Минеральная вода — виды, классификация и лечебные процедуры. Формы их нахождения в природе. Большой медицинский словарь

План.

Вариант №6.

1. Классификация минералов и условия их образования: главнейшие породообразующие минералы экзогенного и эндогенного происхождения.

2. Ледники, их геологическая роль, распределение. Породы, образование в результате работы ледников эпохи оледенения.

3. Инженерно-геологические исследования для промышленного и гражданского строительства.

4. Лабораторные методы определения деформационных и прочностных свойств грунтов.

5. Структура, текстура, вещественный состав химических и биохимических осадочных пород.

6. Приток напорных вод в совершенный колодец.

Введение.

Геология – комплекс наук о составе, строении. Истории развития Земли, движениях земной коры и размещении в недрах Земли полезных ископаемых. Основным объектом изучения, исходя из практических задач человека, является земная кора.

В последние десятилетия особое развитие получила инженерная геология – наука, изучающая свойства горных пород (грунтов), природные геологические и техногенно-геологические (инженерно-геологические) процессы в верхних горизонтах земной коры в связи со строительной деятельностью человека.

Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и при эксплуатации сооружений. В современных условиях ни одно здание или сооружение не может быть спроектировано, построено и надежно эксплуатироваться без достоверных и полных инженерно-геологических материалов.

1. Классификация минералов и условия их образования: главнейшие породообразующие минералы экзогенного и эндогенного происхождения.

Минерал – природное тело с определенным химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и являющееся составной частью земной коры, горных пород, руд, метеоритов. Изучением минералов занимается наука минералогия.

В земной коре содержится более 7000 минералов и их разновидностей. Большинство из них встречаются редко и лишь немногим более 100 минералов встречаются часто и в достаточно больших количествах, входят в состав тех или иных горных пород. Такие минералы называют породообразующими.

Происхождение минералов. Условия, в которых образуются минералы в природе, отличаются большим разнообразием и сложностью. Различают три основных процесса минералообразования: эндогенный, экзогенный и метаморфический.

Эндогенный процесс связан с внутренними силами Земли и проявляется в ее недрах. Минералы формируются из магмы – силикатного огненно-жидкого расплава. Таким путем образуются, например, кварц и различные силикаты. Эндогенные минералы обычно плотные,с большой твердостью, стойкие к воде, кислотам, щелочам.

Экзогенный процесс свойственен поверхности земной коры. При этом процессе минералы формируются на суше и в море. В первом случае их создание связано с процессом выветривания, т.е. разрушительным воздействием воды, кислорода, колебаний температуры на эндогенные минералы. Таким образом образуются глинистые минералы (гидрослюда, каолинит и др.), различные железистые соединения (сульфиды, оксиды химический осадков из водных растворов (галит, сильвин и др.). в экзогенном процессе ряд минералов образуется также за счет жизнедеятельности различных организмов (опал и др.).

Экзогенные минералы разнообразны по свойствам. В большинстве случаев они имеют низкую твердость, активно взаимодействуют с водой или растворяются в ней.

Метаморфический процесс. Под воздействием высоких температур и давлений, а также магматических газов и воды на некоторой глубине в земной коре происходит преобразование минералов, ранее образовавшихся в экзогенных процессах. Минералы изменяют свое первоначальное состояние, перекристаллизовываются, приобретают плотность, прочность. Так образуются многие минералы-силикаты (роговая обманка, актинолит и др.).

Классификация минералов. Существует много вариантов классификаций минералов. Наиболее широко используется классификация по химическому составу и кристаллической структуре. Вещества одного химического типа часто имеют близкую структуру, поэтому минералы сначала делятся на классы по химическому составу, а затем на подклассы по структурным признакам.

Все минералы разделяют на 10 классов.

Силикаты – наиболее многочисленный класс, включающий до 800 минералов, являющихся основной частью большинства магматических и метаморфических пород. Среди силикатов выделяют группы минералов, характеризующиеся некоторой общностью состава и строения – полевые шпаты, пироксены, амфиболы, слюды, а также оливин, тальк, хлориты и глинистые минералы. Все они по своему составу алюмосиликаты.

Карбонаты. К ним относится более 80 минералов. Наиболее распространены кальцит, магнетизм, доломит. Происхождение в основном экзогенное и связано с водными растворами. В контакте с водой они немного снижают свою механическую прочность, хотя и слабо, но растворяются в воде, разрушаются в кислотах.

Оксиды и гидроксиды. Эти два класса объединяют около 200 минералов, на их долю приходится до 17% всей массы земной коры. Наибольшее распространение имеют кварц, опал и лимонит.

Сульфиды насчитывают до 200 минералов. Типичный представитель пирит. Сульфиды в зоне выветривания разрушаются, поэтому их примесь снижает качество строительных материалов.

Сульфаты. Этот класс объединяет до 260 минералов, происхождение которых связано с водными растворами. Характеризуются небольшой твердостью, светлой окраской. Сравнительно хорошо растворяются в воде. Наибольшее распространение имеют гипс и ангидрит. При соприкосновении с водой ангидрит переходит в гипс, увеличиваясь в объеме до 33%.

Галоиды содержат около 100 минералов. Происхождение связано в основном с водными растворами. Наибольшее распространение имеет галит. Может быть составной частью осадочных пород, легко растворяется в воде.

Минералы классов фосфатов, вольфраматов и самородных элементов встречаются гораздо реже, чем другие.

2. Ледники, их геологическая роль, распределение. Породы, образование в результате работы ледников эпохи оледенения.

Геологические данные говорят о том, что в древние времена оледенение Земли было значительным. На протяжении последних 500-600 тыс. лет на территории Европы насчитывают несколько больших оледенений. Ледники надвигались из района Скандинавии.

В настоящее время льды занимают 10% поверхности суши, 98,5% ледниковой поверхности приходится на полярные области и лишь 1,5% - на высокие горы. Различают три типа ледников: горные, плоскогорий и материковые.

