Синхронное излучение. Синхротронное излучение: понятие, основы, принцип и устройства для изучения, применение. Смотреть что такое "синхротронное излучение" в других словарях

Виды классификации моделей

Для моделей можно составить различные виды классификаций в зависимости от выбранного основания. Таким основанием служат один или несколько признаков, общих для некоторых групп моделей. Рассмотрим несколько наиболее распространенных видов классификации, определяемых следующими признаками:

Областью использования;

Учетом в модели временного фактора (динамики);

Отраслью знаний;

Способом представления моделей.

Если рассматривать модели с позиции «для чего», «с какой целью» они используются, то можно применить классификацию:

1. Учебные модели используются при обучении. Это могут быть наглядные пособия, различные тренажеры, обучающие программы.

2. Опытные модели – это уменьшенные или увеличенные копии проектируемого объекта. Они используются для исследования объекта и прогнозирования его будущих характеристик.

Например, модель корабля исследуется в бассейне для изучения устойчивости судна при качке, модель автомобиля «продувается» в аэродинамической трубе с целью исследования обтекаемости кузова.

3. Научно-технические модели создаются для исследования процессов и явлений. К таким моделям можно отнести, например, прибор для получения грозового электрического разряда или стенд для проверки телевизоров.

4. Игровые модели – это военные, экономические, спортивные, деловые игры. Эти модели как бы репетируют поведение объекта в различных ситуациях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника.

5. Имитационные модели не просто отражают реальность с той или иной степенью точности, а имитируют ее. Эксперименты с моделью проводятся при разных исходных данных. По результатам исследования делаются выводы. Такой метод подбора правильного решения получил название метода проб и ошибок. Например, для выявления побочных действий лекарственных препаратов их испытывают в серии опытов на животных.

Модель – это искусственно созданный объект, дающий упрощенное представление о реальном объекте, процессе или явлении, отражающий существенные стороны изучаемого объекта с точки зрения цели моделирования.

Моделирование – это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.

Как уже упоминалось, одна из классификаций связана с фактором времени. Модели можно разделить на статические и динамические по тому, как отражается в них динамика происходящих процессов (рис. 1).



Рис. 1. Классификация моделей по фактору времени

Статическая модель – это единовременный срез информации по данному объекту. Например, обследование учащихся в стоматологической поликлинике дает состояние их зубов на данный момент времени: соотношение молочных и постоянных, наличие пломб, дефектов и т. п.

Динамическая модель представляет картину изменения объекта во времени. В примере с поликлиникой медицинскую карту ученика, отражающую изменение состояния его зубов в течение многих лет, можно считать динамической моделью.

Классификация моделей

Существует множество способов классифицировать модели. Большой выбор способов классификации обусловлен тем, что моделирование применяется прак­тически во всех областях деятельности человека. Под понятие моделирования попадает широкий диапазон человеческих действий и артефактов. Само челове­ческое мышление представляет собой непрерывное моделирование окружающего мира.

В этом разделе представлены разнообразные подходы к классификации моделей с разных точек зрения.

7.2.1. Классификация моделей по назначению

Классификацию моделей по назначению иллюстрирует рис. 7.2.


Познавательная модель является формой организации и представления знаний, средством объединения новых и старых знаний. Познавательная модель, как пра­вило, с максимально возможной точностью отображает реальность и изменяется в соответствии с изменением реальности. Является теоретической моделью.

Пример. Математическое моделирование мирового океана с целью изучения изменения течений и рельефа океанского дна. Разрабатывается теория, согласно этой теории строится модель. Если поведение модели плохо согласуется с про­цессами в реальном объекте, уточнению подлежат теория и построенная на ее основе модель.

Прагматическая модель является средством организации практических дей­ствий, рабочего представления целей системы для ее управления. Реальность под­страивается под некоторую прагматическую модель (как правило, прикладную).

Пример. Выбор модели финансового регулирования в стране. Если выбрана монетаристская модель, то все процессы финансово-валютного регулирования стараются согласовать с этой моделью. Если процессы, происходящие в финан­совой сфере страны, не отвечают параметрам модели, то производятся действия, изменяющие процессы таким образом, чтобы они соответствовали с выбранной модели.

Инструментальная модель является средством построения, исследования и (или) использования прагматических и (или) познавательных моделей.

Пример. После построения теоретической математической модели мирового океана она оформляется в виде компьютерной модели на языке программиро­вания. Таким образом, инструментальная модель оказывается моделью модели, средством инструментальной реализации познавательной или прагматической модели.

7.2.2. Классификация моделей по уровню моделирования

Классификацию моделей по уровню моделирования иллюстрирует рис. 7.3.


Эмпирическая модель построена на основе установленных опытным путем за­висимостей между входными и выходными параметрами модели. Эмпирические модели создаются в тех случаях, когда явление или процесс невозможно описать при помощи математических формул, поскольку о внутреннем устройстве объекта или механизме процесса ничего не известно либо внутренние зависимости явля­ются слишком сложными для построения математического описания.

Пример. Все модели процессов, происходящих в человеческом обществе - социальных, экономических, финансовых, политических, - строятся эмпири­чески.

Теоретическая модель построена на основе математически описанных зависимо­стей между входными и выходными параметрами модели. В этом случае все вну­тренние механизмы явления известны настолько, чтобы можно было с достаточной точностью описать их с помощью математического аппарата.

Пример. Компьютерная модель простого физического процесса: растягивания идеальной пружины под действием груза (идеальный маятник).

Полуэмпирическая модель построена на основе аппроксимаций эмпирических зависимостей при помощи математических функций с удовлетворяющей за­дачам моделирования точностью. В случае полуэмпирической модели объект моделирования (прототип) достаточно сложен, и внутренние механизмы его функционирования не могут быть в точности описаны при помощи математи­ческих функций. Однако опыт наблюдения за объектом позволяет установить закономерности между входными и выходными параметрами, которые можно с достаточной точностью описать (аппроксимировать) при помощи математиче­ских функций.

Пример. Компьютерная модель процесса обмена веществ в биологической клетке.

7.2.3. Классификация моделей по принадлежности к иерархическому уровню

Классификацию моделей по принадлежности к иерархическому уровню иллю­стрирует рис. 7.4.


Модель микроуровня отображает объекты или процессы самого нижнего, не­делимого на составные части уровня в иерархической структуре. Модели микро­уровня создаются как составные части модели макроуровня с целью более точного воспроизведения моделируемого прототипа.

Пример. Модель технологического процесса на предприятии.

Модель макроуровня отображает объекты или процессы среднего или высшего звена в иерархической структуре.

Пример. Модель работы сборочного цеха или предприятия.

Модель метауровня отображает процессы или объекты, взаимодействующие с прототипом модели макроуровня. Цель моделирования на метауровне - более точное воспроизведение среды (входных параметров) модели макроуровня.

Пример. Модель функционирования предприятия во взаимосвязи с государ­ственными органами, поставщиками, потребителями, общественностью и окру­жающей средой.

7.2.4. Классификация моделей по характеру взаимоотношений со средой

Классификацию моделей по характеру взаимоотношений со средой иллюстри­рует рис. 7.5.


Открытая модель осуществляет непрерывный энергоинформационный и ве­щественный обмен со средой.

Пример. Действующая модель водяной мельницы в уменьшенном масштабе.

Закрытая модель имеет слабую связь с внешней средой или вовсе ее не имеет.

Пример. Компьютерная модель движения колеса по наклонной поверхности в отсутствие силы трения.

7.2.5. Классификация моделей по способу представления свойств объекта

Классификацию моделей по способу представления свойств объекта иллюстри­рует рис. 7.6.

Алгоритмическая модель описывается алгоритмом или комплексом алгоритмов, определяющим ее функционирование и развитие.



Пример. Типичным случаем алгоритмического моделирования являются продук­ционные экспертные системы, моделирующие поведение эксперта при принятии решений в той или иной предметной области при помощи набора алгоритмов (правил).

Имитационная модель строится для испытания, изучения или воспроизведения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели. Название «имитационная» модель получила, посколь­ку позволяет имитировать поведение реальных сложных систем без детального описания внутреннего механизма этого поведения.

