Исследовательская работа на тему: «Признаки делимости натуральных чисел. Признаки делимости натуральных чисел

  • Простым называют число, которое имеет только два делителя: единицу и само это число.
  • Составным называют число, которое имеет более двух делителей.
  • Число 1 не относится ни к простым числам, ни к составным числам.
  • Запись составного числа в виде произведения только простых чисел называется разложением составного числа на простые множители . Любое составное число можно единственным образом представить в виде произведения простых множителей.

Примеры. Разложить составное число столбиком на простые множители:

1) 48; 2) 75; 3) 80; 4) 120.
Запишем число 48, справа от него проведем вертикальную линию. Начинаем перебирать простые делители числа 48, начиная с самого меньшего — числа 2 . Записываем 2 справа от линии. Под числом 48 запишем частное от деления числа 48 на 2. Это число 24, которое тоже делится на 2 . Справа от числа 24 записываем 2, а под числом 24 — результат деления 24 на 2. Это число 12, которое опять делим на 2 . Число 2 пишем справа, а под числом 12 ставим 6. Число 6 опять делим на 2 , получаем число 3, которое пишем под числом 6. Число 3 делим на 3 и, наконец, под числом 3 пишем 1. Таким образом, получаем разложение числа 48 на простые множители: 48=2·2·2·2·3 или 48=2 4 ∙3.

Наименьший простой делитель числа 75 — это число 3 , его ставим справа от вертикальной линии. В результате деления числа 75 на 3 получаем 25. Число 25 запишем под числом 75. Число 25 делится на 5 , поэтому, число 5 пишем справа от числа 25, а под числом 25 запишем число 5 — результат от деления 25 на 5. Число 5 делится на 5 , под ним ставим число 1. Результат: 75=3·5·5 или 75=3∙5 2 .

Число 80 оканчивается нулем, значит, делится на 10. Число 10 — составное, он равно произведению простых чисел 2 и 5 , поэтому, удобно записать справа от вертикальной черты произведение 2·5 . тогда под числом 80 запишем число 8. Число 8 делим на 2 (пишем справа 2), под числом 8 записываем число 4. Снова делим на 2 , получаем 2, делим на 2 , остается 1. Результат: 80=2 4 ∙5.

Число 120 разделим сразу на 10. Так как 10=2·5, то справа от вертикальной черты запишем 2·5 . Под числом 120 записываем 12. Число 12 делим на 2 , записываем под числом 12 число 6, которое делим на 2 , а затем полученное число 3 делим на 3 , получив в результате число 1. Результат: 120=2 3 ∙3∙5.

Страница 1 из 1 1

Называют числа, используемые для счета. Каждому количеству предметов счета соответствует некоторое натуральное число. Если предметов для счета нет, то используется число 0, но при счете предметов мы никогда не начинают с 0, и соответственно число 0 нельзя отнести к натуральным. Понятно, что наименьшим натуральное число является единица. Наибольшего натурального числа не существует, потому что каким бы большим не было число, всегда можно прибавить к нему 1 и записать следующее натуральное число.

Разберем простейший пример деления: разделим число 30 на число 5 (остаток при делении числа 30 на число 5 равен 0), по- сколку 30 = 5 . 6. Значит число 30 делится нацело на число 5. Число 5 - делитель числа 30, а число 30 — кратно числу 5.

Натуральное число k n , если найдётся такое натуральное число m , для которого справедливо равенство k = n . m .

Или другими словами, чтобы разделить одно число на другое, надо найти такое трете число, которое при умножении на второе дает первое

Если натуральное число k делится нацело на натуральное число n , то число k называют кратным числа ,

число n делителем числа k .

Числа 1, 2, 3, 6, 10, 15, 30 также являются делителями числа 30, а число 30 является кратным каждого из этих чисел. Заметим, что число 30 не делится нацело, например, на число 7. Поэтому число 7 не является делителем числа 30, а число 30 не кратно числу 7.

Выполнив действия по делению говорят: «Число k делится нацело на число n », «Число n является делителем числа k », «Число k кратно числу n », «Число k является кратным числа n ».

Легко записать все делители числа 6. Это числа 1, 2, 3 и 6. А можно ли перечислить все числа, кратные числу 6? Числа 6. 1, 6. 2, 6. 3, 6. 4, 6. 5 и т. д. кратны числу 6. Получаем, что чисел, кратных числу 6, — бесконечно много. Поэтому перечислить их все невозможно.

Вообще, для любого натурального числа k каждое из чисел

k . 1, k . 2, k . 3, k . 4 , ...

