1 вероятнее. Действия над вероятностями. Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Бария сульфат – это активное вещество, которое применяется в диагностических целях при некоторых заболеваниях пищеварительного тракта. Оно представляет собой рыхлый порошок белого цвета, не обладающий запахом и каким-либо вкусом, он нерастворим в органических растворителях, а также в щелочах и кислотах. Рассмотрю характеристики этого компонента. Поговорим о том для чего нужен бария сульфат для рентгеноскопии, применение в медицине этого вещества опишем, его свойства, что говорит инструкция расскажем.

Какое у Бария сульфат действие?

Бария сульфат – это рентгеноконтрастное вещество, оно используется с диагностической целью, так как хорошо повышает контрастность рентгеновского изображения при проведении соответствующих исследований, и не обладает токсичностью. Максимальная рентгеноконтрастность таких органов, как пищевод, желудок, а также и двенадцатиперстная кишка, достигается очень быстро, сразу же после введения его внутрь.

Что касается тонкого кишечника, то рентгеноконтрастность наступает примерно через 15 минут или через полтора часа, все будет зависеть от вязкости препарата и от скорости непосредственного опорожнения желудка. Максимальная визуализация дистальных отделов как тонкого, так и толстого кишечника будет зависть от положения тела пациента, а также от гидростатического давления.

Бария сульфат не всасывается из пищеварительного тракта, поэтому не попадает непосредственно в системный кровоток, конечно, если отсутствует перфорация органов ЖКТ. Выводится это вещество со стулом.

Какие у Бария сульфат показания к применению?

Назначается средство для рентгенографии ЖКТ, в особенности тонкого кишечника, а именно его верхних отделов.

Какие у Бария сульфат противопоказания к применению?

Среди противопоказаний к применению Бария сульфат можно отметить такие состояния:

Наличие гиперчувствительности к этому веществу;
Не назначают его при непроходимости толстой кишки;
При перфорации ЖКТ противопоказано использование бария;
При наличии бронхиальной астмы в анамнезе;
При обезвоживании организма;
При язвенном колите острой формы;
При аллергических реакциях.

Кроме перечисленного, это вещество не используют при наличии у пациента муковисцидоза, также противопоказанием считается острый дивертикулит.

Какие у Бария сульфат побочные действия?

Среди побочных проявления Бария сульфат инструкция по применению отмечает такие состояния: может развиться длительный запор тяжелого характера, не исключены спазмы в некоторых отделах кишечника, может присоединиться диарея.

Кроме этого развиваются анафилактоидные реакции, которые проявляются затрудненным дыханием, присоединяется болезненное вздутие живота, стеснённость в груди, боль в желудка и в кишечнике.

Если после первого проведенного рентгеноконтрастного исследования у пациента развились какие-либо побочные эффекты, обязательно следует сообщить об этом лечащему врачу.

Какие у Бария сульфат применение и дозировка?

Для проведения исследования верхних отделов пищеварительного тракта суспензию из бария сульфата принимают внутрь, чтобы провести двойное контрастирование необходимо добавить сорбит, а также цитрат натрия. Так называемая «бариевая кашица» в этом случае готовится так: 80 г порошка разводят в ста миллилитрах воды, после чего выполняют диагностическую процедуру.

Для рентгенодиагностики толстой кишки суспензию готовят из 750 г порошка Бария сульфат и литра воды, кроме этого 0,5% раствор танина вводят через клизму непосредственно в прямую кишку.

Накануне проведения диагностической процедуры не рекомендуется принимать твердую пищу. После исследования нужно употреблять достаточно большое количество жидкости, тем самым можно ускорить эвакуацию из кишечника сульфата бария.

Особые указания

Препараты, содержащие Бария сульфат (аналоги)

Препарат Бар-ВИПС содержит в своем составе Бария сульфат, он выпускается в порошке для приготовления диагностической суспензии для внутреннего приема. Это рентгеноконтрастное средство комплексного состава, обладает низкой токсичностью.

Следующий препарат – это Корибар-Д, он тоже производится в пасте, обладает выраженными адгезивными свойствами, обеспечивает качественное изображение рельефа слизистой пищеварительного тракта.

