1=9
9х2= 18 (1+8=9)
9х3= 27 (2+7=9)
9х4=36 (3+6=9)
9х5=45 (4+5= 9)
9х6=54 (5+4=9)
9х7=63 (6+3=9)
9х8=72 (7+2=9)
9х9=81 (8+1=9).
Цикл – 9-9-9-9-9-9-9-9-9.

Числа качественной категории Содержания – 3-6-9, указывают на ядро атома с разным количеством нейтронов, а количественной категории указывают на количество электронов атома. Химические элемент – это ядра, массы которых кратные 9, а кратные – 3 и 6 являются изотопами.
Примечание. Изотоп (от греч. «равный», «одинаковый» и «место») – разновидности атомов и ядер одного химического элемента с разным количеством нейтронов в ядре. Химический элемент – это совокупность атомов с одинаковыми зарядами ядра. Изотопы-разновидности атомов химического элемента с одинаковым зарядом ядра, но разным массовым числом.

Все действительные предметы состоят из атомов, а атомы определяются числами.
Поэтому естественно, что Пифагор был убеждён, что числа есть действительные предметы, а не простые символы. Число – это определённое состояние материальных предметов, сущность вещи. И в этом Пифагор был прав.









1 из 8

Презентация на тему: Пифагоровы штаны во все стороны равны

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Это язвительное замечание (которое в полном виде имеет продолжение: чтобы это доказать, нужно снять и показать), придуманное кем-то, по-видимому, потрясенным внутренним содержанием одной важной теоремы евклидовой геометрии, как нельзя точно раскрывает отправную точку, из которой цепь совсем несложных размышлений быстро приводит к доказательству теоремы, а также к еще более значимым результатам. Теорема эта, приписываемая древнегреческому математику Пифагору Самосскому (6 век до нашей эры), известна чуть ли не каждому школьнику и звучит так: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

№ слайда 3

Описание слайда:

Пожалуй, многие согласятся, что геометрическая фигура, обозванная шифровкой "пифагоровы штаны на все стороны равны", называется квадратом. Ну и с улыбкой на лице добавим безобидной шутки ради, что имелось в виду в продолжении шифрованного сарказма. Итак, "чтобы это доказать, нужно снять и показать". Ясно, что "это" - под местоимением подразумевалась непосредственно теорема, "снять" - это получить в руки, взять названную фигуру, "показать" - имелось в виду слово "покасать", привести в соприкосновение какие-то части фигуры. Вообще "пифагоровыми штанами" окрестили напоминавшую по виду штаны графическую конструкцию, получавшуюся на чертеже Евклида при весьма сложном доказательстве им теоремы Пифагора. Когда нашлось доказательство проще, быть может, какой-то рифмоплет сочинил эту скороговорку- подсказку, чтобы не запамятовать начало подхода к доказательству, а народная молва уж разнесла ее по свету как пустую поговорку.

№ слайда 4

Описание слайда:

Так вот если взять квадрат, и внутрь него поместить меньший квадрат так, чтобы центры их совпадали, и повернуть притом меньший квадрат до соприкосновения его углов со сторонами большего квадрата, то на большей фигуре окажутся выделены сторонами меньшего квадрата 4 одинаковых прямоугольных треугольник Отсюда уже лежит прямой путь к доказательству известной теоремы. Пусть сторону меньшего квадрата обозначим через c. Сторона большего квадрата равна a+b, и тогда его площадь равна (a+b) 2 =a 2 +2ab+b 2. Ту же площадь можно определить как сумму площади меньшего квадрата и площадей 4 одинаковых прямоугольных треугольников, то есть как 4·ab/2+c 2 =2ab+c 2. Поставим знак равенства между двумя вычислениями одной и той же площади: a 2 +2ab+b 2 =2ab+c 2. После сокращения членов 2ab получаем вывод: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, то есть a 2 +b 2 =c 2.