является кратным числа k .

Наименьшим делителем любого натурального чис-ла k является число 1, а наибольшим делителем — само число k .

Среди чисел, кратных числу k , наибольшего нет, а наименьшее есть — это само число k .

Каждое из чисел 21 и 36 делится нацело на число 3, и их сумма, число 57, также делится нацело на число 3. Вообще, если каждое из чисел k и n делится нацело на число m , то и сумма k + n также делится нацело на число m .

Каждое из чисел 4 и 8 не делится нацело на число 3, а их сумма, число 12, делится нацело на число 3. Каждое из чисел 9 и 7 не делится нацело на число 5, и их сумма, число 16, не делится нацело на число 5. Вообще, если ни число k , ни число n не делятся нацело на число m , то сумма k + n может делиться, а может и не делиться нацело на число m.

Число 35 делится без остатка на число 7, а число 17 на число 7 нацело не делится. Сумма 35 + 17 нацело на число 7 также не делится. Вообще, если число k делится нацело на число m и число n не делится нацело на число m , то сумма k + n не делится нацело на число m.

- Одна из важнейших тем Алгебры. Изучается она, в основном, в 5-6 классах школы и в дальнейшем к ее изучению практически не возвращаются. В то же время на эту тему существует Значительное количество самых разнообразных задач, Которые часто встречаются на олимпиадах, при поступлении в физико-математические школы и институты. Школьники (и даже старших классов), как правило, большинство задач этой темы, к сожалению, решить не могут. Поэтому остановимся на этом разделе Достаточно подробно И рассмотрим те задачи, которые по силам учащимся 8-х классов.

Цели: Напомнить основные сведения о множестве натуральных чисел и рассмотреть типичные задачи по теме.

Ход урока

I. Сообщение темы и цели урока

II. Изучение нового материала (основные понятия)

Числа, которые используются Для счета предметов, Называются Натуральными: 1, 2, 3, 4, ... Множество натуральных чисел обозначают буквой N. Для того чтобы записать, что какое-либо число принадлежит рассматриваемому множеству, используют знак Е . Например, утверждение, что число 5 является натуральным (или что число 5 принадлежит множеству натуральных чисел УУ), можно записать так: 5 е N. Число 2,3 не является натуральным. Это можно записать с помощью знака ё, т. е. 2,3 ? N.

Все натуральные числа (исключая число 1) разделяются на Простые Числа и Составные Числа.

Число называется Составным, Если оно имеет хотя бы один Делитель, Который Не равен самому числу или единице. Например, число 18 имеет такие делители: 2, 3, 6, 9. Поэтому число 18 является составным. (Разумеется, кроме перечисленных делителей у числа 18 есть еще два делителя: 1 и 18).

Число называется Простым, Если оно Не имеет других делителей кроме Самого себя и единицы (например, 2, 3, 5, 7, 11, 13, 17, 19, 23,...).

Число 1 не является ни простым, ни составным.

Напомним Основные признаки делимости Натуральных чисел.

1. Число делится (без остатка или нацело) На число 2, Если Его последняя Цифра четная или 0. (Напомним, что число 0 не является ни четным, ни нечетным). Например, число 35 634 делится на 2, а число 35 635 - не делится.

2. Ч исл о делится На Число 3, если Сумма его цифр делится На 3. Например, число 33 606 делится на 3, т. к. сумма цифр этого числа 3 + 3 + 6 + 0 + 6= 18

Делится на 3. Число 32 606 имеет сумму цифр 3 + 2 + 6 + 0 + 6= 17, которая на 3 не делится. Поэтому число 32 606 также на 3 не делится.

3. Число делится На число 4, Если Две его последние цифры образуют число, Которое делится на 4, или являются нулями. Например, число 35 Щ делится

на 4, т. к. число, образованное двумя последними цифрами (число 12),

делится на 4.

Обратите внимание на этот признак делимости. Оченьчасто школьники ошибочно «сокращают» этот признак делимости до такого: число делится на число 4, если две его последние цифры делятся на 4. Разумеется, данный «признак делимости» является грубой ошибкой. В рассмотренном примере число 35112 делилось на 4, хотя ни одна из его двух последних цифр (1 и 2) на 4 не делится.

Число 35 Щ на число 4 не делится, т. к. число 18 (образованное двумя последними цифрами) на 4 не делится.

4. Число делится На число 5, если Его последняя цифра 0 или 5. Например, числа 35 110 и 35 115 делятся на 5, а число 37 513 на 5 не делится.

