Действия которые можно выполнить с иррациональными числами. Иррациональные числа, определение, примеры

Не все действия, рассматриваемые в алгебре, выполнимы в поле рациональных чисел. Примером может служить операция извлечения квадратного корня. Так, если равенство выполняется при значениях , то равенство не имеет места ни при каком рациональном значении Докажем это. Сначала заметим, что целое не может иметь квадрата, равного 2: при имеем а при заведомо больше 2. Предположим теперь, что дробное: (дробь считается несократимой) и

Отсюда имеем должно быть четным числом (иначе квадрат не был бы четным). Положим .

Теперь получается, что и - четное, что противоречит допущению о несократимости дроби

Это показывает, что в области рациональных чисел из числа 2 нельзя извлечь квадратный корень, символ не имеет смысла в области рациональных чисел. Между тем задача: «найти сторону квадрата, зная, что площадь его равна S» - столь же естественна при как и при Выход из этого и других подобных затруднений состоит в дальнейшем расширении понятия числа, во введении нового вида чисел - иррациональных чисел.

Покажем, как вводятся иррациональные числа на примере задачи извлечения квадратного корня из числа 2; для простоты ограничимся положительным значением корня.

Для каждого положительного рационального числа будет иметь место одно из неравенств или Очевидно, что . Рассматриваем затем числа и находим два соседних среди них с тем свойством, что первое имеет квадрат, меньший двух, а второе - больший двух. Именно, Аналогично, продолжая этот процесс, получим ряд неравенств (для получения десятичных дробей, написанных здесь, можно также использовать известный алгоритм приближенного извлечения квадратного корня, п. 13):

Сопоставляя сначала целые части, а затем первые, вторые, третьи и т. д. цифры после запятой у рациональных чисел, между квадратами которых лежит 2, мы можем последовательно выписать эти десятичные знаки:

Процесс отыскания пар рациональных чисел (выраженных конечными десятичными дробями), отличающихся друг от друга на со все большим m может быть продолжен неограниченно. Поэтому можно рассматривать дробь (6.1) как бесконечную десятичную дробь (непериодическую, так как в случае периодичности она представляла бы рациональное число).

Эта бесконечная непериодическая дробь, любое число десятичных знаков которой мы можем выписать, но для которой нельзя осуществить записи одновременно всех знаков, и принимается за число, равное (т. е. за число, квадрат которого равен 2).

Отрицательное значение корня квадратного из двух мы представим в виде

или, пользуясь искусственной формой записи чисел, в виде

Введем теперь следующее определение: иррациональным числом называется всякая бесконечная непериодическая десятичная дробь

где а - делая часть числа (она может быть положительной, равной нулю или отрицательной), а - десятичные знаки (цифры) его дробной части.

Заданное бесконечной непериодической дробью иррациональное число определяет две последовательности конечных десятичных дробей, называемых десятичными приближениями а по недостатку и по избытку:

Например, для запишем

и т. д. Здесь, например, 1,41 - десятичное приближение с точностью до 0,01 по недостатку, а 1,42 - по избытку.

Запись неравенств между иррациональным числом и его десятичными приближениями входит в самое определение понятия иррационального числа и может быть положена в основу определения соотношений «больше» и «меньше» для иррациональных чисел.

Возможность представления иррациональных чисел их все более и более точными десятичными приближениями лежит также в основе определения арифметических действий над иррациональными числами, которые фактически производятся над их иррациональными приближениями по недостатку или по избытку.

К иррациональным числам приводят многие действия, как, например, действие извлечения корня степени из рационального числа (если оно не представляет собой степень другого рационального числа), логарифмирование и т. д. Иррациональным является число , равное отношению длины окружности к ее диаметру (п. 229).

Все рациональные и иррациональные числа образуют в совокупности множество действительных (или вещественных) чисел. Таким образом, всякая десятичная дробь, конечная или бесконечная (периодическая или непериодическая), всегда определяет действительное число.

Всякое отличное от нуля действительное число либо положительно, либо отрицательно.

