Базовые пределы. Пределы функций. Примеры решений. Бесконечно малые и бесконечно большие функции

Одним из самых запоминающихся событий The International 7 , своеобразным открытием турнира, стало представление революционного бота, разработанного командой известного апологета искусственного интеллекта - Илона Маска . В финале пятого игрового дня легендарный Dendi, который, к радости фанатов, все-таки оказался на сцене TI7, в стилизованном шоу-матче сразился с творением OpenAI . В коротком интро разработчики показали еще несколько топовых игроков и комментаторов, которые испытали на себе мощь бота, а также рассказали о ключевых моментах в разработке программы. Кому и как все же удалось победить бота, есть ли у программы слабые места, что отличает проект от уже представленных миру образцов ИИ, и какие перспективы у подобных программ в целом и в Dota 2 в частности? Разработчики выпустили дневник, в котором есть ответы на все эти вопросы.

Результаты команды на поприще Dota 2 показали, что при достаточном количестве практических экспериментов самообучение способно вознести возможности системы развития ИИ на недоступный для человека уровень.

В течение месяца бот прошел путь от новичка, которого мог легко переиграть обычный игрок, до сверхразума, способного доминировать над профессионалами - и программа продолжает улучшаться. Контролируемые системы обучения хороши настолько, насколько хороша их тренировочная база, а в системе самовзаимодействия (игры бота с самим собой) эта база улучшается автоматически по мере улучшения действий ИИ.

Рейтинг TrueSkill (аналогично рейтингу ELO в шахматах) лучшей на данный момент версии бота достигнут с помощью симуляции игры двух программных единиц и сопоставления коэффициента побед. Рост достигался как от улучшений алгоритмов обучения программы, так и за счет полученных в результате новых навыков бота. Экспонента графика говорит о том, что каждое новое улучшение приносит все больше и больше эффективности, так как взаимодействует с уже существующей базой навыков и алгоритмов.

Хронология проекта

Для сравнения напомним, что из всех играющих в Dota 2 15% обладают показателем MMR ниже 1.500, у 58% (больше половины) MMR меньше 3.000 и у 99.99% (почти у всех) - ниже 7.500 MMR.

1 марта: получены первые результаты самообучения в простой среде, когда Drow Ranger училась «кайтить» запрограммированного Earthshaker.

8 марта: тестер с 1.500 MMR отчитался, что он играет быстрее и лучше, чем бот.

начало июня: этот же тестер первый раз проиграл боту.

8 июля: программа едва выигрывает у полупрофессионального тестера с 7.500 MMR.

7 августа: бот побеждает Blitz (6.200 MMR) 3-0, Pajkatt (8.500 MMR) 2-1 и CC&C (8.900 MMR) 3-0. Все трое согласились, что Sumail все же найдет способ победить бота.

9 августа: OpenAI побеждает Arteezy (10.000 MMR) со счетом 10-0. Артур надеется, что Sumail все-таки справится с программой.

10 августа: бот обыгрывает Sumail (8.300 MMR, лучший игрок 1х1): 6-0. Спортсмен признает, что бота просто невозможно победить. Сыграв со старой версией бота от 9-го августа, он также проигрывает со счетом 1-2.

11 августа: побеждает Dendi (7.300 MMR, бывший чемпион мира, любимец публики) 2-0. При этом винрейт бота с версией от 10-го августа составил 60%.

Задачи Open AI в Dota 2

Несмотря на то, что игра проходит в формате 5х5, дисциплина 1х1 иногда встречается на некоторых турнирах. Бот играл, полностью соблюдая правила подобных противостояний, на равных условиях: никаких программных улучшений, считывания кода, читов или прочих возможностей ИИ.

В распоряжении бота были следующие инструменты:

Обзор: бот видит только то, что видит игрок: героев, крипов, курьера и область вокруг персонажа. Бот не видит сквозь туман войны.

Действия: бот совершает действия примерно с такой же частотой, как игрок: двигается по локации, атакует, использует предметы.

Сбор информации: бот считывает базовые показатели: здоровье юнитов и тайминг правильного добивания крипов.

Команда разработчиков задала несколько билдов, которые бот мог самостоятельно выбирать, улучшать и развивать. Тренировка блока крипов проводилась отдельно (т.к. в ней не участвовал второй бот/игрок, и программе было не у кого учиться). Бот использует обычнуют технику блокировки, просчитывая скорость передвижения крипов и свою собственную.

Open AI на The International 7

Подход разработчиков, основанный на постоянном обучении с помощью игры с партнером или с самим собой, позволил существенно улучшить бота во время пребывания на The International . В понедельник вечером Pajkatt победил программу, используя нестандартный билд с ранним Magic Wand . Этот билд был добавлен в список алгоритмов бота.