№ слайда 5

Описание слайда:

Сразу не каждый поймет, какой прок от этой теоремы. С практической точки зрения ее ценность состоит в служении базисом для многих геометрических вычислений, как например определения расстояния между точками координатной плоскости. Из теоремы выводятся некоторые ценные формулы, ее обобщения ведут к новым теоремам, перекидывающим мостик от вычислений на плоскости до вычислений в пространстве. Следствия теоремы проникают в теорию чисел, открывая отдельные подробности структуры ряда чисел. И многое другое, всего не перечислишь.

№ слайда 6

Описание слайда:

Взгляд с точки зрения праздного любопытства демонстрирует преподношение теоремой занимательных задачек, формулируемых до крайности понятно, но являющихся подчас крепкими орешками. В пример достаточно привести наиболее простую из них, так называемый вопрос о пифагоровых числах, задаваемую в бытовом изложении следующим образом: можно ли построить комнату, длина, ширина и диагональ на полу которой одновременно измерялись бы только целыми величинами, скажем шагами? Всего лишь малейшее изменение этого вопроса способно сделать задачу чрезвычайно сложной. И соответственно, найдутся желающие чисто из научного задора испытать себя в раскалывании очередного математического ребуса. Другое изменение вопроса - и еще одна головоломка. Часто в ходе поиска ответов на подобные проблемы математика эволюционирует, приобретает свежие взгляды на старые понятия, обзаводится новыми системными подходами и так далее, а значит теорема Пифагора, впрочем как и любое другое стоящее учение, с этой точки зрения имеет не меньшую пользу.

№ слайда 7

Описание слайда:

Математика времен Пифагора не признавала иных чисел, кроме рациональных (натуральных чисел или дробей с натуральным числителем и знаменателем). Все измерялось целыми величинами или частями целых. Потому так понятно стремление делать геометрические вычисления, решать уравнения все больше в натуральных числах. Пристрастие к ним открывает путь в невероятный мир таинства чисел, ряд которых в геометрической интерпретации первоначально вырисовывается как прямая линия с бесконечным множеством отметин. Иногда зависимость между какими-то числами ряда, "линейным расстоянием" между ними, пропорцией тотчас бросается в глаза, а иной раз самые сложные мыслительные конструкции не позволяют установить, каким закономерностям подчинено распределение тех или иных чисел. Выясняется, что и в новом мире, в этой "одномерной геометрии", старые задачи сохраняют силу, меняется лишь их постановка. Как например, вариант задания о пифагоровых числах: "От дома отец делает x шагов по x сантиметров каждый, а затем идет еще у шагов по y сантиметров. За ним шагает сын z шагов по z сантиметров каждый. Какими должны быть размеры их шагов, чтобы на z-том шаге ребенок вступил в след отца?"

№ слайда 8

Описание слайда:

Справедливости ради полагается отметить некоторую сложность для начинающего математика пифагорейской методики развития мысли. Это особого рода стиль математического мышления, к нему нужно привыкать. Интересен один момент. Математики вавилонского государства (оно возникло задолго до рождения Пифагора, почти полторы тысячи лет до него) тоже, видимо, знали какие-то методы поиска чисел, которые впоследствии стали называться пифагоровыми. Были найдены клинописные таблички, где вавилонские мудрецы записали выявленные ими тройки таких чисел. Некоторые тройки состояли из чересчур больших чисел, в связи с чем наши современники стали предполагать наличие у вавилонян недурственных, и вероятно даже немудреных, способов их вычисления. К сожалению, ни о самих способах, ни об их существовании ничего не известно.

Знаменитую теорему Пифагора  - «в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов»  - знают все со школьной скамьи.

Ну, вы помните «Пифагоровы штаны» , которые «во все стороны равны»  - схематический рисунок, поясняющий теорему греческого ученого.

Здесь a и b  - катеты, а с  - гипотенуза:

Сейчас я вам расскажу об одном оригинальном доказательстве этой теоремы, о котором вы, возможно, не знали…

Но, сначала рассмотрим одну лемму  - доказанное утверждение, которое полезно не само по себе, а для доказательства других утверждений (теорем).

Возьмем прямоугольный треугольник с вершинами X , Y и Z , где Z  - прямой угол и опустим перпендикуляр с прямого угла Z на гипотенузу. Здесь W  - точка, в которой высота пересекается с гипотенузой.

Эта линия (перпендикуляр) ZW разбивает треугольник на подобные копии самого себя.

Напомню, что подобными называются треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

В нашем примере образовавшиеся треугольники XWZ и YWZ подобны друг другу и также подобны исходному треугольнику XYZ .

Доказать это несложно.

Начнем с треугольника XWZ, обратите внимание, что ∠XWZ = 90, и поэтому ∠XZW = 180–90-∠X. Но 180–90-∠X - это именно то, что ∠Y, поэтому треугольник XWZ должен быть подобным (все углы равны) треугольнику XYZ. Такое же упражнение можно выполнить для треугольника YWZ.

Лемма доказана! В прямоугольном треугольнике высота (перпендикуляр), опущенная на гипотенузу, разбивает треугольник на два подобных, которые в свою очередь подобны исходному треугольнику.

Но, вернемся к нашим «Пифагоровым штанам»…

Опустим перпендикуляр на гипотенузу c . В результате у нас образовались два прямогульных треугольника внутри нашего прямоугольного треугольника. Обозначим эти треугольники (на картинке вверху зеленым цветом) буквами A и B , а исходный треугольник - буквой С .

Разумеется, площадь треугольника С равна сумме площадей треугольников A и B .

Т.е. А + B = С

Теперь разобьем фигуру вверху («Пифагоровы штаны») на три фигурки-домика:

Как мы уже знаем из леммы, треугольники A , B и C подобны друг другу, поэтому и образовавшиеся фигурки-домики также подобны и являются масштабированными версиями друг друга.

Это означает, что соотношение площадей A и , - это то же самое, что отношение площадей B и b², а также C и .

Таким образом, мы имеем A / a² = B / b² = C / c² .

Обозначим это соотношение площадей треугольника и квадрата в фигуре-домике буквой k .

Т.е. k  - это некий коэффициент, связывающий площадь треугольника (крыши домика) с площадью квадрата под ним:
k = A / a² = B / b² = C / c²

Из этого следует, что площади треугольников можно выразить через площади квадратов под ними таким образом:
A = ka² , B = kb² , и C = kc²

Но, мы помним, что A+B = C , а значит, ka² + kb² = kc²

Или a² + b² = c²

А это и есть доказательство теоремы Пифагора !