Горные ледники образуются высоко в горах и располагаются либо на вершинах, либо в ущельях, впадинах, различных углублениях. Такие ледники имеются на Кавказе, Урале и т.д.

Лед образуется за счет перекристаллизации снега. Он обладает способностью к пластическому течению, образуя потоки в форме языков. Движение ледников вниз по склонам ограничивается высотой, где солнечного тепла оказывается достаточно для полного таяния льда. Для Кавказа, например, эта высота составляет на западе 2700 м, на востоке – 3600 м. Скорость движения горные ледников различна. На Кавказе, например, она составляет 0,03-0,35 м/сут, на Памире – 1-4 м/сут.

Ледники плоскогорий образуются в горах с плоскими вершинами. Лед залегает нераздельной сплошной массой. От него по ущельям спускаются ледники в виде языков. Такого типа ледник, в частности, располагается сейчас на Скандинавском полуострове.

Материковые ледники распространены в Гренландии, Шпицбергене, Антарктиде и других местах, где сейчас протекает современная эпоха оледенений. Льды залегают сплошным покровом, мощностью в тысячи метров.

Геологическая деятельность льда велика и обусловлена главным образом его движением, несмотря на то, что скорость течения льда примерно в 10000 раз медленнее, чем воды в реках при тех же условиях.

Строительные свойства ледниковых отложений. Моренные (грубые, неоднородные, неслоистые обломочные материалы) и флювиогляциальные (водно-ледниковые) отложения являются надежным основанием для сооружений различного типа. Валунные суглинки и глины, испытавшие на себе давление мощных толщ льда, находятся в плотном состоянии и в ряде случаев даже переуплотнены. Пористость валунные суглинков не превышает 25-30%. На валунных суглинках и глинах здания и сооружения испытывают малую осадку. Эти грунты слабоводопроницаемы и часто служат водоупором для подземных вод.

Такими высокими прочностными свойствами обладают практически все разновидности отложений морен.

Флювиогляциальные отложения со строительной точки зрения хотя и уступают моренным глинистым грунтам по прочности, но являются надежным основанием. Для этого успешно используют различные песчано-гравелистые и глинистые отложения озов и зандров. Некоторое исключение составляют покровные суглинки и ленточные глины. Покровные суглинки легко размокают. Ленточные глины достаточно плотны, слабо водопроницаемы, но могут в условиях насыщения водой быть текучими.

Ледниковые отложения успешно используют как строительный материал (камень, пески, глины); пески озов, камов и зандров пригодны для возведения насыпей и для изготовления бетона. Валуны хороший строительный камень. Имеются примеры использования валунов для изготовления монолитных пьедесталов памятников.

3. Инженерно-геологические исследования для промышленного и гражданского строительства.

Основной задачей инженерно-геологических исследований для промышленного и гражданского строительства является получение информации о инженерно-геологических условиях территории, к которым относятся: рельеф, породы и их свойства, подземные воды, геологические и инженерно-геологические процессы и явления, а также прогноз изменения этих условий под влиянием инженерной деятельности человека.

Инженерно-геологические исследования проводятся последовательно,

в соответствии со стадией проектирования. Детальность исследований возрастает при переходе от одной стадии к другой, изменяются и методы инженерно-геологических исследований.

На начальной стадии инженерных изысканий основным видом инженерно-геологических исследований является инженерно-геологическая съемка, позволяющая в сжатые сроки и при небольших затратах средств оценить инженерно-геологические условия.

При инженерно-геологической съемке на изучаемой территории выделяют, изучают и прослеживают породы, условия залегания их, рельеф, подземные воды, геологические и инженерно-геологические процессы и изображают их на инженерно-геологической карте.

Важно уяснить, что состав и объем инженерно-геологических исследований зависит от сложности инженерно-геологических условий, стадии проектирования, степени изученности района и других факторов.

Следует обратить внимание на значительную сложность инженерно-геологических исследований в районах развития карста, оползней, погребенных долин, где все изыскания проводятся на более значительную глубину, чем при исследованиях в районах с более благоприятными инженерно-геологическими условиями.

4. Лабораторные методы определения деформационных и прочностных свойств грунтов.

Прочность грунтов оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности R c МПа, или временным сопротивлением сжатию.

На прочность грунтов влияют:

    минеральный состав

    характер структурных связей

    трещиноватость

    степень выветрелости

    степень размягчаемости в воде и др.

Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, т.е. несущей способности, а также для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т.д.

Деформационные свойства характеризуют поведение грунтов под нагрузками, не превышающими критические и не приводящими к разрушению. Деформируемость грунтов зависит, как от сопротивляемости и податливости структурных связей, пористости, так и от способности деформироваться слагающих их материалов. Деформационные свойства грунтов оцениваются модулем деформации Е, МПа.

Грунты определяют устойчивость возводимых на них зданий и сооружений, поэтому необходимо правильно определять характеристики, которые обуславливают прочность и устойчивость грунтов при их взаимодействии со строительными объектами.

Образца грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах в буровых скважинах, которые располагают на строительных площадках.

В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты – это образцы грунтов с ненарушенной структурой. Такие монолиты отбираются в скальных и связных (пылевато-глинистых) грунтах. Размеры монолитов должны быть не меньше установленных норм. Так, для определения сжимаемости грунта, пробы, отбираемые в шурфах, должны иметь размеры 20×20×20 см. в монолитах пылевато-глинистых грунтов при этом должна быть сохранена природная влажность. Это достигается созданием на их поверхности водонепроницаемой парафиновой или восковой оболочки. В рыхлых грунтах (песок, гравий) образцы отбираются в виде проб определенной массы. Так, для проведения гранулометрического анализа песка необходимо иметь пробу не менее 0,5 кг.

В лабораторных условия можно определять все физико-механические свойства. Каждая характеристика этих свойств определяется согласно ГОСТу, например, природная влажность и плотность грунта – ГОСТ 5180-84, предел прочности – ГОСТ 17245-79, гранулометрический (зерновой) и микроагрегатный состав – ГОТ 12536-79 и т.д.

Лабораторные исследования на сегодня остаются основным видом определения физико-механических свойств грунтов. Ряд характеристик, например, природная влажность, плотность частиц грунта и некоторые другие определяются только в лабораторных условиях и с достаточно высокой точностью. В тоже время лабораторные исследования грунтов имеют свои недостатки:

    они довольно трудоемки и требуют больших затрат времени;

    результаты отдельных анализов, например, определение модуля общей деформации, не дает достаточно точных результатов, что бывает связано с неправильным отбором монолитов, неправильным их хранением, низкой квалификацией исполнителя анализа;

    определения свойств массива грунта по результатам анализов небольшого количества образцов не позволяют получать верное представление о его свойствах в целом.

Это связано с тем, что однотипные грунты, даже в пределах одного массива, все же имеют известные различия в своих свойствах.

5. Структура, текстура, вещественный состав химических и биохимических осадочных пород.

Горные породы представляют собой природные минеральные агрегаты, которые «рождаются» в земной коре.

По своему происхождению их делят на три типа: магматические, осадочные и метаморфические. В земной коре магматические и метаморфические породы занимают 95% от общей ее массы. Осадочные породы располагаются непосредственно на поверхности Земли, покрывая собой в большинстве случаев магматические и метаморфические породы.

Осадочные горные породы. Любая находящаяся на земной поверхности порода подвергается выветриванию, т.е. разрушительному воздействию воды, колебаний температур и т.д. в результате даже самые массивные, прочные магматические породы постепенно разрушаются, образуя обломки разных размеров и распадаясь до мельчайших частиц.

Продукты разрушения переносятся ветром, водой и на определенном этапе переноса отлагаются, образуя рыхлые скопления или осадки. Накопление происходит на дне рек, морей, океанов и на поверхности суши. Из рыхлых скоплений (осадков) с течением времени формируются различные осадочные породы.

Осадочные породы слагают самые верхние слои земной коры, покрывая своеобразным чехлом породы магматического и метаморфического происхождения. Несмотря на то, что осадочные породы составляют всего 5% земной коры, земная поверхность на 75% своей площади покрыта именно этими породами, в связи с чем строительство и производится в основном на осадочных породах. Инженерная геология этим породам уделяет наибольшее внимание.

Осадочные породы принято подразделять на три основные группы:

1) обломочные;

2) химического происхождения (хемогенные);

3) органогенные, возникшие в результате жизнедеятельности организмов.

Это деление несколько условно, так как многие породы имеют смешанное происхождение, например, отдельные известняки содержат в своем составе материал органогенного, химического и обломочного характера.

Хемогенные породы образуются в результате выпадения их водных растворов химических осадков. Такой процесс происходит в водах морей, континентальных усыхающих бассейнов, соленых источниках и т.д. к таким породам относятся различные известняки, известковый туф, доломит, ангидрит, гипс, каменная соль и др. общей для этих пород особенностью является их растворимость в воде, трещиноватость.

Наиболее распространенными породами являются известняки, которые по своему происхождению могут быть также обломочными, органогенными.

Органогенные (биохемогенные) породы образуются в результате накопления и преобразования остатков животного мира и растений, отличаются значительной пористостью, многие растворяются в воде, обладают большой сжимаемостью. К органогенным породам относятся известняк-ракушечник, диатомит.

6. Приток напорных вод в совершенный колодец.

Воды, находящиеся в верхней части земной коры, носят название подземных вод. Науку о подземных водах, их происхождении, условиях залегания, законах движение, физических и химических свойствах, связях с атмосферными и поверхностными водами называют гидрогеологией.

Классификаций подземных вод существует несколько, но главных из них две. Подземные воды подразделяют: по характеру их использования и по условиям залегания в земной коре. В число первых входят хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные. Ко вторым относят: верховодки, грунтовые и межпластовые воды, а также воды трещин, карста, вечной мерзлоты. В инженерно-геологических целях подземные воды целесообразно классифицировать по гидравлическому признаку – безнапорные и напорные.

Межпластовые напорные воды. Эти воды располагаются в водоносных горизонтах между водоупорами. Они бываю ненапорными и напорными (артезианскими).

Межпластовые ненапорные воды встречаются сравнительно редко. Они связаны с горизонтально залегающими водоносными слоями, заполненными водой полностью или частично.

Напорные (артезианские) воды связаны с залеганием водоносных слоев в виде синклиналей и моноклиналей. Площадь распространения напорных водоносных горизонтов называют артезианским бассейном.

Приток напорных вод к водозаборным сооружениям. Водозаборы – это сооружения, с помощью которых происходит захват (забор) подземных вод для водоснабжения, отвод их с территории строительства или просто в целях понижения уровней грунтовых вод. Существуют различные типы подземных водозаборных сооружений: вертикальные, горизонтальные, лучевые.

К вертикальным водозаборам относят буровые скважины и шахтовые колодцы, к горизонтальным – траншеи, галереи, штольни, к лучевым – водосборные колодцы с водоприемными лучами-фильтрами. Тип сооружения для забора подземной воды выбирают на основе технико-экономического расчета, исходя из глубины залегания водоносного слоя, его мощности, литологического состава водоносных пород и намечаемой производительности водозабора.

Водозаборы, состоящие из одной скважины, колодца и т.д., называют одиночными, а из нескольких – групповыми.

Водозаборные сооружения, вскрывающие водоносный горизонт на полную его мощность, являются совершенными, а не на полную – несовершенными.

Отвод грунтовых вод со строительных площадок или снижение их уровней может производиться временно, только на период производства строительных работ или практически на весь период эксплуатации объекта. Временный отвод воды (или снижение уровня) называют строительным водозабором, а во втором случае – дренажами.

Водозаборные колодцы. Колодцы и траншеи, дно которых достигает водоупоров, называют совершенными; если дно располагается выше водоупора, то несовершенными. Уровень воды в колодце до откачки называют статическим, а уровень, пониженный в процессе откачки, - динамическим.

Если из колодца вода не откачивается, то ее уровень находится в одном положении с поверхностью грунтового потока. При откачке воды возникает депрессионная воронка, уровень воды в колодце понижается. Производительность колодца определяется величиной дебита. Под дебитом колодца понимают то количество воды, которое он может дать за единицу времени. При откачке воды в количестве большем, чем величина дебита, т.е. больше того, что притекает к колодцу из водоносного слоя в единицу времени, уровень резко понижается. На некоторое время колодец может остаться без воды.

Приток воды (дебит) к совершенному колодцу определяют по формуле

Q = πk ф [H 2 -h 2 )/lnR-lnr ]

где r – радиус колодца, м.

в несовершенный колодец вода поступает через его стенки и дно. Это усложняет расчет притока. Дебит таких колодцев меньше дебита совершенных колодцев. При откачке вода поступает в колодец только из части водоносного слоя, которую называют активной зоной Н 0 . Глубину активной зоны принимают 4 / 3 высоты столба воды в колодце до откачки. Эти положение позволяют для несовершенного колодца расход рассчитывать по формуле Дюпюи, в интерпритации Паркера:

Q = 1,36k ф [H 2 -h 2 )/lnR-lnr ]

Колодец отдает воду в объеме своего максимального дебита лишь в том случае, если соседние колодцы будут расположены от него на расстоянии не менее двух радиусов влияния.

Список использованной литературы. классификация горных пород учитывает условия их образования , которые предопределяют строение и, ... мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами...

  • Горные породы и их виды

    Реферат >> Геология

    Понятие горных пород и их классификацию ; - изучить свойства... экзогенных процессов. Сами экзогенные ... Среди главных породообразующих компонентов выделим: 1-реликтовые минералы и... с образованием необратимых остаточных... свойства определяют условия распространения в...

  • Опишите главнейшие месторождения кремнеземистых материалов

    Реферат >> Промышленность, производство

    Значение имеют экзогенные месторождения песка... этом главная их масса... и омыляют их . Основными породообразующими минералами в глинах... дальнейшей классификации . ... условиях высоких давлений и температур, и образование отдельных кристаллов вторичных минералов ...

  • Инженерная геология. Гидрогеология

    Реферат >> Геология

    Процессы пародо образования и предложил первую классификацию минералов и горных... сейсмические волны. 5.Породообразующие минералы , их свойства Условие образование минералов . Минералы – это природные... земли и является главным экзогенным процессом. Море...

  • Большинство выдвинутых в разное время классификаций основано на особенностях химического или газового состава вод, причем за основу выделения классов обычно принимали либо преобладающие ионы, либо микроэлементы, либо газы и т.д. Основной недостаток этих классификаций - отсутствие принципа комплексности в оценке минеральных вод.

    В.В.Иванов и Г.А.Невраев в целях более комплексной оценки различных минеральных лечебных вод разработали классификацию, основанную на основных критериях их оценки и данных о закономерностях формирования минеральных вод. Исходя из реально существующих в природе типов вод, они предложили такую классификационную таблицу, в которой каждой воде отведено строго определенное место. Такая классификационная таблица имеет важное практическое значение: пользуясь методом аналогии и сопоставления, можно судить о лечебных качествах вновь полученной воды (из-за больших размеров таблица здесь не приводится).

    Согласно классификации Иванова и Невраева, все природные (подземные) воды разделяются по составу, свойствам и лечебному значению на шесть основных бальнеологических групп.

    Группа А. Воды без «специфических» компонентов и свойств. Их лечебное значение определяется только ионным составом и величиной минерализации при наличии в их газовой составляющей в основном азота и метана, которые содержаться в водах в растворенном состоянии при атмосферном давлении лишь в незначительных количествах.

    Группа Б. Воды углекислые. Их лечебное значение определяется, прежде всего, наличием больших количеств растворенного углекислого газа, который в общем газовом составе этих вод занимает доминирующее положение (80-100%), а также ионным составом и величиной минерализации.

    Группа В. Воды сероводородные (сульфидные). Эти воды выделены по наличию в их составе свободного сероводорода и гидросульфидного иона, которые и определяют лечебное действие минеральных вод, используемых преимущественно для ванн. Содержание общего сероводорода этих вод не должно быть ниже 10 мг/л.

    Группа Г. Воды железистые (Fe + Fe), мышьяковистые (As) и с высоким содержанием Mn, Cu, Al и др. Их лечебное действие определяется, помимо ионного и газового состава и минерализации, присутствием одного или нескольких из перечисленных фармакологически активных компонентов. Для содержания в этих водах Mn, Cu, Al нормы не установлены. В повышенных концентрациях эти элементы содержатся обычно только в высоко железистых сульфатных водах зоны окисления рудных месторождений, а также в сильно сульфатных и хлоридносульфатных (фумарольных) термах вулканических областей.

    Группа Д. Воды бромистые (Br), йодистые (I) и высоким содержанием органических веществ. Для отнесения вод к бромистым и йодистым (или йодо-бромистым) принято содержание брома 25 мг/л и йода 5 мг/л при минерализации не более 12-13 г/л. При более высокой минерализации нормы соответственно увеличиваются.

    Достаточно обоснованных норм для оценки высокого содержания органического вещества в лечебных минеральных водах пока не разработано. Известны два типа минеральных вод с высоким содержанием органического вещества - Нафтуся (Западная Украина) и Брамштедтские (ФРГ).

    Группа Е. Воды радоновые (радиоактивные). К этой группе относятся все минеральные воды, содержащие более 50 эман/л (14 ед. Махе) радона.

    Группа Ж. Кремнистые термы. В эту группу вод включены широко распространенные в природе кремнистые термальные воды. В качестве условной нормы содержание в них принято 50 мг/л, при температуре более 35єC.

    Далее, группы вод по газовому составу делятся на три подгруппы: а) азотные, в которых газ имеет в основном атмосферное происхождение; б) метановые (включая азотно-метановые и углекисло-метановые), в которых газ в основном биохимического происхождения; в) углекислые, в которых газ, как правило, эндогенного происхождения. К последней группе отнесены и вулканические газы, где почти всегда резко преобладает углекислый газ.

    В минеральных водах группы А могут присутствовать азотные и метановые газы; в группах В и Ж - азотные, метановые и углекислые; в группах Г и Е - азотные и углекислые; в группе Д - азотные и метановые; все воды группы Б только углекислые.

    Одновременно все минеральные воды разделены по составу и минерализации на 9 классов (приложение 1 ). При этом учитывались все ионы, содержащиеся в количествах не менее 20% экв. Как видно из приложения 1 , первый класс объединяет в себе все воды с общей минерализацией до 2 г/л, независимо от их состава, так как при такой невысокой минерализации лечебное действие минеральной воды определяется не ионным составом, а наличием каких-либо фармакологически активных микрокомпонентов или специфических свойств. Во всех остальных классах число подклассов колеблется от 3 до 7.

    В приложении 1 выделено несколько градаций минерализации: до 2, 2-5, 5-15, 15-35, 35-150 и выше 150 г/л. Такое подразделение, удобное в бальнеологическом и генетическом отношении показывает обычную наиболее часто встречающуюся в природе минерализацию типов минеральных вод.

    По температуре минеральные воды разделены на три группы:

    всегда холодные, формирующиеся, как правило, на небольших глубинах;

    холодные, теплые или горячие в зависимости от глубины циркуляции;

    всегда горячие, генезис и особенности состава которых тесно связаны с их территориальностью. К последним относятся все термы, входящие в группы В и Г. (приложение 2)

    По величине pH воды разделены на 6 групп. Величина pH имеет особо важное значение для лечебной оценки сероводородных (сульфидных) вод, поскольку ею определяется соотношение в водах свободного и, а также кремнекислых терм, количество и форма нахождения в которых зависит от щелочности или кислотности вод.

    Такое деление минеральных вод по величине pH - по кислотно-основным свойствам - уточнено и более хорошо обосновано в физико-химическом отношении А.Н.Павловым и В.Н.Шемякиным.

    Эти классификации лечебных, промышленных и теплоэнергетических вод имеют частный характер и специальное назначение. Известны многочисленные попытки составить общие, естественноисторические, генетические и другие классификации природных вод по составу и минерализации.

    Классификация минеральных вод Иванова и Невраева по минерализации предназначены для лечебных вод и не пригодны для промышленных и теплоэнергетических. В приложении 3 предлагается общая классификация вод по минерализации.

    Минеральные добавки по степени эффективности в экономии цемента (Эд): неэффективные с Эд<10%, низкоэффективные с Эд=10 - 40%, среднеэффективные с Эд= 41-70% и высокоэф-фективные с Эд>70%.

    Комитетом 73- ВС РИЛЕМ предложена классификация минеральных добавок техногенного происхождения (табл. 1) по их пуццолановой и гидравлической активности. Минеральные добавки различной эффективности в представленной классификации имеют близкий вещест-венный состав (оксид кремния, алюминия, железа, кальция и т.д.). Различия заключаются в со-отношении компонентов, их минералогическом составе и степени дисперсности, обусловли-вающих преобладающий механизм их действия в цементных системах. Положение каждого ви-да техногенных материалов, представленных в рассматриваемых классификациях определяет совокупность физико-химических факторов.

    Табл.1. Классификация и характеристики минеральных добавок

    техногенного происхождения

    Минеральная добавка Критерии эффективности Основной хими-ческий и минерало-гический составы Физические характеристики
    1. Быстроохлаж-денные шлаки Вяжущие свойства Силикатное стекло (аморфный кремне-зем), содержащее оксиды кальция, магния, алюминия. В небольшом коли-честве могут при-сутствовать крис-таллические компо-ненты. Не полностью подготов-ленный к применению материал представляет собой гранулы и содер-жит 5 -15% влаги. Перед применением высушива-ется и измельчается до частиц размером менее 45 мкм, частицы имеют шероховатую поверх-ность. Удельная поверх-ность – 350-500 м 2 /кг
    2.Высококаль-циевые золы уноса(Са>10%) Вяжущие и пуццолановые свойства Силикатное стекло (аморфный кремне-зем), содержащее оксиды кальция, магния, алюминия. В небольшом коли-честве могут при-сутствовать крис-таллические компо-ненты в виде кварца и СзА, а также сво-бодная известь и пе-риклаз. Содержание углерода - обычно меньше 2%. Содержит 10-15% частиц размером более 45 мкм. Больший процент частиц имеют сферическую фор-му с диаметром менее 20 мкм. Поверхность частиц в основном гладкая, но не такая чистая, как у низкокальциевых зол-уноса. Удельная поверх-ность – 300-400 м 2 /кг.
    3.Микрокремне­зем; золы рисо-вой шелухи Высокая пуццолановая активность Микрокремнезем некристаллической (аморфной) модификации. Представляет собой ультрадисперсный поро-шок, состоящий, в основ-ном, из сферических час-тиц диаметром менее 0,5 мкм. Удельная поверх-ность около 20000 м 2 /кг.
    Кремнезем некрис-таллической (аморф -ной) модификации Содержит, в основном, частицы размером менее 45 мкм, имеющие порис-тую поверхность. Удель-ная поверхность – около 60000 м 2 /кг
    4.Низкокальцие- вые золы-уноса (СаО<10%) Нормальная пуццолановая активность Силикатное стекло (аморфный кремне-зем), содержащее окислы алюминия и железа. В неболь-шом количестве мо-гут присутствовать кристаллические компоненты в виде кварца, муллита, магнетита. Содержание углеро-да менее 5%, но иногда может быть 10% Содержит 10 - 15% час-тиц более 45 мкм. Большая часть частиц имеет сферическую фор-му с диаметром около 20 мкм. Удельная поверх-ность – 250-350 м 2 /кг
    5. Медленно-охлажденные шлаки; золы гидроудаления, шлаки котель-ных. Слабо выраженные пуццолановые и вяжущие свойства Кристаллические силикатные мине-ралы и небольшое количество некрис-таллических компо-нентов. Дополнительно измель-чаются для придания вяжущих и пуццолано-вых свойств. Измельченные частицы имеют шероховатую поверхность

    Приложение 9



    Марк микрокремнезёма

    Техническими условиями на микрокремнезем конденсированный (ТУ 5743-048-02495332-96) в зависимости от содержания в нем диоксида кремния (SiO2) устанавливаются следующие мар-ки: неуплотненный - МК-85, МК-65, уплотненный - МКУ-85, МКУ-65, в виде суспензии - МКС-85. Цифровой индекс в маркировке указывает на минимально допустимые количества SiO 2 . По физико-химическим показателям микрокремнезем должен удовлетворять требованиям и нормам, приведенным в табл1.

    Нормируемые показатели для микрокремнезема

    Показатель Нормы для марок микрокремнозема
    Неуплотненного Уплотненного успензии (пасты)
    МК-85 МК-65 МКУ-85 МКУ-65 МКС-85
    Внешний вид Ультрадисперс-ный порошок се- рого цвета Мелкозернистый по-рошкообразный мате-риал серого цвета с размером агрегатов до 0,5мм Текучая жидкость темносерого цвета
    Массовая доля микро-кремнезема конденсиро-ванного в пересчете на сухой продукт, %, не ме-нее
    Массовая доля воды, %, не более
    Массовая доля потерь при прокаливании (п.п.п.), %, не более
    Массовая доля диоксида кремния (SiCh), %, не менее
    Массовая доля свободных щелочей (Na20, КзО), %, не более
    Массовая доля оксида кальция, %, не более
    Массовая доля серного ангидрида, %, не более 0,6 0,6 0,6 0,6 0,6
    Удельная поверхность микрокремнезема конденсированного, м2/г, не менее
    Индекс активности К, %, не менее
    Насыпная плотность микрокремнезема конденсированного сухих форм, кг/м 3 150 - 250 150 - 250 280 - 500 280 - 500 -
    Плотность водной суспензии (пасты), кг/м 3 , не менее - - - -
    рН 5%-ной водной суспензии, не менее - - -

    Примечания: 1.В пунктах 4,5,6,7,8 нормы для суспензии (пасты) приведены в пересчете на сухое вещество. 2. Индекс активности К микрокремнезема определяют по формуле: К=К"cж/К"сж*100, где К"сж прочность на сжатие растворных образцов с использованием 90% цемента и 10% микрокремнезема (по массе вяжущего), МПа; К"сж - прочность на сжатие раст-ворных образцов с использованием 100% цемента, МПа.

    Литература

    1. ГОСТ 24211-91 и Межгосударственный ГОСТ 24211-2993 стран СНГ. Общие технические требования.

    2. Пособие по применению химических добавок при производстве сборных железобетонных конструкций и изделий (к СНиП 3.09.01 – 85). М, Стройиздат, 1989.

    3. ГОСТ25818-91 Золы- уноса тепловых электростанций для бетонов. Технические условия.

    4. Указания по повышению морозостойкости бетона транспортных сооружений ВСН 159-93.

    Москва 1993.

    5.Б.А. Усов, И.Б. Аликина, Т.А.Чарикова. Физико- химические процессы строительного мате-риаловедения в технологии бетона и железобетона. М, Изд-во МГОУ, 2009.

    6. Б.А. Усов. Химизация бетона. М, Изд-во МГОУ, 2007.

    7. Б.А. Усов, Е.Н. Ипполитов.Долговечность бетона. М, Изд-во МГОУ, 2007.

    8. Б.А. Крылов, С.А. Амбарцумян, А.И. Звездов. Руководство по прогреву бетона в монолитных конструкциях. М, 2005, РААСН, НИИЖБ.

    Несмотря на то что многие люди приблизительно представляют себе, что это такое, некоторые не могут дать определение понятию «минерал». Классификация минералов включает в себя большое количество самых разнообразных элементов, каждый из которых нашел применение в той или иной сфере деятельности благодаря своим преимуществам и особенностям. Поэтому важно знать о том, какими свойствами они обладают и как могут быть использованы.

    Минералы представляют собой продукты искусственных или естественных химических реакций, которые происходят как внутри земной коры, так и на ее поверхности, и при этом являются однородными химически и физически.

    Классификация

    На сегодняшний день известно более 4000 различных пород, которые входят в категорию «минерал». Классификация минералов же осуществляется по следующим признакам:

    • генетические (в зависимости от происхождения);
    • практические (сырье, руда, драгоценные камни, горючее и т. п.);
    • химические.

    Химическая

    На данный момент наиболее распространенной является классификация минералов по химическому составу, которая применяется современными минералогами и геологами. Она базируется на характере соединений, между различными структурами элементами, типах упаковки и еще множестве других особенностей, которые может иметь минерал. Классификация минералов такого рода предусматривает разделение их на пять типов, каждый из которых характеризуется преобладанием определенного характера связи между определенными структурными единицами.

    • самородные элементы;
    • сульфиды;
    • окислы и гидроокислы;
    • соли кислородных кислот;
    • галогениды.

    Далее по характеру анионов они разделяются на несколько классов (в каждом типе свое деление), внутри которых уже разбиваются на подклассы, из которых можно выделить: каркасный, цепочечный, островной, координационный и слоистый минерал. Классификация минералов, которые близки между собой по составу и имеют сходную структуру, предусматривает их объединение в различные группы.

    Характеристика типов минералов

    • Самородные элементы. Сюда входят самородные металлоиды и металлы, такие как железо, платина или золото, а также неметаллы наподобие алмаза, серы и графита.
    • Сульфиты, а также различные их аналоги. Химическая классификация минералов включает в эту группу соли такие как пирит, галенит и другие.
    • Окислы, гидроокислы и другие их аналоги, представляющие собой соединение металла с кислородом. Магнетит, хромит, гематит, гетит - это основные представители данной категории, которые выделяет химическая классификация минералов.
    • Соли кислородных кислот.
    • Галогениды.

    Также стоит отметить, что в группе "соли кислородных кислот" существует еще и классификация минералов по классам:

    • карбонаты;
    • сульфаты;
    • вольфраматы и молибдаты;
    • фосфаты;
    • силикаты.

    Также бывают разделяющиеся на три группы:

    • магматические;
    • осадочные;
    • метаморфические.

    По происхождению

    Классификация минералов по происхождению включает в себя три основные группы:

    • Эндогенные. Такие процессы минералообразования в преимущественном большинстве случаев предусматривают внедрение в кору земли и последующее застывание подземных раскаленных сплавов, которые принято называть магмами. При этом само образование минералов осуществляется в три шага: магматический, пегматитовый и постмагматический.
    • Экзогенные. В данном случае образование минералов осуществляется совершенно в других условиях по сравнению с эндогенным. Экзогенное минералообразование предусматривает химическое и физическое разложение веществ и одновременное формирование новообразований, имеющих устойчивость к другой среде. Кристаллы образуются в результате выветривания эндогенных минералов.
    • Метаморфические. Вне зависимости от путей образования горных пород, их прочности или устойчивости, они всегда будут изменяться под воздействием определенных условий. Породы, которые формируются по причине изменения свойств или состава первоначальных образцов, принято называть метаморфическими.

    По Ферсману и Бауэру

    Классификация минералов по Ферсману и Бауэру включает в себя несколько пород, предназначенных в основном для изготовления различных изделий. В нее входят:

    • самоцветы;
    • цветные камни;
    • органогенные камни.

    Физические свойства

    Классификация минералов и горных пород по происхождению и составу включает в себя множество наименований, и при этом каждый элемент имеет уникальные физические свойства. В зависимости от этих параметров определяется ценность той или иной породы, а также возможность его применения в различных сферах деятельности человека.

    Твердость

    Данная характеристика представляет собой сопротивление определенного твердого тела царапающему воздействию другого. Таким образом, если рассматриваемый минерал мягче того, которым царапают его поверхность, на нем будут оставаться следы.

    Принципы классификации минералов по твердости основываются на использовании шкалы Мооса, которая представлена специально подобранными породами, каждая из которых способна царапать своим острым концом предыдущие наименования. Она включает в себя список из десяти наименований, который начинается с талька и гипса, а заканчивается, как многим известно, алмазом - наиболее твердым веществом.

    Изначально породой принято проводить по стеклу. Если на нем будет оставаться царапина, то в таком случае классификация минералов по твердости уже предусматривает присваивание ему более 5-го класса. После этого твердость уже уточняется по Соответственно, если на стекле осталась царапина, то в таком случае далее берется образец из 6-го класса (полевой шпат), после чего пробуют чертить им по нужному минералу. Таким образом, если, к примеру, оставил на образце царапину, а апатит, который находится под номером 5, не оставил, ему присваивается класс 5.5.

    Не стоит забывать о том, что в зависимости от значения кристаллографического направления у некоторых минералов может различаться твердость. К примеру, у дистена на плоскости спайности твердость вдоль длинной оси кристалла имеет значение 4, в то время как поперек на этой же плоскости оно увеличивается до 6. Очень твердые минералы можно встретить исключительно в группе с неметаллическим блеском.

    Блеск

    Формирование блеска у минералов осуществляется за счет отражения от их поверхности лучей света. В любом пособии о минералах классификация предусматривает деление на две крупные группы:

    • с металлическим блеском;
    • с неметаллическим блеском.

    К первым относятся те породы, которые дают черную черту и являются непрозрачными даже в достаточно тонких осколках. Сюда относится магнетит, графит и уголь. В качестве исключения здесь рассматриваются также минералы с неметаллическим блеском, имеющие цветную черту. Это касается золота с зеленоватой чертой, меди со своеобразной красной, серебра с серебряно-белой, а также ряда других.

    Металлический по своей природе схож с блеском свежего излома различных металлов, и его достаточно хорошо можно увидеть на свежей поверхности образца, даже если рассматриваются Классификация изделий с таким блеском также включает в себя непрозрачные образцы, которые являются более тяжелыми в сравнению с первой категорией.

    Металлический блеск является характерным для минералов, которые представляют собой руду различных металлов.

    Цвет

    Стоит отметить, что цвет является постоянным признаком только для некоторых минералов. Таким образом, малахит всегда остается зеленым, золото не теряет своего золотисто-желтого цвета и т. д., в то время как для множества других он является непостоянным. Для определения цвета нужно предварительно получить свежий скол.

    Отдельное внимание следует уделить тому, что классификация свойств минералов предусматривает также такое понятие, как цвет черты (молотого порошка), который зачастую не отличается от стандартного. Но при этом существуют и такие породы, у которых цвет порошка значительно отличается от их собственного. К примеру, в их число входит кальцит, который может быть желтым, белым, голубым, синим и еще во множестве других вариаций, но при этом порошок в любом случае будет оставаться белым.

    Порошок, или черта минерала, получается на фарфоре, который не должен покрываться никакой глазурью и среди профессионалов называется просто «бисквит». По его поверхности проводится черта определяемым минералом, после чего она немного размазывается пальцем. Не следует забывать о том, что твердые, а также сильно твердые минералы не оставляют за собой никакого следа по причине того, что этот «бисквит» они попросту будут царапать, поэтому предварительно нужно соскоблить определенную часть с них на белую бумагу, и затем уже растереть до нужного состояния.

    Спайность

    Данное понятие подразумевает свойство минерала раскалываться или же расщепляться в некотором направлении, оставляя при этом блестящую гладкую поверхность. Стоит отметить тот факт, что Эразм Бартолин, который открыл данное свойство, отправил результаты проведенных исследований довольно авторитетной комиссии, включающей в себя таких известных ученых, как Бойль, Гук, Ньютон и еще множество других, но они признали обнаруженные явления случайными, а законы недействительными, хотя уже буквально через столетие оказалось, что все результаты были верны.

    Таким образом, предусматривается пять основных градаций спайности:

    • весьма совершенная - минерал можно легко расщепить на небольшие пластинки;
    • совершенная - при любых ударах молотком образец будет раскалываться на обломки, которые ограничиваются плоскостями спайности;
    • ясная или средняя - при попытке раскалывания минерала формируются обломками, которые ограничиваются не только плоскостями спайности, но и неровными поверхностями в случайных направлениях;
    • несовершенная - обнаруживается с определенными сложностями;
    • весьма несовершенная - спайность практически отсутствует.

    Определенные минералы имеют сразу несколько направлений спайности, что зачастую становится для них основным диагностическим признаком.

    Излом

    Под этим понятием подразумевается поверхность раскола, которая прошла в минерале не по спайности. На сегодняшний день принято различать основные пять типов изломов:

    • ровный - на поверхности отсутствуют какие-либо заметные изгибы, но при этом она не зеркально ровная, как в случае со спайностью;
    • ступенчатый - характерен для кристаллов, имеющих более-менее ясную и совершенную спайность;
    • неровный - проявляется, к примеру, у апатита, а также ряда других минералов, имеющих несовершенную спайность;
    • занозистый - характерен для минералов волокнистого сложения и чем-то схож с изломом древесины поперек волокнистости;
    • раковистый - по форме своей поверхности схож с раковиной;

    Другие свойства

    Достаточно большое количество минералов имеет такой диагностический или отличительный признак, как магнитность. Для ее определения принято использовать стандартный компас или специальный намагниченный нож. Проведение испытаний в данном случае осуществляется следующим образом: берется небольшой кусочек или же малое количество порошка испытуемого материала, после чего к нему притрагиваются намагниченным ножом или подковкой. Если после этой процедуры частички минерала начинают притягиваться, это говорит о наличии у него определенной магнитности. При использовании компаса его кладут на какую-нибудь ровную поверхность, после чего дожидаются выравнивания стрелки и подносят к ней минерал, не прикасаясь при этом к самому устройству. Если стрелка начинает смещаться, это говорит о том, что он магнитный.

    Определенные минералы, в составе которых содержатся углекислые соли, под воздействием соляной кислоты начинают выделять углекислый газ, который проявляется в визе пузырьков, поэтому многие называют это «кипением». Среди таких минералов выделяются: малахит, кальцит, мел, мрамор и известняк.

    Также некоторые вещества можно хорошо растворять в воде. Такую способность минералов несложно определить на вкус, и в частности, это касается а также и других.

    Если требуется проведение исследований минералов на плавкость и горение, то нужно предварительно отколоть небольшой кусочек от образца, после чего с помощью пинцета внести его непосредственно в пламя от газовой горелки, спиртовки или же свечи.

    Формы их нахождения в природе

    В преимущественном большинстве случаев в природе различные минералы встречаются в виде сростков или одиночных кристаллов, а также могут показываться в виде скоплений. Последние состоят из большого количества зерен, имеющих внутреннее кристаллическое строение. Таким образом, выделяется три основных группы, имеющих характерный внешний вид:

    • изометрические, одинаково развитые во всех трех направлениях;
    • удлиненные, имеющие более вытянутые формы в одном из направлений;
    • вытянутые в двух направлениях при сохранении третьего в коротком виде.

    При этом стоит отметить, что некоторые минералы могут собой образовывать закономерно сросшиеся кристаллы, которые потом называют двойниками, тройниками и другими наименованиями. Такие образцы зачастую являют собой результат срастания или же взаимного прорастания кристаллов.

    Виды

    Не стоит путать закономерные сростки и незакономерные агрегаты кристаллов, к примеру, со «щетками» или же друзами, которые нарастают на стенах пещер и различных полостей в горных породах. Друзы представляют собой сростки, образующиеся из нескольких более или менее правильных кристаллов и при этом прирастающие одним концом к какой-нибудь породе. Для их формирования требуется открытая полость, которая предусматривает возможность свободного роста минералов.

    Помимо всего прочего, многие кристаллические минералы отличаются достаточно сложными неправильными формами, что приводит к образованию дендритов, натечных форм и других. Формирование дендритов осуществляется по причине слишком быстрой кристаллизации минералов, расположенных в тонких трещинах и порах, причем породы в данном случае начинают напоминать довольно причудливые ветви растений.

    Нередко бывают и такие ситуации, когда минералы практически полностью заполняют небольшое пустое пространство, что приводит к образованию секреции. У них используется концентрическое строение, а минеральное вещество заполняет его к центру от периферии. Достаточно крупные секреции, у которых внутри остается пустое пространство, принято называть жеодами, в то время как небольшие образования именуются миндалинами.

    Конкреции - это стяжения некорректной округлой или шарообразной формы, формирование которых возникает по причине активного отложения минеральных веществ вокруг определенного центра. Довольно часто для них характерна радиально-лучистая внутренняя конструкция, а в отличие от секреций рост осуществляется, наоборот, к периферии от центра.