К полудню в среду была протестирована последняя версия программы. Бот потерял много здоровья на первой волне крипов. Разработчики подумали, что нужно откатить версию, но оказалось, что бот попросту «байтит» оппонента. Дальнейшая самопрактика позволила программе распозновать также и эту стратегию. Разработчики сохранили полученный модуль и внедрили его алгоритм для первой волны крипов к боту версии понедельника. Потом были матчи с Arteezy.

После практик с Артуром (10-0 в пользу бота), была переработана модель блокировки крипов, что позволило показателям бота улучшится на единицу в системе TrueSkill.

Перед матчами с Sumail, которые должны были пройти в четверг, в процессе самотренировки показатель вырос еще на две единицы. Sumail отметил, что бот научился использовать Raze вне обзора противника, если тот купил Magic Wand . Таким образом программа не давала противнику зарядить артефакт. Об этой внутриигровой механике в тот момент не знали даже сами разработчики.

Arteezy также сыграл против тестера-полупрофессионала (7.500 MMR). Артур доминировал всю игру, но тестер смог удивить его, используя стратегию, которой он научился у бота. Arteezy отметил, что такой сценарий однажды против него разыграл Paparazi, но этот подход серьезно отличался от стандартной игры на Shadow Fiend.

Pajkatt победил бота версии от понедельника с помощью Magic Wand и Fairy Fire, которые дали необходимую для победы регенерацию в процессе боя. Обычно, программа отлично просчитывала вероятность победы при размене, но бот впервые играл против билда с ранним Magic Wand.

Слепые пятна ИИ

Несмотря на то, что Sumail назвал программу непобедимой, бот все еще может быть дезориентирован в ситуациях, в которых он раньше не оказывался. Программа была доступна на The International , где игроки провели более тысячи матчей с установкой победить OpenAI любой ценой.

Слабые места бота можно условно разделить на три архетипа:

Махинации с крипами: например, можно уводить вражеских крипов с линии сразу после их появления (между второй и третьей вышками на центральной линии), оставляя башню бота без защиты.

Orb of Venom + Wind Lace: сборка дает солидное преимущество по скорости на первом уровне и, при правильном использовании, позволяет быстро пролить первую кровь. С помощью полученного буста необходимо суметь убить бота во второй раз.

Raze 1 уровня: требует виртуозного навыка, но несколько 6-7K игроков умудрились убить бота 1 уровня, попав прокастом способности из 3-5 раз.

Устранить эти слабые места не составит труда, точно так же, как и в случае с багом Pajkatt. Но с точки зрения игры 5х5, где нет ограничительных правил (как, например, в 1х1, где игра идет только на средней линии) - это уже никакие не баги или злоупотребления, и боту понадобится система, которая сможет справиться с новыми или нестандартными ситуациями, с которыми программа сталкивается впервые.

Тема 4.6.Вычисление пределов

Предел функции не зависит от того, определена она в предельной точке или нет. Но в практике вычисления пределов элементарных функций это обстоятельство имеет существенное значение.

1. Если функция является элементарной и если предельное значение аргумента принадлежит ее области определения, то вычисление предела функции сводится к простой подстановке предельного значения аргумента, т.к. предел элементарной функции f (x) при х стремящемся к а , которое входит в область определения, равен частному значению функции при х=а , т.е. lim f(x)=f(a ) .

2. Если х стремится к бесконечности или аргумент стремится к числу, которое не принадлежит области определения функции, то в каждом таком случае нахождение предела функции требует специального исследования.

Ниже приведены простейшие пределы, основанные на свойствах пределов, которые можно использовать как формулы:

Более сложные случаи нахождения предела функции:

рассматриваются каждый в отдельности.

В этом разделе будут приведены основные способы раскрытия неопределенностей.

1. Случай, когда при х стремящемся к а функция f (x) представляет отношение двух бесконечно малых величин

а) Сначала нужно убедится, что предел функции нельзя найти непосредственной подстановкой и при указанном изменении аргумента она представляет отношение двух бесконечно малых величин. Делаются преобразования, чтобы сократить дробь на множитель, стремящийся к 0. Согласно определению предела функции аргумент х стремится к своему предельному значению, никогда с ним не совпадая.

Вообще если ищется предел функции при х стремящемся к а , то необходимо помнить, что х не принимает значения а , т.е. х не равен а.

б) Применяется теорема Безу. Если ищется предел дроби, числитель и знаменатель которой многочлены, обращающиеся в 0 в предельной точке х=а , то согласно вышеназванной теореме оба многочлена делятся без остатка на х-а .

в) Уничтожается иррациональность в числителе или в знаменателе путем умножения числителя или знаменателя на сопряженное к иррациональному выражение, затем после упрощения дробь сокращается.

г) Используется 1-й замечательный предел (4.1).

д) Используется теорема об эквивалентности бесконечно малых и следующие б.м.:

2. Случай, когда при х стремящемся к а функция f (x) представляет отношение двух бесконечно больших величин

а) Деление числителя и знаменателя дроби на наивысшую степень неизвестного.

б) В общем случае можно использовать правило

3. Случай, когда при х стремящемся к а функция f (x) представляет произведение бесконечно малой величины на бесконечно большую

Дробь преобразовывается к виду, числитель и знаменатель которой одновременно стремятся к 0 или к бесконечности, т.е. случай 3 сводится к случаю 1 или случаю 2.

4. Случай, когда при х стремящемся к а функция f (x) представляет разность двух положительных бесконечно больших величин

Этот случай сводится к виду 1 или 2 одним из следующих способов:

а) приведение дробей к общему знаменателю;

б) преобразование функции к виду дроби;

в) избавление от иррациональности.

5. Случай, когда при х стремящемся к а функция f (x) представляет степень, основание которой стремится к 1, а показатель к бесконечности.

Функция преобразовывается таким образом, чтобы использовать 2-й замечательный предел (4.2).

Пример. Найти .

Так как х стремится к 3 , то числитель дроби стремится к числу 3 2 +3 *3+4=22, а знаменатель- к числу 3+8=11. Следовательно,

Пример

Здесь числитель и знаменатель дроби при х стремящемся к 2 стремятся к 0 (неопределенность вида), разложим числитель и знаменатель на множители, получим lim(x-2)(x+2)/(x-2)(x-5)

Пример

Умножим числитель и знаменатель на выражение, сопряженное к числителю, имеем

Раскрываем скобки в числителе, получим

Пример

Уровень 2. Пример. Приведем пример применения понятия предела функции в экономических расчетах. Рассмотрим обыкновенную финансовую сделку: предоставление в долг суммы S 0 с условием, что через период времени T будет возвращена сумма S T . Определим величину r относительного роста формулой

r=(S T -S 0)/S 0 (1)

Относительный рост можно выразить в процентах, умножив полученное значение r на 100.

Из формулы (1) легко определить величину S T :

S T = S 0 (1 + r )

При расчете по долгосрочным кредитам, охватывающим несколько полных лет, используют схему сложных процентов. Она состоит в том, что если за 1-й год сумма S 0 возрастает в (1 + r ) раз, то за второй год в (1 + r ) раз возрастает сумма S 1 = S 0 (1 + r ), то есть S 2 = S 0 (1 + r ) 2 . Аналогично получается S 3 = S 0 (1 + r ) 3 . Из приведенных примеров можно вывести общую формулу для вычисления роста суммы за n лет при расчете по схеме сложных процентов:

S n = S 0 (1 + r ) n .

В финансовых расчетах применяются схемы, где начисление сложных процентов производится несколько раз в году. При этом оговариваются годовая ставка r и количество начислений за год k . Как правило, начисления производятся через равные промежутки времени, то есть длина каждого промежутка T k составляет часть года. Тогда для срока в T лет (здесь T не обязательно является целым числом) сумма S T рассчитывается по формуле

(2)

где - целая часть числа, которая совпадает с самим числом, если, например, T ? целое число.

Пусть годовая ставка равна r и производится n начислений в год через равные промежутки времени. Тогда за год сумма S 0 наращивается до величины, определяемой формулой

(3)

В теоретическом анализе и в практике финансовой деятельности часто встречается понятие “непрерывно начисляемый процент”. Чтобы перейти к непрерывно начисляемому проценту, нужно в формулах (2) и (3) неограниченно увеличивать соответственно, числа k и n (то есть устремить k и n к бесконечности) и вычислить, к какому пределу будут стремиться функции S T и S 1 . Применим эту процедуру к формуле(3):

Заметим, что предел в фигурных скобках совпадает со вторым замечательным пределом. Отсюда следует, что при годовой ставке r при непрерывно начисляемом проценте сумма S 0 за 1 год наращивается до величины S 1 * , которая определяется из формулы

S 1 * = S 0 e r (4)

Пусть теперь сумма S 0 предоставляется в долг с начислением процента n раз в год через равные промежутки времени. Обозначим r e годовую ставку, при которой в конце года сумма S 0 наращивается до величины S 1 * из формулы (4). В этом случае будем говорить, что r e - это годовая ставка при начислении процента n раз в год, эквивалентная годовому проценту r при непрерывном начислении. Из формулы (3) получаем

S* 1 =S 0 (1+r e /n) n

Приравнивая правые части последней формулы и формулы (4), полагая в последней T = 1, можно вывести соотношения между величинами r и r e :

Эти формулы широко используются в финансовых расчётах.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухойотрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:



Разделим числитель и знаменатель на

Проанализируем бесконечно малые слагаемые знаменателя:

Если , то слагаемые с чётными степенями будут стремиться к бесконечно малым положительным числам (обозначаются через ), а слагаемые с нечётными степенями будут стремиться к бесконечно малым отрицательным числам (обозначаются через ).