5. Число делится На число 8, Если Три его последние цифры образуют число, Которое делится на 8, или являются нулями. Например, число 37 408 делится на 8, т. к. число 408 делится на 8. Число 37 4J4 не делится на 8, т. к. число 414 не делится на 8.

6. Число делится На число 9, Если Сумма его цифр Делится На 9. Например, число 71 505 делится на 9, т. к. сумма цифр этого числа 7+ 1 +5 + 0 + 5= 18 делится на 9. Число 70 505 имеет сумму цифр 7 + 0 + 5 + 0 + 5= 17, которая на 9 не делится. Следовательно, и само число не делится на 9.

7. Число делится На число 10, Если его Последняя цифра нуль. Например, число 37 510 делится на 10, а число 37 515 не делится на 10.

Признаки делимости позволяют решать и более сложные задачи.

Пример 1

Определите: на какие из чисел 2, 3, 4, 5, 6, 8, 9, 10, 15, 18, 20 делится без остатка число 357 120.

А) Число делится на 2, т. к. его последняя цифра нуль.

Б) Число делится на 3, т. к. сумма цифр данного числа равна 3 + 5 + 7 +

1 +2 + 0- 18 и делится на 3.

В) Число делится на 4, т. к. две его последние цифры образуют число 20,

которое делится на 4.

Г) Число делится на 5, т. к. его последняя цифра нуль.

Д) Число делится на 6, т. к. 6 = 2 3 и из пунктов а, б следует, что число

делится на 2 и 3 одновременно.

Е) Число делится на 8, т. к. три его последние цифры образуют число

120, которое делится на 8.

Ж) Число делится на 9, т. к. сумма его цифр 18 (пункт б) делится на 9.

З) Число делится на 10, т. к. его последняя цифра нуль.

И) Число делится на 15, т. к. оно одновременно делится на 3 и 5 (пункты б, г).

К) Число делится на 18, т. к. из пунктов а, ж следует, что оно делится на 2 и 9.

Л) Число делится на 20, т. к. оно одновременно делится на 4 и 5 (пункты в, г).

Заметим, что при рассмотрении делимости числа 357 120 на 6, 15,18,20 мы каждое из этих чисел раскладывали на произведение взаимно простых чисел. Напомним, что Взаимно простыми Числами называются числа, которые Не имеют общих делителей. Причем числа могут и не являться простыми. Например, числа 8 и 15 взаимно простые, т. к. не имеют общих множителей. Однако каждое из этих чисел 8 и 15 - составное.

Например, в пункте к число 18 было представлено в виде произведения двух взаимно простых чисел 2 и 9. Затем использовались признаки делимости на эти числа. Если раскладывать число-делитель на произведение не взаимно простых чисел, то решение усложняется, и могут быть допущены Ошибки. Например, число 30 не делится на 20 без остатка. Но если представить число 20 в виде 2 10, то 30 делится и на 2 и на 10. Однако числа 2 и 10 - не взаимно простые.

Пример 2

Определите, является ли число 98 706 540 321 простым или составным?

Используя признаки делимости, сразу определяем, что данное число на 2,4, 5, 8, 10 не делится. Теперь разберемся, делится ли это число на 3 и на 9. Найдем сумму цифр этого числа: 9 + 8 + 7 + 0 + 6 + 5+4 + 0 + 3 + 2+1= 45. Так как число 45 делится на 3 и на 9, то данное число также делится на 3 и на 9. Так как данное число имеет делители (3 и 9), которые неравны ни единице, ни самому числу, то (по определению) оно является составным.

Нужно заметить, что далеко Не всегда Одно натуральное число Делится На другое Без остатка. Например, при делении числа 29 на 3 получаем в частном 9 и в остатке 2. Эту операцию можно записать в виде: 29 - 3-9 + 2 или Делимое (29) = Делитель (3) Частное (9) + Остаток (2). При Этом Остаток Должен быть Натуральным числом Или Нулем И Меньше, чем делитель.

Пример 3

А) Число 29 можно также записать и в виде: 29 = 3 - 8 + 5. Но в этом

частное 8 и остаток 5, т. к. остаток не может быть больше или равным

делителю.

Б) Число 29 можно записать и в другом виде: 29 = 3 10 + (-1). Но и

получается частное 10 и остаток (- 1), т. к. остаток должен быть натуральным

Таким образом, в общем случае деление с остатком записывается в виде: П = P" K + R. Здесь натуральное число П - Делимое, Натуральное число Р - Делитель, Натуральное число К - частное, Неотрицательное целое число Г - Остаток (0 < г < Р). Если Г = 0, то число П Нацело (без остатка) делится на число/? и л ~ р - к.