Микропак – его лекарственная форма тоже представлена пастой, из которой готовят суспензию, а также препарат производится в порошке. Следующее средство - Микропак Колон, при его применении можно получить четкое изображение микрорельефа.

Микропак Ораль, Микропак СТ, Микротраст эзофагус паста, Со 2-гранулят, Сульфобар, Фалибарит, Фалибарит ХДЕ, а также Адсобар, все эти перечисленные рентгеноконтрастные препараты также содержат в своем составе активное вещество Бария сульфат. Выпускаются они как в виде пасты, из которой готовят суспензию, так и в форме мелкодисперсного порошка.

Применяют рентгеноконтрастные средства с диагностической целью, чтобы выявить какую-либо патологию пищеварительного тракта, в частности пищевода, желудка, а также и всех отделов кишечника. Кроме этого Бария сульфат содержится в одноимённом препарате.

Заключение

Перед тем как проводить рентгеноконтрастное исследование, накануне необходимо воздержаться от употребления твердой, долго перевариваемой пищи. При этом подобное контрастное обследование должно назначаться лечащим доктором в соответствии с имеющимися показаниями.

Металлический барий - мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Название его происходит от древнегреческого слова, означающего «тяжелый» (из-за высокой его соединений).

Как был открыт барий

В виде оксида барий открыли Карл Шееле и Юхан Ган в 1774 г. В 1808 году Гемфри Дэви впервые выделил барий в чистом виде в ходе электролиза влажного гидроксида бария с ртутным катодом. Образующуюся в этом процессе амальгаму бария Дэви нагревал, а после испарения ртути получал чистый металлический барий.

Распространенность бария в природе

Этот элемент обладает высокой химической активностью и не встречается в природе в чистом виде. Он содержится главным образом в минералах барит (Ba­SO₄) и витерит (Ba­CO₃). Одно из соединений бария – его сульфид, BaS – стал известен как «болонский » после экспериментов итальянского алхимика Винченцо Касциароло (Vin­cen­zo Cas­cia­ro­lo). Прокаливая барит, он обнаружил, что образуется вещество, которое в темноте. Пробыв днем под солнцем, оно продолжало светиться всю ночь.

Где применяется барий и его соединения

В чистом виде барий применяется в качестве геттера (газопоглотителя) в электронных приборах с высоким вакуумом и добавляется в жидкометаллические теплоносители. Соединения бария применяются при изготовлении керамических конденсаторов, пьезоэлектрических микрофонов и пьезокерамических излучателей (титанат бария). Также соединения бария используются в оптике (монокристаллы фторида бария), в атомно-водородной энергетике для получения водорода и кислорода по циклу Ок-Риджа (хромат бария), в ядерной энергетике для покрытия урановых стержней (оксид бария в составе специального сорта стекла) и в различных химических источниках . Пероксид бария вместе с оксидами меди и редкоземельных металлов используется для создания сверхпроводящей керамики, работающей при температуре выше 77.4 K. Нитрат и хлорат бария придают фейерверкам зеленый цвет.

Все водорастворимые соединения бария токсичны и вызывают серьезные проблемы с желудочно-кишечным трактом, паралич мышц и сердца. Однако нерастворимый в воде сульфат бария нашел применение в медицине. «Баритовую кашу» (суспензию сульфата бария) дают пациентам для рентгенографического исследования органов пищеварения. Барий хорошо поглощает рентгеновское излучение. Это свойство пробовали применять производители «Lego», добавляя сульфат бария в пластмассу для деталей конструктора. Если ребенок проглатывал деталь, на рентгене можно было легко ее обнаружить пищеварительном тракте. К сожалению, пластмасса теряла прочность, а промышленный сульфат бария был недостаточно чист и обладал токсичностью, поэтому от этой идеи отказались.

Барий — элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 56. Обозначается символом Ba (лат. Barium). Простое вещество — мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью. История открытия бария

1 элемент таблицы МенделееваБарий был открыт в виде оксида BaO в 1774 г. Карлом Шееле. В 1808 году английский химик Гемфри Дэви электролизом влажного гидроксида бария с ртутным катодом получил амальгаму бария; после испарения ртути при нагревании он выделил металлический барий.
В 1774 г. шведский химик Карл Вильгельм Шееле и его друг Юхан Готлиб Ган исследовали один из самых тяжелых минералов - тяжелый шпат BaSO4. Им удалось выделить неизвестную раньше «тяжелую землю», которую потом назвали баритом (от греческого βαρυς - тяжелый). А через 34 года Хэмфри Дэви, подвергнув электролизу мокрую баритовую землю, получил из нее новый элемент - барий. Следует отметить, что в том же 1808 г., несколько раньше Дэви, Йене Якоб Берцелиус с сотрудниками получил амальгамы кальция, стронция и бария. Так появился элемент барий.

Древние алхимики прокаливали BaSO4 с деревом или древесным углем и получали фосфоресцирующие «болонские самоцветы». Но химически эти самоцветы не BaO, а сернистый барий BaS.
Своё название получил от греческого barys — «тяжёлый», так как его оксид (BaO) был охарактеризован, как имеющий необычно высокую для таких веществ плотность.
В земной коре содержится 0,05% бария. Это довольно много - значительно больше, чем, скажем, свинца, олова, меди или ртути. В чистом виде в земле его нет: барий активен, он входит в подгруппу щелочноземельных металлов и, естественно, в минералах связан достаточно прочно.
Основные минералы бария - уже упоминавшийся тяжелый шпат BaSO4 (чаще его называют баритом) и витерит BaCOз, названный так по имени англичанина Уильяма Витеринга (1741...1799), который открыл этот минерал в 1782 г. В небольшой концентрации соли бария содержатся во многих минеральных водах и морской воде. Малое содержание в этом случае плюс, а не минус, ибо все соли бария, кроме сульфата, ядовиты.

56 Барий → Лантан
Свойства атома
Название, символ, номер

Барий / Barium (Ba), 56

Атомная масса
(молярная масса)

137,327(7)(г/моль)

Электронная конфигурация
Радиус атома
Химические свойства
Ковалентный радиус
Радиус иона
Электроотрицательность

0,89 (шкала Полинга)

Электродный потенциал
Степени окисления
Энергия ионизации
(первый электрон)

502,5 (5,21) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)
Температура плавления
Температура кипения
Уд. теплота плавления

7,66 кДж/моль

Уд. теплота испарения

142,0 кДж/моль

Молярная теплоёмкость

28,1 Дж/(K·моль)

Молярный объём

39,0 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая
объёмноцентрированая

Параметры решётки
Прочие характеристики
Теплопроводность

(300 K) (18.4) Вт/(м·К)

С химической формулой BaSO 4 . Представляет собой белый порошок без запаха, нерастворимый в воде. Его белизна и непрозрачность, а также высокая плотность определяют основные области применения.

История названия

Барий относится к щёлочноземельным металлам. Последние названы так потому, что, по словам Д. И. Менделеева, их соединения образуют нерастворимую массу земли, а окислы "имеют землистый вид". Барий в природе содержится в виде минерала барита, который представляет собой бария сульфат с различными примесями.

Впервые он был обнаружен шведскими химиками Шееле и Ганом в 1774 году в составе так называемого тяжелого шпата. Отсюда возникло и название минерала (от греч. «барис» - тяжелый), а затем и самого металла, когда в 1808 г. его выделил в чистом виде Гемфри Деви.

Физические свойства

Поскольку BaSO 4 - это соль серной кислоты, то ее физические свойства отчасти определяются самим металлом, который является мягким, химически активным и серебристо-белым. Природный барит бесцветен (иногда белый) и прозрачен. Химически чистый BaSO 4 имеет цвет от белого до бледно-желтого, он негорючий, с температурой плавления 1580°С.

Какая масса сульфата бария? Молярная масса его равна 233,43 г/моль. Он обладает необычайно высоким удельным весом - от 4,25 до 4,50 г/см 3 . Учитывая нерастворимость в воде, высокая плотность делает его незаменимым в качестве наполнителя водных буровых растворов.

Химические свойства

BaSO 4 - это одно из самых труднорастворимых в воде соединений. Его можно получить из двух хорошо растворимых солей. Возьмем водный раствор натрия сульфата - Na 2 SO 4 . Его молекула в воде диссоциирует на три иона: два Na + и один SO 4 2- .

Na 2 SO 4 → 2Na + + SO 4 2-

Возьмем также водный раствор хлорида бария - BaCl 2 , молекула которого диссоциирует на три иона: один Ba 2+ и два Cl - .

BaCl 2 → Ba 2+ + 2Cl -

Смешаем водный раствор сульфата и смесь, содержащую хлорид. Бария сульфат образуется в результате соединения в одну молекулу двух ионов с одинаковым по величине и противоположным по знаку зарядом.

Ba 2+ + SO 4 2- → BaSO 4

Ниже вы можете увидеть полное уравнение этой реакции (так называемое молекулярное).

Na 2 SO 4 + BaCl 2 → 2NaCl + BaSO 4

В результате образуется нерастворимый осадок сульфата бария.

Товарный барит

На практике исходным сырьем для получения товарного сульфата бария, предназначенного для использования в буровых растворах при бурении нефтегазовых скважин, является, как правило, минеральный барит.

Термин "первичный" барит относится к товарной продукции, которая включает в себя сырой материал (получаемый из шахт и карьеров), а также продукты простого обогащения такими методами, как промывка, осаждение, сепарация в тяжелых средах, флотация. Большая часть сырого барита требует доведения его до минимальной чистоты и плотности. Минерал, который используется в качестве наполнителя, измельчают и просеивают до однородного размера так, чтобы, по меньшей мере, 97 % его частиц имели размер до 75 мкм, и не более 30 % были менее 6 мкм. Первичный барит также должен быть достаточно плотным, чтобы его удельный вес составил 4,2 г/см 3 или выше, но при этом достаточно мягким, чтобы не повредить подшипники.

Получение химически чистого продукта

Минеральный барит зачастую загрязнен различными примесями, в основном оксидами железа, окрашивающими его в различные цвета. Он обрабатывается карботермическим способом (нагревом с коксом). В результате получается сульфид бария.

BaSO 4 + 4 С → BaS + 4 СО

Последний, в отличие от сульфата, растворим в воде и легко реагирует с кислородом, галогенами и кислотами.

BaS + Н 2 SO 4 → BaSO 4 + Н 2 S

Чтобы получить высокочистый выходной продукт, используется серная кислота. Сульфат бария, образуемый по такому процессу, часто называют бланфиксом, что в переводе с французского означает "белый фиксированный". Он часто встречается в потребительских продуктах, таких как краски.

В лабораторных условиях сульфат бария образуется путем объединения в растворе ионов бария и сульфат-ионов (см. выше). Поскольку сульфат является наименее токсичной солью бария из-за ее нерастворимости, отходы, содержащие другие его соли, иногда обрабатывают сульфатом натрия, чтобы связать весь барий, являющийся достаточно токсичным.

Из сульфата в гидроксид и обратно

Исторически барит использовался для производства гидроксида бария Ba(OH) 2 , необходимого при рафинировании сахара. Это вообще очень интересное и широко используемое в промышленности соединение. Оно хорошо растворимо в воде, образует раствор, известный как баритовая вода. Ее удобно использовать для связывания сульфат-ионов в различных составах путем образования нерастворимого BaSO 4 .

Выше мы видели, что при нагреве в присутствии кокса из сульфата легко получить водорастворимый сульфид бария - BaS. Последний же при взаимодействии с горячей водой образует гидроксид.

BaS + 2H 2 O → Ba(OH) 2 + H 2 S

Гидроксид бария и сульфат натрия, взятые в растворах, при смешивании дадут нерастворимый осадок сульфата бария и едкий натрий.

Ba(OH) 2 + Na 2 SO 4 = BaSO 4 + 2NaOH

Получается, что природный бария сульфат (барит) промышленным способом сначала превращается в бария гидроксид, а затем служит для получения того же сульфата при очистке различных солевых систем от сульфат-ионов. Точно так же будет проходить реакция и при очистке от ионов SO 4 2- раствора сернокислой меди. Если сделать смесь "гидроксид бария + сульфат меди", то в результате получится гидроксид меди и нерастворимый бариевый сульфат.

CuSO 4 + Ba(OH) 2 → Cu(OH) 2 + BaSO 4 ↓

Даже в реакции с самой серной кислотой ее сульфат-ионы будут полностью связаны барием.

Использование в буровых растворах

Около 80 % мирового производства сульфата бария, очищенного и измельченного барита, потребляется в качестве компонента буровых растворов при создании нефтегазовых скважин. Добавка его увеличивает плотность жидкости, закачиваемой в скважину, с целью лучшего сопротивления высокому пластовому давлению и предотвращения прорывов.

Когда скважина бурится, долото проходит через различные образования, каждое из которых имеет свои характеристики. Чем больше глубина, тем больший процент барита должен присутствовать в структуре раствора. Дополнительным преимуществом является то, что бария сульфат - немагнитное вещество, поэтому он не мешает проведению различных измерений в скважине с помощью электронных устройств.

Лакокрасочная и бумажная промышленность

Большая часть синтетического BaSO 4 используется в качестве компонента белого пигмента для красок. Так, бланфикс в смеси с двуокисью титана (TiO 2) продается в качестве белой масляной краски, применяемой в живописи.

Сочетание BaSO 4 и ZnS (сульфид цинка) дает неорганический пигмент, который называется литопоном. Он используется в качестве покрытия для определенных сортов фотобумаги.

Совсем недавно бария сульфат был применен для осветления бумаги, предназначенной для струйных принтеров.

Применение в химической промышленности и цветной металлургии

В производстве полипропилена и полистирола BaSO 4 используют в качестве наполнителя в пропорции до 70 %. Он имеет эффект увеличения стойкости пластмасс к кислотам и щелочам, а также придает им непрозрачность.

Он также используется для производства других соединений бария, в частности его карбоната, который применяется для изготовления светодиодного стекла для телевизионных и компьютерных экранов (исторически в электронно-лучевых трубках).

Формы, используемые в отливке металлов, часто покрывают бария сульфатом для предотвращения сцепления с расплавленным металлом. Так поступают при изготовлении анодных медных пластин. Их отливают в медные изложницы, покрытые слоем сульфата бария. Когда жидкая медь затвердевает в виде готовой анодной пластины, она может быть легко извлечена из литейной формы.

Пиротехнические устройства

Поскольку соединения бария испускают зеленый свет при горении, то соли этого вещества часто используются пиротехнических формулах. Хотя нитрат и хлорат являются более распространенными, чем сульфат, последний широко используется в качестве компонента пиротехнических стробоскопов.

Рентгеноконтрастный препарат

Бария сульфат является рентгеноконтрастным агентом, используемым для диагностики определенных медицинских проблем. Так как подобные вещества являются непрозрачными для рентгеновских лучей (блокируют их в результате своей высокой плотности), то области тела, в которых они локализуются, появляются как белые участки на рентгеновской пленке. Это создает необходимое различие между одним (диагностируемым) органом и другими (окружающими его) тканями. Контраст поможет врачу увидеть любые особые условия, которые могут существовать в этом органе или части тела.

Бария сульфат принимается через рот или ректально при помощи клизмы. В первом случае он делает пищевод, желудок или тонкий кишечник непрозрачным для рентгеновских лучей. Таким образом, они могут быть сфотографированы. Если вещество введено при помощи клизмы, то толстую кишку или кишечник можно увидеть и зафиксировать рентгеновскими лучами.

Доза сульфата бария будет разной для разных пациентов, все зависит от типа теста. Препарат выпускается в виде специальной медицинской бариевой суспензии или в таблетках. Различные тесты, при которых нужен контраст и рентгеновское оборудование, требуют различного количества суспензии (в некоторых случаях необходим прием препарата в форме таблетки). Контрастное вещество должно использоваться только под непосредственным контролем врача.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.