ПИФАГОРОВЫ ШТАНЫ НА ВСЕ СТОРОНЫ РАВНЫ

Это язвительное замечание (которое в полном виде имеет продолжение: чтобы это доказать, нужно снять и показать), придуманное кем-то, по-видимому, потрясенным внутренним содержанием одной важной теоремы евклидовой геометрии, как нельзя точно раскрывает отправную точку, из которой цепь совсем несложных размышлений быстро приводит к доказательству теоремы, а также к еще более значимым результатам. Теорема эта, приписываемая древнегреческому математику Пифагору Самосскому (6 век до нашей эры), известна чуть ли не каждому школьнику и звучит так: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Пожалуй, многие согласятся, что геометрическая фигура, обозванная шифровкой "пифагоровы штаны на все стороны равны", называется квадратом. Ну и с улыбкой на лице добавим безобидной шутки ради, что имелось в виду в продолжении шифрованного сарказма. Итак, "чтобы это доказать, нужно снять и показать". Ясно, что "это" - под местоимением подразумевалась непосредственно теорема, "снять" - это получить в руки, взять названную фигуру, "показать" - имелось в виду слово "покасать", привести в соприкосновение какие-то части фигуры. Вообще "пифагоровыми штанами" окрестили напоминавшую по виду штаны графическую конструкцию, получавшуюся на чертеже Евклида при весьма сложном доказательстве им теоремы Пифагора. Когда нашлось доказательство проще, быть может, какой-то рифмоплет сочинил эту скороговорку- подсказку, чтобы не запамятовать начало подхода к доказательству, а народная молва уж разнесла ее по свету как пустую поговорку. Так вот если взять квадрат, и внутрь него поместить меньший квадрат так, чтобы центры их совпадали, и повернуть притом меньший квадрат до соприкосновения его углов со сторонами большего квадрата, то на большей фигуре окажутся выделены сторонами меньшего квадрата 4 одинаковых прямоугольных треугольник Отсюда уже лежит прямой путь к доказательству известной теоремы. Пусть сторону меньшего квадрата обозначим через c. Сторона большего квадрата равна a+b, и тогда его площадь равна (a+b) 2 =a 2 +2ab+b 2. Ту же площадь можно определить как сумму площади меньшего квадрата и площадей 4 одинаковых прямоугольных треугольников, то есть как 4·ab/2+c 2 =2ab+c 2. Поставим знак равенства между двумя вычислениями одной и той же площади: a 2 +2ab+b 2 =2ab+c 2. После сокращения членов 2ab получаем вывод: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, то есть a 2 +b 2 =c 2. Сразу не каждый поймет, какой прок от этой теоремы. С практической точки зрения ее ценность состоит в служении базисом для многих геометрических вычислений, как например определения расстояния между точками координатной плоскости. Из теоремы выводятся некоторые ценные формулы, ее обобщения ведут к новым теоремам, перекидывающим мостик от вычислений на плоскости до вычислений в пространстве. Следствия теоремы проникают в теорию чисел, открывая отдельные подробности структуры ряда чисел. И многое другое, всего не перечислишь. Взгляд с точки зрения праздного любопытства демонстрирует преподношение теоремой занимательных задачек, формулируемых до крайности понятно, но являющихся подчас крепкими орешками. В пример достаточно привести наиболее простую из них, так называемый вопрос о пифагоровых числах, задаваемую в бытовом изложении следующим образом: можно ли построить комнату, длина, ширина и диагональ на полу которой одновременно измерялись бы только целыми величинами, скажем шагами? Всего лишь малейшее изменение этого вопроса способно сделать задачу чрезвычайно сложной. И соответственно, найдутся желающие чисто из научного задора испытать себя в раскалывании очередного математического ребуса. Другое изменение вопроса - и еще одна головоломка. Часто в ходе поиска ответов на подобные проблемы математика эволюционирует, приобретает свежие взгляды на старые понятия, обзаводится новыми системными подходами и так далее, а значит теорема Пифагора, впрочем как и любое другое стоящее учение, с этой точки зрения имеет не меньшую пользу. Математика времен Пифагора не признавала иных чисел, кроме рациональных (натуральных чисел или дробей с натуральным числителем и знаменателем). Все измерялось целыми величинами или частями целых. Потому так понятно стремление делать геометрические вычисления, решать уравнения все больше в натуральных числах. Пристрастие к ним открывает путь в невероятный мир таинства чисел, ряд которых в геометрической интерпретации первоначально вырисовывается как прямая линия с бесконечным множеством отметин. Иногда зависимость между какими-то числами ряда, "линейным расстоянием" между ними, пропорцией тотчас бросается в глаза, а иной раз самые сложные мыслительные конструкции не позволяют установить, каким закономерностям подчинено распределение тех или иных чисел. Выясняется, что и в новом мире, в этой "одномерной геометрии", старые задачи сохраняют силу, меняется лишь их постановка. Как например, вариант задания о пифагоровых числах: "От дома отец делает x шагов по x сантиметров каждый, а затем идет еще у шагов по y сантиметров. За ним шагает сын z шагов по z сантиметров каждый. Какими должны быть размеры их шагов, чтобы на z-том шаге ребенок вступил в след отца?" Справедливости ради полагается отметить некоторую сложность для начинающего математика пифагорейской методики развития мысли. Это особого рода стиль математического мышления, к нему нужно привыкать. Интересен один момент. Математики вавилонского государства (оно возникло задолго до рождения Пифагора, почти полторы тысячи лет до него) тоже, видимо, знали какие-то методы поиска чисел, которые впоследствии стали называться пифагоровыми. Были найдены клинописные таблички, где вавилонские мудрецы записали выявленные ими тройки таких чисел. Некоторые тройки состояли из чересчур больших чисел, в связи с чем наши современники стали предполагать наличие у вавилонян недурственных, и вероятно даже немудреных, способов их вычисления. К сожалению, ни о самих способах, ни об их существовании ничего не известно.