В случае математической имитационной модели сложная система представляется в виде совокупности элементов, часть из которых может быть описана аналитически (функциональными зависимостями), а часть представляет собой «черные ящики», функционирование которых аппроксимируется вероятностными зависимостями.

Имитационные модели могут быть не только математическими, они могут ре- ализовываться самыми разными способами, в том числе с помощью макетов или путем игрового моделирования.

Пример. Игровая реконструкция знаменитых военных сражений (например, Бородинской битвы) является очевидным примером имитационного моделиро­вания. По части известных фактов и описаний процессов в ходе имитации может быть реконструирована картина сражения, близкая к реальным историческим событиям.

7.2.6. Классификация моделей по причинной обусловленности

Классификацию моделей по причинной обусловленности иллюстрирует рис. 7.7.

Детерминированная модель позволяет однозначно определять набор выходных параметров для каждой допустимой совокупности входных параметров.


Недетерминированная, или стохастическая (вероятностная), модель предпо­лагает вероятностную природу входных параметров так же, как и вероятностную природу функций (или алгоритмов) их обработки. Таким образом набор выходных параметров в стохастической модели приобретает вероятностный характер.

Пример. Модель земной атмосферы, которая строится с целью формирования долгосрочного прогноза погоды и предупреждения стихийных бедствий, носит стохастический характер.

7.2.7. Классификация моделей по отношению ко времени

Классификацию моделей по отношению ко времени иллюстрирует рис. 7.8.


Динамическая модель в явной форме использует время в качестве одного из входных параметров. Обычно динамическая модель может быть «проиграна» во времени с некоторым масштабированием (замедлением или ускорением).

Пример. Модель развития колонии простейших микроорганизмов.

Статическая модель определяет модель, у которой параметр времени в явной форме среди входных параметров не присутствует. Статические модели обычно используют для отыскания граничных или оптимальных значений тех или иных параметров.

Пример. Модель воздушного судна для обдува в аэродинамической трубе.

7.2.8. Классификация моделей по сфере применения

Классификацию моделей по сфере применения иллюстрирует рис. 7.9.


Разделение моделей по сферам применения вызвано не столько особенностью самих моделей (принципы моделирования остаются одинаковыми независимо от области применения модели), сколько спецификой сбора и подготовки исходного материала для моделирования и специфическими особенностями описания пред­метной области.

7.2.9. Классификация моделей по методологии применения

Классификацию моделей по методологии применения иллюстрирует рис. 7.10.


Учебная модель создается для поддержки учебного процесса. Учебные модели обычно частично воспроизводят функциональность объекта или детали процесса, которые невозможно наблюдать и изучать при рабочем функционировании объ­екта моделирования.

Пример. Модель пищеварительного тракта человека, модель электрической системы автомобиля, модель клетки биологической ткани.

Игровая модель в игровой форме или ситуации воспроизводит процессы, про­исходящие в сложной системе. Игровые модели чаще всего разрабатываются для тренинга навыков и умений. Игровая модель может строиться спонтанно или организованно.

Пример. Детская игра, воспроизводящая в игровой форме семейные отношения, деловая игра, направленная на выявление конфликтных ситуаций на предпри­ятии и нахождение путей их разрешения.

Научно-исследовательская модель строится для изучения явлений, которые невозможно произвольно повторить в живой природе.

Пример. Компьютерная модель фрагмента земной коры, построенная для из­учения способов прогнозирования землетрясений.

Опытная модель строится с целью воспроизведения свойств искусственного объекта и изучения его поведения в различных условиях. Опытная модель в не­которых случаях может быть сложнее и дороже, чем объект моделирования.

Пример. Опытная модель микропроцессорного устройства, построенная путем компьютерного моделирования. Такая модель может в целом обойтись дороже и сложнее, чем создание одного кристалла микропроцессора, но оправдывает себя, поскольку позволяет предотвратить ошибки в устройстве, которое будет изготовлено в количестве несколько миллионов штук.

Имитационная модель служит для имитации поведения или процессов в слож­ных системах. Определение и пример имитационной модели уже были приведены ранее в этом разделе.

7.2.10. Классификация моделей по способу представления

Классификацию моделей по способу представления иллюстрирует рис. 7.11.

Материальная модель по своей физической структуре, форме, энергетическим характеристикам воспроизводит моделируемый объект. Для материальной модели характерно непосредственное, в материальной, а не информационной форме, вос­произведение тех или иных особенностей прототипа.


Информационная модель представляет собой модель, в которой в качестве механизма создания модели выступает информация. Информационные модели могут быть неформализованными (например, мысленная модель или абстрактная живопись) и формализованными (то есть воплощенными в форме символов, вы­сказываний, рисунков или чертежей, значение которых оговорено).

В свою очередь, формализованная модель может быть компьютерной и неком­пьютерной.

Пример. Мысленное представление модели электрической машины является неформализованной информационной моделью. Мысленные эксперименты с такими моделями - известный факт из биографии знаменитого физика и изо­бретателя Никола Тесла. Однако мысленное представление модели электрической машины не может быть использовано при ее серийном производстве, поэтому мысленная модель формализуется, переводится на язык понятных другим людям символов или рисунков (чертежей). Таким образом создается формализованная модель. Формализованная модель, созданная при помощи компьютера, является компьютерной. Формализованная модель, созданная без участия компьютерной техники, является некомпьютерной.

Классификация моделей

Единая классификация видов моделей затруднительна в силу многозначности понятия "модель" в науке и технике. Её можно проводить по различным основаниям: по характеру моделей (т. е. по средствам моделирования); по характеру моделируемых объектов; по сферам приложения моделей (моделирование в технике, в физических науках, в химии, моделирование процессов живого, моделирование психики и т. п.) и его уровням ("глубине"), начиная, например, с выделения в физике моделей на микроуровне (моделирование на уровнях исследования, касающихся элементарных частиц, атомов, молекул). В связи с этим любая классификация методов моделирования обречена на неполноту, тем более, что терминология в этой области опирается не столько на "строгие" правила, сколько на языковые, научные и практические традиции, а ещё чаще определяется в рамках конкретного контекста и вне его никакого стандартного значения не имеет. Я постаралась представить наиболее полную классификацию моделей по их признакам с моей точки зрения.

Признаки классификаций моделей:

1. По области использования;

2. По фактору времени;

3. По отрасли знаний;

4. По форме представления.

Классификация моделей по области использования:

1) Учебные модели - используются при обучении. Это могут быть наглядные пособия, различные тренажеры, обучающие программы.

2) Опытные модели - это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик. Например, модель корабля исследуется в бассейне для изучения устойчивости судна при качке, модель автомобиля «продувается» в аэродинамической трубе с целью исследования обтекаемости кузова, модель сооружения используется для привязки здания к конкретной местности и т.д.

3) Научно - технические модели - создаются для исследования процессов и явлений. К таким моделям можно отнести, например, прибор для получения грозового электрического разряда или стенд для проверки телевизоров.

4) Игровые модели - это военные, экономические, спортивные, деловые игры. Эти модели как бы репетируют поведение объекта в различных ситуациях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника. С помощью игровых моделей можно оказывать психологическую помощь больным, разрешать конфликтные ситуации.

5) Имитационные модели - не только отражают реальность с той или иной степенью точности, а имитируют ее. Эксперименты с моделями проводят при разных исходных данных. По результатам исследования делаются выводы. Такой метод подбора правильного решения получил название метод проб и ошибок. Например, для выявления побочных действий лекарственных препаратов их испытывают в серии опытов над животными.

Классификация моделей по фактору времени:

1) Статические - модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Например, обследование учащихся в стоматологической поликлинике дает состояние их зубов в данный момент времени: соотношение молочных и постоянных, наличие пломб, дефектов и т.п.

2) Динамические - модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

При строительстве дома рассчитывают прочность его фундамента, стен, балок и устойчивость их к постоянной нагрузке. Это статическая модель здания. Но надо так же обеспечить противодействие ветрам, движению грунтовых вод, сейсмическим колебаниям и другим изменяющимся во времени факторам. Эти вопросы можно решить с помощью динамических моделей. Таким образом, один и тот же объект можно охарактеризовать и статической и динамической моделью.

Классификация моделей по отрасли знаний:

Это классификация по отрасли деятельности человека:

1) Математические;

2) Биологические;

3) Химические;

4) Социальные;

5) Экономические;

6) Исторические и т.д.

Классификация моделей по форме представления:

1) Материальные - это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты.

2) Абстрактные (нематериальные) - не имеют реального воплощения. Их основу составляет информация. Это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные, вербальные и информационные.

ь Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель способствует сознательной деятельности человека. Примером мысленной модели является модель поведения при переходе через дорогу. Человек анализирует ситуацию на дороге (какой сигнал подает светофор, как далеко находятся машины, с какой скоростью они движутся и т.п.) и вырабатывается модель поведения. Если ситуация смоделирована правильно, то переход будет безопасным, если нет, то может произойти дорожно-транспортное происшествие.

ь Вербальные (от лат. Verbalis - устный) - мысленные модели, выраженные в разговорной форме. Используется для передачи мыслей.

Чтобы информацию можно было использовать для обработки на компьютере, необходимо выразить ее при помощи системы знаков, т.е. формализовать. Правила формализации должны быть известны и понятны тому, кто будет создавать и использовать модель. Для этого используют более строгие модели - информационные.

ь Информационные модели - целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойства этого объекта.

Типы информационных моделей:

· Табличные - объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)

· Иерархические - объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня

· Сетевые - применяют для отражения систем, в которых связи между элементами имеют сложную структуру

По степени формализации информационные модели бывают образно-знаковые и знаковые. Ярким примером образно-знаковой модели является географическая карта. Цвет и форма материков, океанов, гор, изображенных на карте, сразу подключает образное мышление. По цвету на карте сразу можно оценить рельеф. Например, с голубым цветом у человека ассоциируется вода, с зеленым цветущий луг, равнина. Карта изобилует условными обозначениями. Зная этот язык, человек может получить достоверную информацию об интересующем его объекте. Информационная модель в этом случае будет результатом осмысления сведений, полученных при помощи органов чувств и информации, закодированной в виде условных изображений.

То же можно сказать о живописи. Неискушенный зритель воспримет картину душой в виде образной модели. Но существуют художественные языки, соответствующие различным живописным жанрам и школам: сочетание цветов, характер мазка, способы передачи воздуха, объема и т. д. Человеку, знающему эти условности, легче разобраться в том, что имел в виду художник, особенно если произведение не относится к реализму. При этом общее восприятие картины (информационная модель) станет результатом осмысления информации как в образной, так и в знаковой формах.

Еще один пример такой модели -- фотография. Фотоаппарат позволяет получить изображение оригинала. Обычно фотография дает нам довольно точное представление о внешнем облике человека. Существуют некоторые признаки (высота лба, посадка глаз, форма подбородка), по которым специалисты могут определить характер человека, его склонность к тем или иным поступкам. Этот специальный язык формируется из сведений, накопленных в области физиогномики и собственного опыта. Знающие врачи, взглянув на фото незнакомого человека, увидят признаки некоторых заболеваний. Задавшись разными целями, по одной и той же фотографии можно получить различные информационные модели. Они будут результатом обработки образной информации, полученной при разглядывании фотографии, и информации, сложившейся на основе знания специального профессионального языка.

По форме представления образно-знаковых моделей среди них можно выделить следующие группы:

Геометрические модели, отображающие внешний вид оригинала (рисунок, пиктограмма, чертеж, план, карта, объемное изображение);

Структурные модели, отражающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);

Словесные модели, зафиксированные (описанные) средствами естественного языка;

Знаковые модели можно разделить на следующие группы:

· Математические модели, представленные математическими формулами, отображающими связь различных параметров объекта, системы или процесса;

· Специальные модели, представленные на специальных языках (ноты, химические формулы и т. п.);

· Алгоритмические модели, представляющие процесс в виде программы, записанной на специальном языке.