Напомним в связи с этим следующее определение. Абсолютной величиной или модулем действительного числа а называется число определяемое равенствами а, если

Таким образом, модуль неотрицательного числа равен самому этому числу (верхняя строка равенства); модуль отрицательного числа равен этому числу, взятому с противоположным знаком (нижняя строка). Так, например,

Из определения модуля следует, что модуль любого числа есть число неотрицательное; если модуль числа равен нулю, то и само число равно нулю, в остальных случаях модуль положителен.

Действительные числа образуют числовое поле - поле действительных чисел: результат рациональных действий над действительными числами снова выражается действительным числом. Заметим, что взятые в отдельности иррациональные числа не образуют ни поля, нидаже кольца: например, сумма двух иррациональных чисел равна рациональному числу 3.

Наш краткий очерк развития понятия о числе, построенный по схеме

мы заключим указанием на наиболее важные свойства совокупности действительных чисел.

1. Действительные числа образуют поле.

2. Действия над действительными числами подчинены обычным законам (например, сложение и умножение - законам коммутативности, ассоциативности, дистрибутивности, п. 1).

3. Для любых двух действительных чисел а и b имеет место одно и только одно из трех соотношений: а больше b (а > b), а меньше , а равно . Говорят поэтому, что множество действительных чисел упорядочено.

4. Принято, наконец, говорить, что множество действительных чисел обладает свойством непрерывности. Смысл, который придается этому выражению, пояснен в п. 8. Именно это свойство существенно отличает поле действительных чисел от поля рациональных чисел.

Что такое иррациональные числа? Почему они так называются? Где они используются и что собой представляют? Немногие могут без раздумий ответить на эти вопросы. Но на самом деле ответы на них довольно просты, хоть нужны не всем и в очень редких ситуациях

Сущность и обозначение

Иррациональные числа представляют собой бесконечные непериодические Необходимость введения этой концепции обусловлена тем, что для решения новых возникающих задач уже было недостаточно ранее имеющихся понятий действительных или вещественных, целых, натуральных и рациональных чисел. Например, для того, чтобы вычислить, квадратом какой величины является 2, необходимо использовать непериодические бесконечные десятичные дроби. Кроме того, многие простейшие уравнения также не имеют решения без введения концепции иррационального числа.

Это множество обозначается как I. И, как уже ясно, эти значения не могут быть представлены в виде простой дроби, в числителе которой будет целое, а в знаменателе -

Впервые так или иначе с этим явлением столкнулись индийские математики в VII веке когда было обнаружено, что квадратные корни из некоторых величин не могут быть обозначены явно. А первое доказательство существования подобных чисел приписывают пифагорейцу Гиппасу, который сделал это в процессе изучения равнобедренного прямоугольного треугольника. Серьезный вклад в изучение этого множества привнесли еще некоторые ученые, жившие до нашей эры. Введение концепции иррациональных чисел повлекло за собой пересмотр существовавшей математической системы, вот почему они так важны.

Происхождение названия

Если ratio в переводе с латыни - это "дробь", "отношение", то приставка "ир"
придает этому слову противоположное значение. Таким образом, название множества этих чисел говорит о том, что они не могут быть соотнесены с целым или дробным, имеют отдельное место. Это и вытекает из их сущности.

Место в общей классификации

Иррациональные числа наряду с рациональными относится к группе вещественных или действительных, которые в свою очередь относятся к комплексным. Подмножеств нет, однако различают алгебраическую и трансцендентную разновидность, о которых речь пойдет ниже.

Свойства

Поскольку иррациональные числа - это часть множества действительных, то к ним применимы все их свойства, которые изучаются в арифметике (их также называют основными алгебраическими законами).

a + b = b + a (коммутативность);

(a + b) + c = a + (b + c) (ассоциативность);

a + (-a) = 0 (существование противоположного числа);

ab = ba (переместительный закон);

(ab)c = a(bc) (дистрибутивность);

a(b+c) = ab + ac (распределительный закон);

a x 1/a = 1 (существование обратного числа);

Сравнение также проводится в соответствии с общими закономерностями и принципами:

Если a > b и b > c, то a > c (транзитивность соотношения) и. т. д.

Разумеется, все иррациональные числа могут быть преобразованы с помощью основных арифметических действий. Никаких особых правил при этом нет.

Кроме того, на иррациональные числа распространяется действие аксиомы Архимеда. Она гласит, что для любых двух величин a и b справедливо утверждение, что, взяв a в качестве слагаемого достаточное количество раз, можно превзойти b.