Жарг. шк. Шутл. Теорема Пифагора, устанавливающая соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника. БТС, 835 … Большой словарь русских поговорок

Пифагоровы штаны - Шуточное название теоремы Пифагора, возникшее в силу того, что построенные на сторонах прямоугольника и расходящиеся в разные стороны квадраты напоминают покрой штанов. Геометрию я любил… и на вступительном экзамене в университет получил даже от… … Фразеологический словарь русского литературного языка

пифагоровы штаны - Шутливое название теоремы Пифагора, устанавливающей соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника, что внешне на рисунках выглядит как покрой штанов … Словарь многих выражений

Иноск.: о человеке даровитом Ср. Это несомненности мудрец. В древности он наверное выдумал бы Пифагоровы штаны... Салтыков. Пестрые письма. Пифагоровы штаны (геом.): в прямоугольнике квадрат гипотенузы равняется квадратам катетов (учение… … Большой толково-фразеологический словарь Михельсона

Пифагоровы штаны на все стороны равны - Число пуговиц известно. Почему же хую тесно? (грубо) о штанах и мужском половом органе. Пифагоровы штаны на все стороны равны. Чтобы это доказать, надо снять и показать 1) о теореме Пифагора; 2) о широких штанах … Живая речь. Словарь разговорных выражений

Пиѳагоровы штаны (выдумать) иноск. о человѣкѣ даровитомъ. Ср. Это несомнѣнности мудрецъ. Въ древности онъ навѣрное выдумалъ бы пиѳагоровы штаны... Салтыковъ. Пестрыя письма. Пиѳагоровы штаны (геом.): въ прямоугольникѣ квадратъ гипотенузы… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

Пифагоровы штаны во все стороны равны - Шутливое доказательство теоремы Пифагора; также в шутку о мешковатых брюках приятеля … Словарь народной фразеологии

Присл., груб …

ПИФАГОРОВЫ ШТАНЫ НА ВСЕ СТОРОНЫ РАВНЫ (ЧИСЛО ПУГОВИЦ ИЗВЕСТНО. ПОЧЕМУ ЖЕ ХУЮ ТЕСНО? / ЧТОБЫ ЭТО ДОКАЗАТЬ, НАДО СНЯТЬ И ПОКАЗАТЬ) - присл., груб … Толковый словарь современных разговорных фразеологизмов и присловий

Сущ., мн., употр. сравн. часто Морфология: мн. что? штаны, (нет) чего? штанов, чему? штанам, (вижу) что? штаны, чем? штанами, о чём? о штанах 1. Штаны это предмет одежды, который имеет две короткие или длинные штанины и закрывает нижнюю часть… … Толковый словарь Дмитриева

Книги

  • Как открывали Землю , Сахарнов Святослав Владимирович. Как путешествовали финикийцы? На каких кораблях плавали викинги? Кто открыл Америку, а кто впервые совершил кругосветное плавание? Кто составил первый в мире атласАнтарктиды, а кто изобрёл…
  • Чудеса на колёсах , Маркуша Анатолий. Миллионы колёс крутятся по всей земле - катят автомобили, отмеряют время в часах, постукивают под поездами, выполняют бесчисленное множество работ в станках и разнообразных механизмах. Они…