Такая форма записи деления числа с остатком позволяет решать различные задачи.

Пример 4

Число П Дает при делении на 13 остаток 5. Какой остаток при делении на 13 дает число вшестеро больше данного?

Если число П Дает при делении на 13 остаток 5, то его можно записать в виде: я = 13? + 5, где К - получающееся при этом частное. Тогда число вшестеро большее, т. е. 6л = 6-(13-&+5)=78-&+30. Выделим из числа 6/7 наибольшее натуральное число, которое без остатка делится на 13, т. е. представим число 6л в виде: 6я=(78А; + 26)+4=13-(6А: + 2)+4. Из этой записи видно, что число 6п При делении на 13 дает в частном число (вк + 2) и остаток 4.

Пример 5

Два числа при делении на 18 дают остаток 9. Доказать, что разность и сумма этих чисел без остатка делятся на 18.


Материалом этой статьи начинается теория делимости целых чисел . Здесь мы введем понятие делимости и укажем принятые термины и обозначения. Это нам позволит перечислить и обосновать основные свойства делимости.

Навигация по странице.

Понятие делимости

Понятие делимости – это одно из основных понятий арифметики и теории чисел. Мы будем говорить о делимости и в частных случаях - о делимости . Итак, дадим представление о делимости на множестве целых чисел.

Целое число a делится на целое число b , которое отлично от нуля, если существует такое целое число (обозначим его q ), что справедливо равенство a=b·q . В этом случае также говорят, что b делит a . При этом целое число b называется делителем числа a , целое число a называется кратным числа b (для получения более детальной информации о делителях и кратных обращайтесь к статье делители и кратные), а целое число q называют частным .

Если целое число a делится на целое число b в указанном выше смысле, то можно сказать, что a делится на b нацело . Слово «нацело» в этом случае дополнительно подчеркивает, что частное от деления целого числа a на целое число b является целым числом.

В некоторых случаях для данных целых чисел a и b не существует такого целого числа q , при котором справедливо равенство a=b·q . В таких случаях говорят, что целое число a не делится на целое число b (при этом имеется в виду, что a не делится на b нацело). Однако в этих случаях прибегают к .

Разберемся с понятием делимости на примерах.

    Любое целое число a делится на число a , на число −a , a , на единицу и на число −1 .

    Докажем это свойство делимости.

    Для любого целого числа a справедливы равенства a=a·1 и a=1·a , из которых следует, что a делится на a , причем частное равно единице, и что a делится на 1 , причем частное равно a . Для любого целого числа a также справедливы равенства a=(−a)·(−1) и a=(−1)·(−a) , из которых следует делимость a на число, противоположное числу a , а также делимость a на минус единицу.

    Отметим, что свойство делимости целого числа a на себя называют свойством рефлексивности.

    Следующее свойство делимости утверждает, что нуль делится на любое целое число b .

    Действительно, так как 0=b·0 для любого целого числа b , то нуль делится на любое целое число.

    В частности, нуль делится и на нуль. Это подтверждает равенство 0=0·q , где q – любое целое число. Из этого равенства вытекает, что частным от деления нуля на нуль является любое целое число.

    Также нужно отметить, что на 0 не делится никакое другое целое число a , отличное нуля. Поясним это. Если бы нуль делил целое число a , отличное от нуля, то должно было бы быть справедливо равенство a=0·q , где q – некоторое целое число, а последнее равенство возможно только при a=0 .

    Если целое число a делится на целое число b и a меньше модуля числа b , то a равно нулю. В буквенном виде это свойство делимости записывается так: если ab и , то a=0 .

    Доказательство.

    Так как a делится на b , то существует целое число q , при котором верно равенство a=b·q . Тогда должно быть справедливо и равенство , а в силу должно быть справедливо и равенство вида . Если q не равно нулю, то , откуда следует, что . Учитывая полученное неравенство, из равенства следует, что . Но это противоречит условию . Таким образом, q может быть равно только нулю, при этом получим a=b·q=b·0=0 , что и требовалось доказать.

    Если целое число a отлично от нуля и делится на целое число b , то модуль числа a не меньше модуля числа b . То есть, если a≠0 и ab , то . Это свойство делимости непосредственно вытекает из предыдущего.

    Делителями единицы являются только целые числа 1 и −1 .