Теперь зададимся вопросом, какое из этих четырёх слагаемых будет стремиться к нулю (неважно с каким знаком) медленнее всего ? Вспомним наивный приём: сначала «икс» равно –10, потом –100, затем –1000 и т.д. Медленнее всего к нулю будет приближаться слагаемое . Образно говоря, это самый «жирный» ноль, который «поглощает» все остальные нули. По этой причине на завершающем этапе и появилась запись .

Следует отметить, что знаки бесконечно малых слагаемых числителя нас не интересуют, поскольку там нарисовалась осязаемая добротная единичка. Поэтому в числителе я поставил «просто нули». К слову, знаки при нулях не имеют значения и во всех примерах, где в пределе получается конечное число (Примеры №№5,6).

Без измен, на то он и математический анализ, чтобы анализировать =)

Впрочем, о бесконечно малых функциях позже, а то вы нажмёте маленький крестик справа вверху =)

Пример 8

Найти предел

Это пример для самостоятельного решения.

  • ПРЕДЕ́Л , -а, м.

    1. Край, конечная часть чего-л. Здесь крайний предел Пермской губернии. Мамин-Сибиряк, Дружки. Казалось, что нет и не будет предела этим лесам. Белов, Кануны. || перен. Конец, окончание, завершение чего-л. [Больной] не думал о своем близком конце, - о том пределе, к которому он несся с головокружительной быстротой. Гладков, Энергия. Она была для них старым, подходящим к пределу жизни человеком, которому оставалась последняя женская доля - материнская забота. Лавренев, Старуха. Только катастрофа могла бы поставить предел разладу Никиты с самим собою. Федин, Братья.

    2. мн. ч. (преде́лы , -ов ). Естественная или условная черта, являющаяся границей какой-л. территории; рубеж. На востоке он [Святослав] раздвинул пределы русской земли до тех границ, которые через пятьсот лет пришлось снова очерчивать Ивану Грозному. А. Н. Толстой, Откуда пошла русская земля. Оказавшись за пределами отчей земли, Шаляпин умер от ностальгии - тоски по родине. Грибачев, Березка и океан. || чего или какие. Местность, пространство, заключенные в какие-л. границы. Ашагинские леса приняли охотников в свои заповедные пределы. Тихонов, Двойная радуга. Этой ночью весеннею белой Соловьи славословьем грохочущим Оглашают лесные пределы. Пастернак, Белая ночь. Постепенно камерная музыка вышла за пределы особняков богатых и знатных людей и стала исполняться в концертных залах, где мы слушаем ее и в наши дни. Кабалевский, Про трех китов и про многое другое. || Трад.-поэт. Край, страна. А князь тем ядом напитал Свои послушливые стрелы И с ними гибель разослал К соседям в чуждые пределы. Пушкин, Анчар. Я помню, как солнце горело, на зимний взойдя небосвод, когда из далеких пределов в Москву прилетел самолет. Смеляков, Памяти Димитрова. || Промежуток времени, ограниченный какими-л. сроками (обычно в сочетании в пределах ). Говорят, что в Оренбург ездят по чугунке, и, может быть, я поеду, но все в пределах 14 дней. Л. Толстой, Письмо С. А. Толстой, 4 сент. 1876.

    3. обычно мн. ч. (преде́лы , -ов ) перен. Мера, граница чего-л.; рамки. В пределах приличия. Наконец, всякому терпению 365 есть же пределы. Писарев, Посмертные стихотворения Гейне. - Пока что я не выхожу за пределы предоставленных мне законом прав командующего флотом. Степанов, Порт-Артур. Познания о прошлом своего отечества у Федора Андреевича были весьма скромны, в основном, в пределах «краткого курса». Е. Носов, Не имей десять рублей. || Высшая степень чего-л. Предел мечтаний. Силы людей, физические и моральные, были доведены до предела изнеможения. В. Кожевников, Парашютист. Страна моя, прекрасен твой порыв Во всем достичь последнего предела! Винокуров, «Интернационал».

    4. Мат. Постоянная величина, к которой приближается переменная величина, зависящая от другой переменной величины, при определенном изменении последней. Предел числовой последовательности.

    На пределе - 1) в крайней степени напряжения. Нервы на пределе; 2) в крайней степени раздражения. [Галя:] Я сама его боюсь сегодня. Он на пределе. Погодин, Цветы живые.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. - 4-е изд., стер. - М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия):