Уравнение касательной к графику функции. Исчерпывающий гид (2019)

Материал из Юнциклопедии


Понятие касательной - одно из важнейших в математическом анализе. Изучение прямых, касательных к кривым линиям, во многом определило пути развития математики.

С помощью циркуля и линейки нетрудно построить касательную к окружности в данной ее точке. Несколько труднее провести общую касательную к двум окружностям. В Древней Греции умели строить с помощью циркуля и линейки касательные ко всем коническим сечениям: эллипсам, гиперболам и параболам, что свидетельствует о высоком уровне развития геометрии в то время.

Интерес к касательным не ослабевал и у математиков последующих поколений. В XVII в. французские ученые Р. Декарт и П. Ферма исследовали касательные к спиралям и циклоиде. (Заметим, что модель касательной к циклоиде можно наблюдать в дождливую погоду: циклоида-кривая, являющаяся траекторией точки на ободе катящегося колеса (рис. 1). По такой траектории движутся и капли воды, находящиеся на колесе, а оторвавшись от колеса, они продолжают двигаться уже по касательной к циклоиде (а не к окружности - ободу колеса). Такие капли образуют грязную полосу на спине велосипедиста-гонщика, мчащегося по шоссе в сырую погоду).

Р. Декарт на задаче построения касательных к кривым отрабатывал свой аналитический метод в геометрии. Продолжая исследования Декарта, связанные с построением касательных с помощью аналитического метода, Г. В. Лейбниц одновременно с И. Ньютоном пришел к открытию дифференциально-го исчисления, явившемуся революцией в развитии математики. Понятие производной функции тесно связано с построением касательной к графику этой функции: значение производной в некоторой точке есть тангенс угла наклона касательной в этой точке к оси абсцисс.

Как все основные понятия дифференциального исчисления, понятие касательной строго определяется лишь с помощью предельного перехода (см. Предел). Касательная к кривой в точке М определяется как предельное положение секущей MN при приближении точки N по кривой к точке М (рис. 2). Нетрудно понять, что у непрерывных кривых могут быть точки, в которых касательная отсутствует (рис. 3), но чрезвычайно трудно представить себе, что существуют такие непрерывные кривые, которые не имеют касательных ни в одной своей точке.

Первые примеры таких функций были указаны чешским ученым Б. Больцано (1830 г., опубликовано в 1930 г.) и немецким математиком К. Вейерштрассом (1860 г., опубликовано в 1872 г.). Естественно, что функции, графиками которых являются кривые без касательных, не имеют производных ни в одной из своих точек, так как у функции f(x), имеющей в точке х 0 производную, касательная к ее графику в этой точке существует и записывается уравнением у = f(x 0) + f"(x 0)(х - х 0).

Понятие касательной применяется и для определения угла между кривыми в точке их пересечения. За такой угол принимается угол между касательными к кривым в этой точке. На рис. 4 изображено два семейства кривых-эллипсы и гиперболы, фокусы которых находятся в заданных точках F 1 и F 2 . Любые две кривые разных семейств здесь пересекаются под прямым углом. Такая картина часто встречается в физике, в частности эти кривые являются линиями равной напряженности и равного потенциала, если в точках F 1 и F 2 находятся заряды разного знака.

Аналогично касательной к кривой определяется касательная плоскость к поверхности (рис. 5), она играет по отношению к поверхности ту же роль, что и касательная к кривой.

Два способа достижения цели: по прямой и по касательной

Движение к цели «по-прямой», примерно, по следующему алгоритму:

  1. Выбрать мечту,
  2. Оценить ее желанность,
  3. Оценить ее доступность,
  4. Сотворить с нее цель по правилам,
  5. Разработать план достижения,
  6. Каждый день – выполнять кусочек плана,
  7. Раз в месяц – проверять на правильном ли я пути,
  8. Если близок – так держать, если нет – пересмотреть все сначала ( в помощь).

Это и есть способ движения к цели по прямой, когда много времени сил и энергии каждый день тратиться на само движение.

— И каких ты результатов достиг прямым путем? (спросил я себя)

— Менее 30 – 40 % результативности … (успех в достижении в менее половины случаев!)

Есть повод к расстройству? Не так ли? Две минуты депрессии… Пока не пришла на ум следующая фраза:

— А каков успех по касательной? (странное словосочетание — «по касательной», подумалось тогда)

— Почти 100%!

Все цели, которые были: или составляющими большим неудачным целям, либо были вспомогательными и не столь важны – достигнуты!

Достигнуты без всяких головных болей, без надрыва сердца и ума, легко и просто. У них не было жестких временных рамок, они не были столь ценны для меня. Притом, это серьёзные цели (но не серьезные в тот момент, когда я их брал, как средство достижения другой цели).

Для серьёзный научных изданиях, говоря о мнении других гуру Успеха, нужно обязательно ссылаться на имена самих таких гуру. Мой блог не научное издание, и я забыл их имена, но движение к цели по касательно уже встречал во многих источниках.

Некоторые источники, книги из этой серии, самих авторов не помню: «Жизнь без офисного рабства», «Жизнь без Цели», школа Достигатора …

Эти «товарищи» говорят часто, что достигать цели не стоит тупым прямым путем, напролом. Что достижение цели большой ценой – это неуспех, а другое нехорошее слово …

Читал, знал, а теперь пришел к таким же выводам.

Можно было бы написать целую «проповедь» о преимуществах и недостатках, как «по прямой», так и «по касательной». Для меня же важен результат и практическая сторона дела. И это сторона вот что нашептала:

Метод достижения цели по касательной

1. Нужно выбирать не саму цель, а сверх цель над этой целью

Это как стрелять по звездам, чтоб попасть на луну. . Всю жизнь стремится к очень высоким целям, чтоб более меньшая цель (но востребованная) реализовалась как бы сама собой, на автомате.

Например: хочешь домик на берегу моря. Выбираешь над цель: быть владельцем недвижимости в разных концам мира, ставишь над-цель по правилам прямого достижения цели. И будет тебе домик, как минимум в Крыму.

Например 2: хочешь новенькую Хьюндаи — желай Хонду. Желаешь Вольсваген – желай Бумер.

Недостаток такого подхода: когда у вас будет та самая первоначальная цель, вы не будете ей настолько рады, и зажелаете уже более большую. Так и рождаются: потогонки, крысиные бега …

2. Занизить желанность самой цели

Так советует те самые эксперты. Не буду расписывать, как это делать. Ибо это бестолковое занятие. Если занизить саму желанность цели – зачем она нужна тогда, эта цель? А потом, те же самые авторы предлагают как-бы не желая, вспоминать каждый день эту цель. Если ее вспоминать – автоматические желанность будет расти. Противоречие! Не так ли?

Может я чего не понял. Если не видите несогласованности в этих буквах: «занизить желанность цели» — то поступайте так.

Недостаток: читайте выше, нарушение простой логики.

3. Цель, не цель – а средство достижения большей цели

Чем-то похоже на п.1. Но есть существенное различие. Именно данная методика пока в сыром варианта. И скорей всего — останется в таковом, читайте ниже почему.

Нужно желанную цель перевести в средство достижения другой цели.

Например: желаете то самое шикарное бунгало на берегу Тихого океана. Желайте не бунгало, а желайте стать торговцем недвижимости с мировым именем.

Еще пример: желаете менять дорогие машины, как перчатки. Поставите цель по правилам – стать торговцем элитных машин.

В целом, движение к цели по касательной — это творческий подход, вряд ли появится достойный метод: делай А потом Б, и т.д. Конечно, проще двигаться к мечте по инструкции. Но опыт жизни показывает — чем более копий данной инструкции – тем меньше шансов на успех.

Может, что еще придумаю, допишу о движение к цели по касательной. А пока – всех благ!

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Ты уже знаешь что такое производная? Если нет, сперва прочти тему . Итак, ты говоришь, что знаешь производную. Сейчас проверим. Найди приращение функции при приращении аргумента, равном. Справился? Должно получиться. А теперь найди производную функции в точке. Ответ: . Получилось? Если в каком-нибудь из этих примеров возникли сложности, настоятельно рекомендую вернуться к теме и проштудировать ее еще раз. Знаю, тема очень большая, но иначе нет смысла идти дальше. Рассмотрим график какой-то функции:

Выберем на линии графика некую точку. Пусть ее абсцисса, тогда ордината равна. Затем выберем близкую к точке точку с абсциссой; ее ордината - это:

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии). Обозначим угол наклона прямой к оси как. Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки. Какие значения может принимать угол? Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол - , а минимально возможный - . Значит, . Угол не включается, поскольку положение прямой в этом случае в точности совпадает с, а логичнее выбирать меньший угол. Возьмем на рисунке такую точку, чтобы прямая была параллельна оси абсцисс, а - ординат:

По рисунку видно, что, а. Тогда отношение приращений:

(так как, то - прямоугольный).

Давай теперь уменьшать. Тогда точка будет приближаться к точке. Когда станет бесконечно малым, отношение станет равно производной функции в точке. Что же при этом станет с секущей? Точка будет бесконечно близка к точке, так что их можно будет считать одной и той же точкой. Но прямая, имеющая с кривой только одну общую точку - это ни что иное, как касательная данном случае это условие выполняется только на небольшом участке - вблизи точки, но этого достаточно). Говорят, что при этом секущая занимает предельное положение .

Угол наклона секущей к оси назовем. Тогда получится, что производная

то есть производная равна тангенсу угла наклона касательной к графику функции в данной точке.

Поскольку касательная - это прямая, давай теперь вспомним уравнение прямой:

За что отвечает коэффициент? За наклон прямой. Он так и называется: угловой коэффициент . Что это значит? А то, что равен он тангенсу угла между прямой и осью! То есть вот что получается:

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей? Посмотрим:
Теперь углы и тупые. А приращение функции - отрицательное. Снова рассмотрим: . С другой стороны, . Получаем: , то есть все, как и в прошлый раз. Снова устремим точку к точке, и секущая примет предельное положение, то есть превратится в касательную к графику функции в точке. Итак, сформулируем окончательно полученное правило:
Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

Это и есть геометрический смысл производной. Окей, все это интересно, но зачем оно нам? Вот пример:
На рисунке изображен график функции и касательная к нему в точке с абсциссой. Найдите значение производной функции в точке.
Решение.
Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: . Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной. На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси - это. Найдем тангенс этого угла: . Таким образом, производная функции в точке равна.
Ответ: . Теперь попробуй сам:

Ответы:

Зная геометрический смысл производной , можно очень просто объяснить правило, что производная в точке локального максимума или минимума равна нулю. Действительно, касательная к графику в этих точках «горизонтальна», то есть параллельна оси абсцисс:

А чему равен угол между параллельными прямыми? Конечно, нулю! А тангенс нуля тоже равен нулю. Вот и производная равна нулю:

Более подробно об этом читай в теме «Монотонность функций. Точки экстремума».

А сейчас сосредоточимся на произвольных касательных. Предположим, у нас есть какая-то функция, например, . Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке. Например, в точке. Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости? Поскольку прямая - это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты и в уравнении

Но ведь мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

В нашем примере будет так:

Теперь остается найти. Это проще простого: ведь - значение при. Графически - это координата пересечения прямой с осью ординат (ведь во всех точках оси):

Проведём (так, что - прямоугольный). Тогда (тому самому углу между касательной и осью абсцисс). Чему равны и? По рисунку явно видно, что, а. Тогда получаем:

Соединяем все полученные формулы в уравнение прямой:

Теперь реши сам:

  1. Найди уравнение касательной к функции в точке.
  2. Касательная к параболе пересекает ось под углом. Найди уравнение этой касательной.
  3. Прямая параллельна касательной к графику функции. Найдите абсциссу точки касания.
  4. Прямая параллельна касательной к графику функции. Найдите абсциссу точки касания.

Решения и ответы:


УРАВНЕНИЕ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ. КРАТКОЕ ОПИСАНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Производная функции в конкретной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или угловому коэффициенту этой касательной:

Уравнение касательной к графику функции в точке:

Алгоритм действий для нахождения уравнения касательной:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

    У этого термина существуют и другие значения, см. Вращение (значения). О разновидности перекрёстков: см. Круговой перекрёсток. В физике круговое движение это вращение по кругу, т. е. это круговой путь по круговой орбите. Оно может быть… … Википедия

    касательное движение - (Dк) Прямолинейное поступательное или вращательное движение режущего инструмента, скорость которого меньше скорости главного движения резания и направлена по касательной к режущей кромке, предназначенное для того, чтобы сменять контактирующие с… … Справочник технического переводчика

    - (l inertie, die Trägheit, the inertia) свойство материи, состоящее в стремлении каждой точки материального тела сохранять без изменения величину и направление своей скорости. Поэтому какое либо тело, все точки которого обладают одновременно… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    метод - метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди …

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Ньютон. Исаак Ньютон Isaac Newton … Википедия

    ГОСТ 13699-91: Запись и воспроизведение информации. Термины и определения - Терминология ГОСТ 13699 91: Запись и воспроизведение информации. Термины и определения оригинал документа: 241 (воспроизводящая) игла: Игла, следующая по канавке записи механической сигналограммы с целью воспроизведения информации Определения… … Словарь-справочник терминов нормативно-технической документации

    Раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами. Содержание 1 Способы задания кривой 1.1 Плоские кривые … Википедия

    Изображение Солнечной системы из книги Андреаса Целлариуса Harmonia Macrocosmica (1708) Гелиоцентрическая система мира представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие … Википедия

    Дифференциальная геометрия кривых раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами. Содержание 1 Способы задания кривой 1.1 Плоские… … Википедия

Понятие касательной – одно из важнейших в математическом анализе. Изучение прямых, касательных к кривым линиям, во многом определило пути развития математики.

С помощью циркуля и линейки нетрудно построить касательную к окружности в данной ее точке. Несколько труднее провести общую касательную к двум окружностям. В Древней Греции умели строить с помощью циркуля и линейки касательные ко всем коническим сечениям: эллипсам, гиперболам и параболам, что свидетельствует о высоком уровне развития геометрии в то время.

Интерес к касательным не ослабевал и у математиков последующих поколений. В XVII в. французские ученые Р. Декарт и П. Ферма исследовали касательные к спиралям и циклоиде. (Заметим, что модель касательной к циклоиде можно наблюдать в дождливую погоду: циклоида – кривая, являющаяся траекторией точки на ободе катящегося колеса (рис. 1). По такой траектории движутся и капли воды, находящиеся на колесе, а оторвавшись от колеса, они продолжают двигаться уже по касательной к циклоиде (а не к окружности – ободу колеса). Такие капли образуют грязную полосу на спине велосипедиста-гонщика, мчащегося по шоссе в сырую погоду).

Р. Декарт на задаче построения касательных к кривым отрабатывал свой аналитический метод в геометрии. Продолжая исследования Декарта, связанные с построением касательных с помощью аналитического метода, Г. В. Лейбниц одновременно с И. Ньютоном пришел к открытию дифференциального исчисления, явившемуся революцией в развитии математики. Понятие производной функции тесно связано с построением касательной к графику этой функции: значение производной в некоторой точке есть тангенс угла наклона касательной в этой точке к оси абсцисс.

Как все основные понятия дифференциального исчисления, понятие касательной строго определяется лишь с помощью предельного перехода (см. Предел). Касательная к кривой в точке определяется как предельное положение секущей при приближении точки по кривой к точке (рис. 2). Нетрудно понять, что у непрерывных кривых могут быть точки, в которых касательная отсутствует (рис. 3), но чрезвычайно трудно представить себе, что существуют такие непрерывные кривые, которые не имеют касательных ни в одной своей точке.

Первые примеры таких функций были указаны чешским ученым Б. Больцано (1830 г., опубликовано в 1930 г.) и немецким математиком К. Вейерштрассом (1860 г., опубликовано в 1872 г.). Естественно, что функции, графиками которых являются кривые без касательных, не имеют производных ни в одной из своих точек, так как у функции , имеющей в точке производную, касательная к ее графику в этой точке существует и записывается уравнением .

Понятие касательной применяется и для определения угла между кривыми в точке их пересечения. За такой угол принимается угол между касательными к кривым в этой точке. На рис. 4 изображено два семейства кривых – эллипсы и гиперболы, фокусы которых находятся в заданных точках и . Любые две кривые разных семейств здесь пересекаются под прямым углом. Такая картина часто встречается в физике, в частности эти кривые являются линиями равной напряженности и равного потенциала, если в точках и находятся заряды разного знака.

Аналогично касательной к кривой определяется касательная плоскость к поверхности (рис. 5), она играет по отношению к поверхности ту же роль, что и касательная к кривой.