Николай лузин. Лузин, николай николаевич. Термины, используемые в Договоре

Пирамида - это многогранник, у которого одна грань - основание пирамиды - произвольный многоугольник, а остальные - боковые грани - треугольники с общей вершиной, называемой вершиной пирамиды. Перпендикуляр опущенный из вершины пирамиды на ее основание, называется высотой пирамиды . Пирамида называется треугольной, четырехугольной, и т.д., если основанием пирамиды является треугольник, четырехугольник и т.д. Треугольная пирамида есть четырехгранник - тетраэдр. Четырехугольная - пятигранник и т.д.

Пирамида Усеченная Пирамида

SO – высота пирамиды ОО1 – высота пирамиды

SF – апофема пирамиды Ff – апофема пирамиды

Свойства пирамиды:

Если все боковые рёбра равны , то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом , то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны.

Тетраэдр - правильный многогранник, имеет 4 грани, которые являются правильными треугольниками. Вершин у тетраэдра 4 , к каждой вершине сходится 3 ребра, а всего ребер 6 . Также тетраэдр является пирамидой.

Свойства тетраэдра:

  • Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
  • Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части.

Призма - это многогранник, у которого две грани (основания призмы) - равные многоугольники с соотвественно параллельными сторонами. Остальные грани - параллелограммы, плоскости которых параллельны одной прямой.

Наклонная призма Прямая призма

Если боковые ребра призмы перпендикулярны к плоскости основания, то - призма прямая . Если нет - призма наклонная . Если в прямой призме основание - правильный многоугольник - призма правильная .

Свойства призмы:

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые ребра призмы параллельны и равны.
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения - это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням

Параллелепипед - это призма, основание которой - параллелограмм. Параллелепипед имеет шесть граней и все они параллелограммы. Противоположные грани попарно равны и параллельны. Параллелепипед имеет четыре диагонали. Все диагонали Параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Основанием параллелепипеда может быть любая грань.


Параллелепипед, четыре боковые грани которого - прямоугольники, называется прямым . Прямой параллелепипед, у которого все шесть граней прямоугольники называется прямоугольным. Прямоугольный параллелепипед, все грани которого квадраты, называется кубом или правильным гексаэдром . Все ребра куба равны.

Свойства параллелепипеда:

  • Параллелепипед симметричен относительно середины его диагонали.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Противолежащие грани параллелепипеда параллельны и равны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Октаэдр

У октаэдра 8 треугольных граней, 12 рёбер, 6 вершин, к каждой его вершине сходятся 4 ребра.

Свойства октаэдра:

  • Октаэдр можно вписать в тетраэдр, притом четыре из восьми граней октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести ребер тетраэдра.
  • Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
  • Правильный октаэдр имеет симметрию O h , совпадающую с симметрией куба.

Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра).

Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Икосаэдр - правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин - 12. Икосаэдр имеет 59 звёздчатых форм.


Октаэдр – один из пяти правильных многогранников, имеющий 8 треугольных граней, 12 рёбер, 6 вершин. Каждая его вершина является вершиной четырёх треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

В природе, в науке, в жизни этот многогранник встречается довольно часто: он находит применение в объяснении структуры и форм Вселенной, в строении ДНК и нанотехнологиях, в создании игр-головоломок.

Но чаще всего он встречается, пожалуй, в первом – в природе. А именно, в строении кристаллов. Форму октаэдра имеют кристаллы алмаза, перовскита, оливина, флюорита, шпинели, алюминиево-калиевых квасцов, медного купороса и даже хлорида натрия и золота!


Многогранники также используются в живописи. Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические фантазии Маурица Корнилиса Эшера (1898-1972), голландского художника, родившегося в Леувардене. Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.

Рис. 7. Гравюра «Звезды» Эшера

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.


Заключение

В ходе данной работы было рассмотрено понятие правильных многогранников, мы узнали, что многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) все его двугранные равны; 4) в каждой его вершине сходится одинаковое число ребер.

Рассмотрев историю возникновения платоновых тел, мы узнали, что всего существуют пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Их названия из Древней Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник", "двенадцатигранник", "двадцатигранник".

Использованная литература и источники позволили более глубоко рассмотреть данную тему.

Проанализировав подробнее икосаэдр и октаэдр, а также их применение в различных областях, мы увидели, что изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр среди кристаллических форм не встречается, но его можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе о том, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников.


Список литературы

1. Александров А. Д. и др. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик. – 3-е изд., перераб. - М.: Просвещение, 1992 – 464 с.

2. Атанасян Л.С и другие. Геометрия 10 - 11.- М.: Просвещение, 2003.

3. Василевский А.Б. Параллельные проекции.- Москва, 2012.

4. Волошинов А.В. Математика и искусство.- М.: Просвещение, 2002.

5. Гончар В. В. Модели многогранников. – М.: Аким, 1997. – 64 с.

6. Дитяткин В.Г. Леонардо да Винчи.- М.: Москва, 2002.

7. Евклид. Начала.- В 3 т. М.; Л.; 1948 – 1950.

8. Математика: Школьная энциклопедия / гл. ред. Никольский С. М. – М.: Научное изд. «Большая Российская энциклопедия», 1996

9. Пидоу Д. Геометрия и искусство. - Москва, 1999.

10. Савин А. П. Энциклопедический словарь юного математика. – М.: Педагогика, 1985. – 352 с.

11. Смирнова И. М., Смирнов В. А. Геометрия, 10-11 классы: Учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни). – М.: Мнемозина, 2009


Приложение 1

Космологическая концепция правильных многогранников Платона

ОГОНЬ ТЕТРАЭДР
ВОДА ИКОСАЭДР
ВОЗДУХ ОКТАЭДР
ЗЕМЛЯ ГЕКСАЭДР
ВСЕЛЕННАЯ ДОДЕКАЭДР