    Во-первых, покажем, что единица делится на 1 и на −1 . Это следует из равенств 1=1·1 и 1=(−1)·(−1) .

    Осталось доказать, что никакое другое целое число не является делителем единицы.

    Предположим, что целое число b , отличное от 1 и −1 , является делителем единицы. Так как единица делится на b , то в силу предыдущего свойства делимости должно выполняться неравенство , которое равносильно неравенству . Этому неравенству удовлетворяют только три целых числа: 1 , 0 , и −1 . Так как мы приняли, что b отлично от 1 и −1 , то остается лишь b=0 . Но b=0 не может быть делителем единицы (что мы показали при описании второго свойства делимости). Этим доказано, что никакие числа, отличные от 1 и −1 , не являются делителями единицы.

    Чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b .

    Докажем сначала необходимость.

    Пусть a делится на b , тогда существует такое целое число q , что a=b·q . Тогда . Так как является целым числом, то из равенства следует делимость модуля числа a на модуль числа b .

    Теперь достаточность.

    Пусть модуль числа a делится на модуль числа b , тогда существует такое целое число q , что . Если числа a и b положительные, то справедливо равенство a=b·q , которое доказывает делимость a на b . Если a и b отрицательные, то верно равенство −a=(−b)·q , которое можно переписать как a=b·q . Если a – отрицательное число, а b – положительное, то имеем −a=b·q , это равенство равносильно равенству a=b·(−q) . Если a – положительное, а b – отрицательное, то имеем a=(−b)·q , и a=b·(−q) . Так как и q и −q являются целыми числами, то полученные равенства доказывают, что a делится на b .

    Следствие 1.

    Если целое число a делится на целое число b , то a также делится на число −b , противоположное числу b .

    Следствие 2.

    Если целое число a делится на целое число b , то и −a делится на b .

    Важность только что рассмотренного свойства делимости сложно переоценить - теорию делимости можно описывать на множестве целых положительных чисел, а это свойства делимости распространяет ее и на целые отрицательные числа.

    Делимость обладает свойством транзитивности: если целое число a делится на некоторое целое число m , а число m в свою очередь делится на некоторое целое число b , то a делится на b . То есть, если am и mb , то ab .

    Приведем доказательство этого свойства делимости.

    Так как a делится на m , то существует некоторое целое число a 1 такое, что a=m·a 1 . Аналогично, так как m делится на b , то существует некоторое целое число m 1 такое, что m=b·m 1 . Тогда a=m·a 1 =(b·m 1)·a 1 =b·(m 1 ·a 1) . Так как произведение двух целых чисел является целым числом, то m 1 ·a 1 - это некоторое целое число. Обозначив его q , приходим к равенству a=b·q , которое доказывает рассматриваемое свойство делимости.

    Делимость обладает свойством антисимметричности, то есть, если a делится на b и одновременно b делится на a , то равны либо целые числа a и b , либо числа a и −b .

    Из делимости a на b и b на a можно говорить о существовании целых чисел q 1 и q 2 таких, что a=b·q 1 и b=a·q 2 . Подставив во второе равенство b·q 1 вместо a , или подставив в первое равенство a·q 2 вместо b , получим, что q 1 ·q 2 =1 , а учитывая, что q 1 и q 2 – целые, это возможно лишь при q 1 =q 2 =1 или при q 1 =q 2 =−1 . Отсюда следует, что a=b или a=−b (или, что то же самое, b=a или b=−a ).

    Для любого целого и отличного от нуля числа b найдется такое целое число a , не равное b , которое делится на b .

    Таким числом будет любое из чисел a=b·q , где q – любое целое число, не равное единице. Можно переходить к следующему свойству делимости.

    Если каждое из двух целых слагаемых a и b делится на целое число c , то сумма a+b также делится на c .

    Так как a и b делятся на c , то можно записать a=c·q 1 и b=c·q 2 . Тогда a+b=c·q 1 +c·q 2 =c·(q 1 +q 2) (последний переход возможен в силу ). Так как сумма двух целых чисел является целым числом, то равенство a+b=c·(q 1 +q 2) доказывает делимость суммы a+b на c .

    Это свойство можно распространить на сумму трех, четырех и большего количества слагаемых.

    Если еще вспомнить, что вычитание из целого числа a целого числа b представляет собой сложение числа a с числом −b (смотрите ), то данное свойство делимости справедливо и для разности чисел. Например, если целые числа a и b делятся на c , то разность a−b также делится на с .