Использование

Несмотря на то что в обычной жизни не так уж часто приходится сталкиваться с ними, иррациональные числа не поддаются счету. Их огромное множество, но они практически незаметны. Нас повсюду окружают иррациональные числа. Примеры, знакомые всем, - это число пи, равное 3,1415926..., или e, по сути являющееся основанием натурального логарифма, 2,718281828... В алгебре, тригонометрии и геометрии использовать их приходится постоянно. Кстати, знаменитое значение "золотого сечения", то есть отношение как большей части к меньшей, так и наоборот, также

относится к этому множеству. Менее известное "серебряное" - тоже.

На числовой прямой они расположены очень плотно, так что между любыми двумя величинами, отнесенными к множеству рациональных, обязательно встречается иррациональная.

До сих пор существует масса нерешенных проблем, связанных с этим множеством. Существуют такие критерии, как мера иррациональности и нормальность числа. Математики продолжают исследовать наиболее значительные примеры на предмет принадлежности их к той или иной группе. Например, считается, что е - нормальное число, т. е. вероятность появления в его записи разных цифр одинакова. Что же касается пи, то относительно его пока ведутся исследования. Мерой иррациональности же называют величину, показывающую, насколько хорошо то или иное число может быть приближено рациональными числами.

Алгебраические и трансцендентные

Как уже было упомянуто, иррациональные числа условно разделяются на алгебраические и трансцендентные. Условно, поскольку, строго говоря, эта классификация используется для деления множества C.

Под этим обозначением скрываются комплексные числа, которые включают в себя действительные или вещественные.

Итак, алгебраическим называют такое значение, которое является корнем многочлена, не равного тождественно нулю. Например, квадратный корень из 2 будет относиться к этой категории, поскольку он является решением уравнения x 2 - 2 = 0.

Все же остальные вещественные числа, не удовлетворяющие этому условию, называются трансцендентными. К этой разновидности относятся и наиболее известные и уже упомянутые примеры - число пи и основание натурального логарифма e.

Что интересно, ни одно, ни второе не были изначально выведены математиками в этом качестве, их иррациональность и трансцендентность были доказаны через много лет после их открытия. Для пи доказательство было приведено в 1882 году и упрощено в 1894, что положило конец спорам о проблеме квадратуры круга, которые длились на протяжении 2,5 тысяч лет. Оно до сих пор до конца не изучено, так что современным математикам есть над чем работать. Кстати, первое достаточно точное вычисление этого значения провел Архимед. До него все расчеты были слишком приблизительными.

Для е (числа Эйлера или Непера), доказательство его трансцендентности было найдено в 1873 году. Оно используется в решении логарифмических уравнений.

Среди других примеров - значения синуса, косинуса и тангенса для любых алгебраических ненулевых значений.

Ранее мы уже показали, что $1\frac25$ — близко к $\sqrt2$. Если бы оно точно равнялось $\sqrt2$, . Тогда соотношение — $\frac{1\frac25}{1}$, которое можно превратить в соотношение целых чисел $\frac75$, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, $1\frac25$ не является точной величиной $\sqrt2$. Более точный ответ $1\frac{41}{100}$, дает нам соотношение $\frac{141}{100}$. Еще большей точности мы достигаем, когда приравниваем $\sqrt2$ к $1\frac{207}{500}$. В этом случае соотношение в целых числах будет равно $\frac{707}{500}$. Но и $1\frac{207}{500}$ не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение $\sqrt2$, но это им так и не удалось. Они не смогли представить соотношение $\frac{\sqrt2}{1}$ в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение $\sqrt2$ невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне. Однако, возможно, эти сведения не соответствуют действительности.

Но если число $\frac{\sqrt2}{1}$ не может быть представлено в виде соотношения целых чисел, то и никакая , содержащая $\sqrt2$, например $\frac{\sqrt2}{2}$ или $\frac{4}{\sqrt2}$ также не может быть представлена в виде соотношения целых чисел, поскольку все такие дроби могут быть преобразованы в $\frac{\sqrt2}{1}$, умноженное на какое нибудь число. Так $\frac{\sqrt2}{2}=\frac{\sqrt2}{1} \times \frac12$. Или $\frac{\sqrt2}{1} \times 2=2\frac{\sqrt2}{1}$, что можно преобразовать, умножив верхнюю и нижнюю части на $\sqrt2$, и получить $\frac{4}{\sqrt2}$. (Не следует забывать, что независимо от того, что представляет собой число $\sqrt2$, если мы умножим его на $\sqrt2$, то получим 2.)

Поскольку число $\sqrt2$ нельзя представить в виде соотношения целых чисел, оно получило название иррационального числа . С другой стороны, все числа, которые можно представить в виде соотношения целых чисел, называются рациональными .

Рациональными являются все целые и дробные числа, как положительные, так и отрицательные.

Как оказалось, большинство квадратных корней являются иррациональными числами. Рациональные квадратные корни есть только у чисел, входящих в ряд квадратных чисел. Эти числа называются также идеальными квадратами. Рациональными числами являются также дроби, составленные из этих идеальных квадратов. Например, $\sqrt{1\frac79}$ является рациональным числом, так как $\sqrt{1\frac79}=\frac{\sqrt16}{\sqrt9}=\frac43$ или $1\frac13$ (4 - это корень квадратный из 16, а 3 - корень квадратный из 9).

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.

Если действительное число не является рациональным, то оно иррациональное число . Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.

Действительное число называется алгебраическим , если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным .

Некоторые свойства:

    Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).

    Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.

    Все рациональные числа являются алгебраическими (обратное утверждение – неверное).

    Каждое вещественное трансцендентное число является иррациональным.

    Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

    Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).

    Множество иррациональных чисел несчётно.

При решении задач бывает удобно вместе с иррациональным числом a + b√ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b√ c : его сумма и произведение с исходным – рациональные числа. Так что a + b√ c и a – b√ c являются корнями квадратного уравнения с целыми коэффициентами.

Задачи с решениями

1. Докажите, что

а) число √ 7 ;

б) число lg 80;

в) число √ 2 + 3 √ 3 ;

является иррациональным.

а) Допустим, что число √ 7 рациональное. Тогда, существуют такие взаимно простые p и q, что √ 7 = p/q, откуда получаем p 2 = 7q 2 . Так как p и q взаимно простые, то p 2 , а значит и p делится на 7. Тогда р = 7k, где k – некоторое натуральное число. Отсюда q 2 = 7k 2 = pk, что противоречит тому, что p и q взаимно просты.

Итак, предположение ложно, значит, число √ 7 иррациональное.

б) Допустим, что число lg 80 рациональное. Тогда существуют такие натуральные p и q, что lg 80 = p/q, или 10 p = 80 q , откуда получаем 2 p–4q = 5 q–p . Учитывая, что числа 2 и 5 взаимно простые, получаем, что последнее равенство возможно только при p–4q = 0 и q–p = 0. Откуда p = q = 0, что невозможно, так как p и q выбраны натуральными.

Итак, предположение ложно, значит, число lg 80 иррациональное.

в) Обозначим данное число через х.

Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению

х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.

Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.

Итак, данное число √ 2 + 3 √ 3 является иррациональным.

2. Известно, что числа a, b, √ a –√ b , – рациональные. Докажите, что √ a и √ b – тоже рациональные числа.

Рассмотрим произведение

(√ a – √ b )·(√ a + √ b ) = a – b.

Число √ a +√ b , которое равно отношению чисел a – b и √ a –√ b , является рациональным, так как частное от деления двух рациональных чисел – число рациональное. Сумма двух рациональных чисел

½ (√ a + √ b ) + ½ (√ a – √ b ) = √ a

– число рациональное, их разность,

½ (√ a + √ b ) – ½ (√ a – √ b ) = √ b ,

тоже рациональное число, что и требовалось доказать.

3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.

4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству

(a + b√ 2 ) 2n + (c + d√ 2 ) 2n = 5 + 4√ 2 ,

где n – натуральное число?

Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:

(a – b√ 2 ) 2n + (c – d√ 2 ) 2n = 5 – 4√ 2 .

Но 5 – 4√ 2 (a – b√ 2 ) 2n + (c – d√ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.

Ответ: не существуют.

5. Если отрезки с длинами a, b, c образуют треугольник, то для всех n = 2, 3, 4, . . . отрезки с длинами n √ a , n √ b , n √ c так же образуют треугольник. Докажите это.

Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт

Поэтому мы имеем

( n √ a + n √ b ) n > a + b > c = ( n √ c ) n ,

N √ a + n √ b > n √ c .

Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.

6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.

Как известно, рациональные числа выражаются десятичными дробями, которые имеют период начиная с некоторого знака. Поэтому достаточно доказать, что данная дробь не является периодической ни с какого знака. Предположим, что это не так, и некоторая последовательность T, состоящая из n цифр, является периодом дроби, начиная с m-го знака после запятой. Ясно, что среди цифр после m-го знака встречаются ненулевые, поэтому в последовательности цифр T есть ненулевая цифра. Это означает, что начиная с m-ой цифры после запятой, среди любых n цифр подряд есть ненулевая цифра. Однако в десятичной записи данной дроби должна присутствовать десятичная запись числа 100...0 = 10 k , где k > m и k > n. Понятно, что эта запись встретится правее m-ой цифры и содержит более n нулей подряд. Тем самым, получаем противоречие, завершающее доказательство.

7. Дана бесконечная десятичная дробь 0,a 1 a 2 ... . Докажите, что цифры в ее десятичной записи можно переставить так, чтобы полученная дробь выражала рациональное число.

Напомним, что дробь выражает рациональное число в том и только том случае, когда она периодическая, начиная с некоторого знака. Цифры от 0 до 9 разделим на два класса: в первый класс включим те цифры, которые встречаются в исходной дроби конечное число раз, во второй класс – те, которые встречаются в исходной дроби бесконечное число раз. Начнем выписывать периодическую дробь, которая может быть получена из исходной перестановкой цифр. Вначале после нуля и запятой напишем в произвольном порядке все цифры из первого класса - каждую столько раз, сколько она встречается в записи исходной дроби. Записанные цифры первого класса будут предшествовать периоду в дробной части десятичной дроби. Далее, запишем в некотором порядке по одному разу цифры из второго класса. Эту комбинацию объявим периодом и будем повторять ее бесконечное число раз. Таким образом, мы выписали искомую периодическую дробь, выражающую некоторое рациональное число.

8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.

Пусть m – произвольно заданное натуральное число. Разобьем данную бесконечную десятичную дробь на отрезки, по m цифр в каждом. Таких отрезков будет бесконечно много. С другой стороны, различных систем, состоящих из m цифр, существует только 10 m , т. е. конечное число. Следовательно, хотя бы одна из этих систем должна повторяться здесь бесконечно много раз.

Замечание. Для иррациональных чисел √ 2 , π или е мы даже не знаем, какая цифра повторяется бесконечно много раз в представляющих их бесконечных десятичных дробях, хотя каждое из этих чисел, как легко можно доказать, содержит по крайней мере две различные такие цифры.

9. Докажите элементарным путём, что положительный корень уравнения

является иррациональным.

Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).

Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:

p 5 + pq 4 = 10q 5 ,

откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).

Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.

10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

в) Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты - рациональные числа.)

а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2)/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.

б) Пусть (a 1 ; b 1), (a 2 ; b 2) и (a 3 ; b 3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:

(x – a 1) 2 + (y – b 1) 2 = (x – a 2) 2 + (y – b 2) 2 ,

(x – a 1) 2 + (y – b 1) 2 = (x – a 3) 2 + (y – b 3) 2 .

Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.

в) Такая сфера существует. Например, сфера с уравнением

(x – √ 2 ) 2 + y 2 + z 2 = 2.

Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.

Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :

x 2 – 2√ 2 x + 2 + y 2 + z 2 = 2

√ 2 = (x 2 + y 2 + z 2)/(2x),

чего не может быть при рациональных x, y, z и иррациональном √ 2 . Итак, О(0; 0; 0) – единственная рациональная точка на рассматриваемой сфере.

Задачи без решений

1. Докажите, что число

\[ \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}} \]

является иррациональным.

2. При каких целых m и n выполняется равенство (5 + 3√ 2 ) m = (3 + 5√ 2 ) n ?

3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?

4. Могут ли числа 1, √ 2 , 4 быть членами (не обязательно соседними) арифметической прогрессии?

5. Докажите, что при любом натуральном n уравнение (х + у√ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).