    Если известно, что в равенстве вида k+l+…+n=p+q+…+s все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

    Допустим, этим членом является p (мы можем взять любой из членов равенства, что не повлияет на рассуждения). Тогда p=k+l+…+n−q−…−s . Выражение, получившееся в правой части равенства, делится на b в силу предыдущего свойства. Следовательно, число p также делится на b .

    Если целое число a делится на целое число b , то произведение a·k , где k – произвольное целое число, делится на b .

    Так как a делится на b , то справедливо равенство a=b·q , где q – некоторое целое число. Тогда a·k=(b·q)·k=b·(q·k) (последний переход осуществлен в силу ). Так как произведение двух целых чисел есть целое число, то равенство a·k=b·(q·k) доказывает делимость произведения a·k на b .

    Следствие: если целое число a делится на целое число b , то произведение a·k 1 ·k 2 ·…·k n , где k 1 , k 2 , …, k n – некоторые целые числа, делится на b .

    Если целые числа a и b делятся на c , то сумма произведений a·u и b·v вида a·u+b·v , где u и v – произвольные целые числа, делится на c .

    Доказательство этого свойства делимости аналогично двум предыдущим. Из условия имеем a=c·q 1 и b=c·q 2 . Тогда a·u+b·v=(c·q 1)·u+(c·q 2)·v=c·(q 1 ·u+q 2 ·v) . Так как сумма q 1 ·u+q 2 ·v является целым числом, то равенство вида a·u+b·v=c·(q 1 ·u+q 2 ·v) доказывает, что a·u+b·v делится на c .

На этом закончим обзор основных свойств делимости.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Как уже отмечалось, натуральное число а делится нацело на натуральное число b, если существует натуральное число с, при умножении которого на b получается а:

Слово «нацело» обычно опускают – для краткости.

Если а делится на b, то говорят еще, что а кратно b. Например, число 48 кратно числу 24.

Теорема 1. Если один из множителей делится на некоторое число, то и произведение делится на это число .

Например, 15 делится на 3, значит, и 15∙11 делится на 3, потому что 15∙11=(3∙5)∙11=3∙(5∙11).

Эти рассуждения подходят и для общего случая. Пусть число а делится на с, тогда найдется такое натуральное число n, что a = n∙c. Рассмотрим произведение числа а и произвольного натурального числа b. a∙b = n∙(c∙b) =
= n∙(b∙c) = (n∙b)∙c. Отсюда, по определению, вытекает, что произведение a∙b тоже делится на с. Что и требовалось доказать.

Теорема 2. Если первое число делится на второе, а второе делится на третье, то первое число делится на третье .

Например, 777 делится на 111, потому что 777=7∙111, а 111 делится на 3, потому что 111 = 3∙37. Из этого следует, что 777 делится на 3, так как 777 = 3∙(37∙7).

В общем случае эти рассуждения можно повторить почти дословно. Пусть число а делится на число b, а число b делится на число с. Это означает, что найдутся такие натуральные числа n и m, что a = n∙b и b = m∙c. Тогда число а можно представить в виде: а = n∙b = n∙(m∙c) = (n∙m)∙c. Равенство а = (n∙m)∙c означает, что число а тоже делится на с.

Теорема 3. Если каждое из двух чисел делится на некоторое число, то их сумма и разность делятся на это число .

Например, 100 делится на 4, потому что 100=25∙4; 36 тоже делится на 4, потому что 36 = 9∙4. Из этого следует, что 136 делится на 4, потому что

136 = 100+ 36 = 25∙4+ 9∙4 = (25+ 9)∙4 = 34∙4.

Можно также заключить, что число 64 делится на 4, потому что

64 = 100 – 36 = 25∙4 – 9∙4 =(25 – 9)∙4= 16∙4.

Докажем теорему в общем случае. Пусть каждое из чисел а и b делится на число с. Тогда, по определению, найдутся такие натуральные числа n и m, что
а = n∙c и b = m∙c. Рассмотрим сумму чисел а и b.

a + b = n∙c + m∙c = (n + m)∙c.

Отсюда следует, что а + b делится на с.

Аналогично, а – b = n∙c – m∙c = (n – m)∙c. Следовательно, а – b делится на с.

Теорема 4. Если одно из двух чисел делится на некоторое число, а другое на него не делится, то их сумма и разность не делятся на это число .

Например, 148 делится на 37, потому что 148 = 4∙37, а 11 не делится на 37. Очевидно, что сумма 148 + 11 и разность 148 – 11 не делятся на 37, иначе это противоречило бы свойству 3.



Признаки делимости

Если число оканчивается цифрой 0, то оно делится на 10 .

Например, число 4560 оканчивается цифрой 0, его можно представить в виде произведения 456∙10, которое делится на 10 (по теореме 1).

Число 4561 не делится на 10, потому что 4561 = 4560+1 – сумма числа 4560, делящегося на 10, и числа 1, не делящегося на 10 (по теореме 4).

Если число оканчивается одной из цифр 0 или 5, то оно делится на 5 .

Например, число 2300 делится на 5, потому что это число делится на 10, а 10 делится на 5 (по теореме 2).

Число 2305 оканчивается цифрой 5, оно делится на 5, так как его можно записать в виде суммы чисел, делящихся на 5: 2300 + 5 (по теореме 3).

Число 52 не делится на 5, потому что 52 = 50 + 2 – сумма числа 50, делящегося на 5, и числа 2, не делящегося на 5 (по теореме 4).

Если число оканчивается одной из цифр 0, 2, 4, 6, 8, то оно делится на 2.

Например, число 130 оканчивается цифрой 0, оно делится на 10, а 10 делится на 2, следовательно, 130 делится на 2.

Число 136 оканчивается цифрой 6, оно делится на 2, так как его можно записать в виде суммы чисел, делящихся на 2: 130 + 6 (по теореме 3).

Число 137 не делится на 2, потому что 137 = 130 + 7 – сумма числа 130, делящегося на 2, и числа 7, не делящегося на 2 (по теореме 4).

Число, делящееся на 2, называют четным.

Число, не делящееся на 2, называют нечетным .

Например, числа 152 и 790 – четные, а числа 111 и 293 – нечетные.

Если сумма цифр числа делится на 9, то и само число делится на 9 .

Например, сумма цифр 7 + 2 + 4 + 5 = 18 числа 7245 делится на 9. Число 7245 делится на 9, потому что его можно представить в виде суммы 7∙1000 +
+ 2∙100 + 4∙10 + 5 = 7 (999 + 1) + 2∙(99 + 1) + + 4∙(9 + 1) + 5 = (7∙999 + 2∙99 +
+ 4∙9) + (7 + 2 + 4 + 5), где сумма в первых скобках делится на 9, а во вторых скобках – сумма цифр данного числа – также делится на 9 (по теореме 3).

Число 375 не делится на 9, так как сумма его цифр 3 + 7 + 5=15 не делится на 9 Это можно доказать следующим образом: 375 = 3∙(99 + 1) + 7∙(9+1) + 5 =
+ (3∙99 + 7∙9) + (3 + 7 + 5), где сумма в первых скобках делится на 9, а во вторых скобках – сумма цифр числа 375 – не делится на 9 (по теореме 4).



Если сумма цифр числа делится на 3, то и само число делится на 3 .

Например, у числа 375 сумма цифр 3 + 7 + 5=15 делится на 3, и оно само делится на 3 потому, что 375 = (3∙99 + 7∙9) + (3 + 7 + 5), где сумма в первых скобках делится на 3, а во вторых скобках – сумма цифр числа 375 – также делится на 3.

Сумма цифр числа 679, равная 6 + 7 + 9 = 22, не делится на 3, и само число не делится на 3, потому что 679 = (6∙99 + 7∙9) + (6 + 7 + 9), где сумма в первых скобках делится на 3, а во вторых скобках – сумма цифр числа 679 – не делится на 3.

Примечание . Когда говорят «число оканчивается цифрой...» имеют в виду «десятичная запись числа заканчивается цифрой...»

Простые и составные числа

Каждое натуральное число р делится на 1 и само на себя:

р:1=р, р:р=1.

Простым числом называют такое натуральное число, которое больше единицы и делится только на 1 и само на себя .

Вот первые десять простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Непростые натуральные числа, большие единицы, называют составными . Каждое составное число делится на 1, само на себя и еще хотя бы на одно натуральное число.

Вот все составные числа, меньшие 20:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18.

Таким образом, множество всех натуральных чисел состоит из простых чисел, составных чисел и единицы.

Простых чисел бесконечно много, есть первое число – 2, но нет последнего простого числа.

Делители натурального числа

Если натуральное число а делится на натуральное число b, то число b называют делителем числа а.

Например, делителями числа 13 являются числа 1 и 13, делителями числа 4 – числа 1, 2, 4, а делителями числа 12 – числа 1, 2, 3, 4, 6, 12.

Каждое простое число имеет только два делителя – единицу и само себя, а каждое составное число, кроме единицы и себя, имеет и другие делители.

Если делитель – простое число, то его называют простым делителем. Например, число 13 имеет простой делитель 13, число 4 – простой делитель 2, а число 12 – простые делители 2 и 3.

Каждое составное число можно представить в виде произведения его простых делителей. Например,

28 = 2∙2∙7 = 2 2 ∙7;

81 = 3∙3∙3∙3 = З 4 ;

100 = 2∙2∙5∙5 = 2 2 ∙5 2 .

Правые части полученных равенств называют разложением на простые множители чисел 28, 22, 81 и 100.

Разложить данное составное число на простые множители – значит представить его в виде произведения различных его простых делителей или их степеней.

Покажем, как можно разложить число 90 на простые множители.

1) 90 делится на 2, 90:2 = 45;

2) 45 не делится на 2, но делится на 3, 45:3= 15;

3) 15 делится на 3, 15:3 = 5;

4) 5 делится на 5, 5:5 = 1.

Таким образом, 90 = 2∙45 = 2∙3∙15 = 2∙3∙3∙5.

Наибольший общий делитель

Число 12 имеет делители 1, 2, 3, 4, 12. Число 54 имеет делители 1, 2, 3, 6, 9, 18, 27, 54. Мы видим, что числа 12 и 54 имеют общие делители 1, 2, 3, 6.

Наибольшим общим делителем чисел 12 и 54 является число 6.

Наибольший общий делитель чисел а и b обозначают: НОД (а, b).

Например, НОД (12, 54) = 6.

Наименьшее общее кратное

Число, делящееся на 12, называется кратным числу 12. Числу 12 кратны числа 12, 24, 36, 48, 60, 72, 84, 96, 108 и т.д. Числу 18 кратны числа 18, 36, 54, 72, 90, 108, 126 и т. д.

Мы видим, что имеются числа, кратные одновременно 12 и 18. Например, 36, 72, 108, ... . Эти числа называются общими кратными чисел 12 и 18.

Наименьшим общим кратным натуральных чисел а и b называют наименьшее натуральное число, делящееся нацело на а и b. Это число обозначают: НОК (а, b).

Наименьшее общее кратное двух чисел обычно находят одним из двух способов. Рассмотрим их.

Найдем НОК(18, 24).

I способ. Будем выписывать числа, кратные 24 (большему из данных чисел), проверяя, делится ли каждое из них на 18: 24∙1=24 – не делится на 18, 24∙2 = 48 – не делится на 18, 24∙3 = 72 – делится на 18, поэтому НОК (24, 18) =
= 72.

II способ. Разложим числа 24 и 18 на простые множители: 24 = 2∙2∙2∙3,
18 = 2∙3∙3.

НОК(24, 18) должно делиться и на 24, и на 18. Поэтому искомое число содержит все простые делители большего числа 24 (т. е. числа 2, 2, 2, 3) и еще недостающие множители из разложения меньшего числа 18 (еще одно число 3). Поэтому НОК(18, 24) = 2∙2∙2∙3∙3 = 72.

Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее кратное равно произведению этих чисел. Например, 24 и 25 – взаимно простые числа. Поэтому НОК (24, 25) = 24∙25 = 600.

Если одно из двух чисел делится нацело на другое, то наименьшее общее кратное этих чисел равно большему из них. Например, 120 делится нацело на 24, следовательно, НОК (120, 24)= 120.

Целые числа

Напоминание. Числа, которые используют при подсчете количества предметов, называют натуральными числами . Нуль не считается натуральным числом. Натуральные числа и нуль, записанные в порядке возрастания и без пропусков, образуют ряд целых неотрицательных чисел:

В этой разделе будут введены новые числа – целые отрицательные .

Целые отрицательные числа

Базовый пример из жизни – термометр. Предположим, он показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания: 7 – 4 = 3. Если температура понизится на 7°, то термометр покажет 0°: 7 – 7 = 0.

Если же температура понизится на 8°, то термометр покажет –1° (1° мороза). Но результат вычитания 7 – 8 нельзя записать с помощью натуральных чисел и нуля, хотя он имеет реальный смысл.

Отсчитать в ряду неотрицательных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 – 8 стало выполнимым, расширим ряд неотрицательных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак «–», показывающий, что это число стоит слева от нуля.

Записи –1, –2, –3, ... читают «минус 1», «минус 2», «минус 3» и т. д.:

–5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ... .

Полученный ряд чисел называют рядом целых чисел. Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными.