Общая формула гидроксидов щелочноземельных металлов. Щелочноземельные металлы. Физические свойства щелочноземельных металлов

Класс: 9

Тип урока: изучение нового материала.

Вид урока: комбинированный урок

Задачи урока:

Обучающие: формирование знаний учащихся о щелочноземельных элементах как типичных металлах, понятия о взаимосвязи строения атомов со свойствами (физическими и химическими).

Развивающие: развитие умений исследовательской деятельности, умения добывать информацию из различных источников, сравнивать, обобщать, делать выводы.

Воспитывающие: воспитание устойчивого интереса к предмету, воспитание таких нравственных качеств как аккуратность, дисциплина, самостоятельность, ответственное отношение к порученному делу.

Методы: проблемные, поисковые, лабораторная работа, самостоятельная работа учащихся.

Оснащение: компьютер, таблица по технике безопасности, диск “Виртуальная лаборатория по химии”, презентация .

Ход урока

1. Организационный момент.

2. Вводное слово учителя.

Мы изучаем раздел, металлы, и вы знаете, что металлы имеют большое значение в жизни современного человека. На предыдущих уроках мы познакомились с элементами I группы главной подгруппы – щелочными металлами. Сегодня приступаем к изучению металлов II группы главной подгруппы - щелочноземельных металлов. Для того чтобы усвоить материал урока, нам необходимо вспомнить наиболее важные вопросы, которые рассматривали на предыдущих уроках.

3. Актуализация знаний.

Беседа.

Где находятся щелочные металлы в периодической системе Д.И. Менделеева?

Ученик:

В периодической системе щелочные металлы расположены в I группе главной подгруппе, на внешнем уровне 1 электрон, который щелочные металлы легко отдают, поэтому во всех соединениях они проявляют степень окисления +1. С увеличением размеров атомов от лития к францию энергия ионизации атомов уменьшается и, как правило, возрастает их химическая активность.

Учитель:

Физические свойства щелочных металлов?

Ученик:

Все щелочные металлы серебристо-белого цвета с незначительными оттенками, лёгкие, мягкие и легкоплавкие. Их твёрдость и температура плавления закономерно снижаются от лития к цезию.

Учитель:

Знания Химических свойств щелочных металлов проверим в виде небольшой проверочной работы по вариантам:

  • I вариант: Напишите уравнения реакции взаимодействия натрия с кислородом, хлором, водородом, водой. Укажите окислитель и восстановитель.
  • I I вариант: Напишите уравнения реакции взаимодействия лития с кислородом, хлором, водородом, водой. Укажите окислитель и восстановитель.
  • I I I вариант: Напишите уравнения реакции взаимодействия калия с кислородом, хлором, водородом, водой. Укажите окислитель и восстановитель.

Учитель: Тема нашего урока “Щелочноземельные металлы”

Задачи урока: Дать общую характеристику щелочноземельным металлам.

Рассмотреть их электронное строение, сравнить физические и химические свойства.

Узнать о важнейших соединениях этих металлов.

Определить области применения этих соединений.

Наш план урока написан на доске, будем работать соответственно плана, просмотрим презентацию .

  1. Положение металлов в периодической системе Д.И. Менделеева.
  2. Строение атома щелочных металлов.
  3. Физические свойства.
  4. Химические свойства.
  5. Применение щелочноземельных металлов.

Беседа.

Учитель:

Исходя, из полученных ранее знаний ответим на следующие вопросы: Для ответа воспользуемся периодической системой химических элементов Д.И. Менделеева.

1. Перечислите щелочноземельные металлы

Ученик:

Это магний, кальций, стронций, барий, радий.

Учитель:

2. Почему данные металлы назвали щелочноземельными?

Ученик:

Происхождение этого названия связано с тем, что их гидроксиды являются щелочами, а оксиды по тугоплавкости сходны с оксидами алюминия и железа, носившими ранее общее название "земли"

Учитель:

3. Расположение щелочноземельные металлы в ПСХЭ Д.И. Менделеева.

Ученик:

II группа главная подгруппа. У металлов II группы главной подгруппы на внешнем энергетическом уровне содержится по 2 электрона, находящихся на меньшем удалении от ядра, чем у щелочных металлов. Поэтому их восстановительные свойства хотя и велики, но все же менее, чем у элементов I группы. Усиление восстановительных свойств также наблюдается при переходе от Mg к Ba, что связано с увеличением радиусов их атомов, во всех соединениях проявляют степень окисления +2.

Учитель: Физические свойства щелочноземельных металлов?

Ученик:

Металлы II группы главной подгруппы - это серебристо-белые вещества, хорошо проводящие тепло и электрический ток. Плотность их возрастает от Be к Ba, а температура плавления, наоборот, уменьшается. Они значительно тверже щелочных металлов. Все, кроме бериллия, обладают способностью окрашивать пламя в разные цвета.

Проблема: В каком виде щелочноземельные металлы встречаются в природе?

Почему в природе щелочноземельные металлы в основном существуют в виде соединений?

Ответ: В природе щелочноземельные металлы находятся в виде соединений, потому что обладают высокой химической активностью, которая в свою очередь, зависит от особенностей электронного строения атомов (наличие двух неспаренных электронов на внешнем энергетическом уровне)

Физкультминутка – отдых глазам.

Учитель:

Зная общие физические свойства, активность металлов, предположите химические свойства щелочноземельных металлов. С какими веществами взаимодействуют щелочные металлы?

Ученик:

Щелочноземельные металлы взаимодействуют как с простыми веществами, и сложными. Активно взаимодействуют почти со всеми неметаллами (с галогенами, водородом, образуя гидриды). Из сложных веществ с водой – образуя растворимые в воде основания – щелочи и с кислотами.

Учитель:

А теперь на опытах убедимся, в правильности наших предположениях о химических свойствах щелочноземельных металлов.

4. Лабораторная работа по виртуальной лаборатории.

Цель: провести реакции, подтверждающие химические свойства щелочноземельных металлов.

Повторяем правила техники безопасности для работы со щелочноземельными металлами.

  • работать в вытяжном шкафу
  • на подносе
  • сухими руками
  • брать в малых количествах

Работаем с текстом, который читаем по виртуальной лаборатории.

Опыт № 1.Взаимодействие кальция с водой.

Опыт № 2. Горение магния, кальция, стронция, бария

Записать уравнения реакции и наблюдения в тетрадь.

5. Подведение итогов урока, выставление оценок.

5. Рефлексия.

Что запомнилось на уроке, что понравилось.

6. Домашнее задание.

§ 12 упр.1(б) упр.4

Литература.

  1. Рудзитис Г.Е., Фельдман Ф.Г. Химия 9.- Москва.: Просвещение, 2001
  2. Габриелян О.С. Химия 9.-Москва.:Дрофа, 2008
  3. Габриелян О.С., Остроумов И.Г. Настольная книга учителя. Химия 9.-Москва.:Дрофа 2002
  4. Габриелян О.С. Контрольные и проверочные работы. Химия 9.-Москва.:Дрофа, 2005.
  5. Коллекция Виртуальной лаборатории. Учебное электронное издание

Вторая группа периодической системы Д. И. Менделеева содержит группу элементов, очень похожих по своим свойствам на щелочные металлы, однако уступающих им по активности. В нее входят бериллий и магний, а также кальций, стронций, барий и радий. Они известны под общим названием - щелочноземельные элементы. В нашей статье мы ознакомимся с их распространением в природе и применением в промышленности, а также изучим важнейшие химические свойства щелочноземельных металлов.

Общая характеристика

Все атомы выше перечисленных элементов содержат на внешнем энергетическом слое по два электрона. Взаимодействуя с другими веществами, они всегда отдают свои отрицательные частицы, переходя в состояние катионов с зарядом 2+. В окислительно-восстановительных реакциях элементы ведут себя как сильные восстановители. По мере увеличения заряда ядра, химические свойства щелочноземельных металлов и их активность усиливаются. На воздухе они быстро окисляются, образуя на своей поверхности оксидную пленку. Общая формула всех оксидов - RO. Им соответствуют гидроксиды с формулой R(OH) 2 . Их основные свойства и растворимость в воде также возрастают с увеличением порядкового номера элемента.

Особые свойства бериллия и магния

По некоторым своим свойствам первые два представителя главной подгруппы второй группы несколько отличаются от других щелочноземельных элементов. Это проявляются, в частности, во время их взаимодействия с водой. Например, химические свойства бериллия таковы, что он вообще не вступает в реакцию с H 2 O. Магний же взаимодействует с водой лишь при нагревании. Зато все щелочноземельные элементы легко реагируют с нею при обычной температуре. Какие же вещества при этом образуются?

Основания щелочноземельных металлов

Являясь активными элементами, кальций, барий и другие представители группы быстро вытесняют водород из воды, в результате получаются их гидроксиды. Взаимодействие щелочноземельных металлов с водой протекает бурно, с выделением тепла. Растворы оснований кальция, бария, стронция мылкие на ощупь, при попадании на кожу и слизистую оболочку глаз вызывают сильные ожоги. Первой помощью в таких случаях будет обработка раневой поверхности слабым раствором уксусной кислоты. Он нейтрализует щелочь и уменьшит риск возникновения некроза поврежденных тканей.

Химические свойства щелочноземельных металлов

Взаимодействие с кислородом, водой и неметаллами - это главный перечень свойств металлов, входящих во вторую группу периодической системы химических элементов. Например, кальций даже в обычных условиях вступает в реакции с галогенами: фтором, хлором, бромом и йодом. При нагревании он соединяется с серой, углеродом и азотом. Жесткое окисление - горение, заканчивается образованием оксида кальция: 2Ca + O 2 = 2 CaO. Взаимодействие металлов с водородом приводит к появлению гидридов. Они представляют собой тугоплавкие вещества белого цвета, имеющие ионные кристаллические решетки. К важным химическим свойствам щелочноземельных металлов относится их взаимодействие с водой. Как уже говорилось ранее, продуктом этой реакции замещения будет гидроксид металла. Отметим также, что в главной подгруппе второй группы наиболее значимое место занимает кальций. Поэтому остановимся на его характеристике подробнее.

Кальций и его соединения

Содержание элемента в земной коре составляет до 3,5%, что указывает на его широкое распространение в составе таких минералов, как известняк, мел, мрамор и кальцит. В состав природного кальция входит шесть видов изотопов. Он также содержится в источниках природной воды. Соединения щелочных металлов подробно изучаются в курсе неорганической химии. Например, на уроках в 9 классе учащиеся узнают, что кальций - это легкий, но прочный металл серебристо-белого цвета. Температура его плавления и кипения выше, чем у щелочных элементов. Основной способ получения - электролиз смеси расплавленных солей хлорида и фторида кальция. К основным химическим свойствам относятся его реакции с кислородом, водой и неметаллами. Из соединений щелочных металлов наибольшее значение для промышленности имеют оксид и основание кальция. Первое соединение получают из мела или известняка методом их выжигания.

Далее из окиси кальция и воды образуется гидроксид кальция. Смесь его с песком и водой называют строительным известковым раствором. Он продолжает применяться в качестве штукатурки и для соединения кирпичей при кладке стен. Раствор гидроксида кальция, называемый известковой водой, используют в качестве реактива для обнаружения углекислого газа. При пропускании двуокиси углерода через прозрачный водный раствор Ca(OH) 2 , наблюдается его помутнение вследствие образования нерастворимого осадка карбоната кальция.

Магний и его характеристика

Химия щелочноземельных металлов изучает свойства магния, акцентируя внимание на некоторых его особенностях. Он представляет собой очень легкий, серебристо-белый металл. Магний, расплавленный в атмосфере с высокой влажностью, активно поглощает из водяного пара молекулы водорода. Остывая, металл практически полностью выделяет их обратно в воздух. Он очень медленно реагирует с водой по причине образования малорастворимого соединения - гидроксида магния. Щелочи на магний не действуют вовсе. Не реагирует металл с некоторыми кислотами: концентрированной сульфатной и плавиковой, вследствие его пассивации и образования на поверхности защитной пленки. Большинство же минеральных кислот растворяют металл, что сопровождается бурным выделением водорода. Магний - сильный восстановитель, он замещает многие металлы из их оксидов или солей:

BeO + Mg = MgO + Be.

Металл вместе с бериллием, марганцем, алюминием применяют в качестве легирующей добавки к стали. Особенно ценными свойствами обладают магнийсодержащие сплавы - электроны. Их используют в самолетостроении и производстве автомобилей, а также в деталях оптической техники.

Роль элементов в жизнедеятельности организмов

Приведем примеры щелочноземельных металлов, соединения которых распространены в живой природе. Магний является центральным атомом в молекулах хлорофилла у растений. Он участвует в процессе фотосинтеза и входит в состав активных центров зеленого пигмента. Атомы магния фиксируют световую энергию, преобразуя ее затем в энергию химических связей органических соединений: глюкозы, аминокислот, глицерина и жирных кислот. Важную роль выполняет элемент в качестве необходимого компонента ферментов, регулирующих обмен веществ в организме человека. Кальций - макроэлемент, обеспечивающий эффективное прохождение электрических импульсов по нервной ткани. Присутствие его фосфорнокислых солей в составе костей и зубной эмали придает им твердость и прочность.

Бериллий и его свойства

К щелочноземельным металлам относятся также бериллий, барий и стронций. Рассмотрим бериллий. Элемент мало распространен в природе, в основном, встречается в составе минералов, например, берилла. Его разновидности, содержащие разноцветные примеси, образуют драгоценные камни: изумруды и аквамарины. Особенностью физических свойств является хрупкость и высокая твердость. Отличительной чертой атома элемента является наличие на втором снаружи энергетическом уровне не восьми, как у всех остальных щелочноземельных металлов, а только двух электронов.

Поэтому радиус атома и иона непропорционально мал, энергия ионизации большая. Это обуславливает высокую прочность кристаллической решетки металла. Химические свойства бериллия также отличают его от других элементов второй группы. Он реагирует не только с кислотами, но и с растворами щелочей, вытесняя водород и, образуя гидроксобериллаты:

Be + 2NaOH + 2H 2 O = Na 2 + H 2 .

Металл имеет ряд уникальных характеристик. Благодаря способности пропускать рентгеновские лучи, его применяют для изготовления окошек рентгеновских трубок. В ядерной промышленности элемент считается наилучшим замедлителем и отражателем нейтронов. В металлургии он применяется как ценная легирующая добавка, повышающая антикоррозионные свойства сплавов.

Стронций и барий

Элементы достаточно распространены в природе и, так же, как щелочноземельный металл магний, входят в состав минералов. Назовем их: это барит, целестин, стронцианит. Барий имеет вид пластичного металла серебристо-белого цвета. Как и кальций, представлен несколькими изотопами. На воздухе активно взаимодействует с его компонентам - кислородом и азотом, образуя оксид и нитрид бария. По этой причине металл хранят под слоем парафина или минерального масла, избегая его контакта с воздухом. Оба металла при нагревании до 500°C образуют пероксиды.

Из них практическое применение имеет перекись бария, используемая в качестве отбеливателя тканей. Химические свойства щелочноземельных металлов - бария и стронция, похожи на свойства кальция. Однако их взаимодействие с водой протекает значительно активнее, а образовавшиеся основания являются более сильными, чем гидроксид кальция. Барий применяют в качестве добавки к жидкометаллическим теплоносителям, уменьшающей коррозию, в оптике, при изготовлении вакуумных электронных приборов. Стронций востребован в производстве фотоэлементов и люминофоров.

Качественные реакции с использованием ионов щелочноземельных металлов

Соединения бария и стронция - это примеры щелочноземельных металлов, широко используемых в пиротехнике по причине яркого окрашивания пламени их ионами. Так, сульфат или карбонат стронция дает карминово-красное свечение пламени, а соответствующие соединения бария - желто-зеленое. Для обнаружения ионов кальция в лаборатории на пламя горелки насыпают несколько крупинок хлорида кальция, пламя окрашивается в кирпично-красный цвет.

Раствор хлорида бария применяют в аналитической химии для выявления в растворе ионов кислотного остатка сульфатной кислоты. Если при сливании растворов образуется белый осадок сульфата бария - значит, в нем находились частицы SO 4 2- .

В нашей статье мы изучили свойства щелочноземельных металлов и привели примеры их применения в различных отраслях промышленности.

Химические свойства щелочных и щелочноземельных металлов схожи. На внешнем энергетическом уровне щелочных металлов находится один электрон, щелочноземельных - два. При реакциях металлы легко расстаются с валентными электронами, проявляя свойства сильного восстановителя.

Щелочные

В I группу периодической таблицы входят щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

Рис. 1. Щелочные металлы.

Они отличаются мягкостью (можно разрезать ножом), низкими температурами плавления и кипения. Это наиболее активные металлы.

Химические свойства щелочных металлов представлены в таблице.

Реакция

Особенности

Уравнение

С кислородом

Быстро окисляются на воздухе. Литий образует оксид при температуре выше 200°C. Натрий образует смесь - 80 % пероксида (R 2 O 2) и 20 % оксида. Остальные металлы образуют надпероксиды (RO 2)

4Li + O 2 → 2Li 2 O;

2Na + О 2 → Na 2 O 2 ;

Rb + O 2 → RbO 2

Реагирует только литий при комнатной температуре

6Li + N 2 → 2Li 3 N

С галогенами

Реакция проходит бурно

2Na + Cl 2 → 2NaCl

С неметаллами

При нагревании. Образуют сульфиды, гидриды, фосфиды, силициды. С углеродом реагируют только литий и натрий, образуя карбиды

2K + S → K 2 S;

2Na + H 2 → 2NaH;

2Cs + 5P → Cs 2 P 5 ;

Rb + Si → RbSi;

2Li + 2C → Li 2 C 2

Спокойно реагирует только литий. Натрий горит жёлтым пламенем. Калий реагирует со вспышкой. Цезий и рубидий взрываются

2Na + 2H 2 O → 2NaOH + H 2 -

С кислотами

С соляной, фосфорной, разбавленной серной кислотами реагируют с взрывом. При реакции с концентрированной серной кислотой выделяется сероводород, с концентрированной азотной кислотой образует оксид азота (I), с разбавленной азотной кислотой - азот

2Na + 2HCl → 2NaCl + H 2 ;

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O;

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O + 5H 2 O;

10Na + 12HNO 3 (разб) → N 2 + 10NaNO 3 + 6H 2 O

С аммиаком

Образуют амины

2Li + 2NH 3 → 2LiNH 2 + H 2

Могут реагировать с органическими кислотами и спиртами.

Щелочноземельные

Во II группе таблицы Менделеева находятся щелочноземельные металлы:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Рис. 2. Щелочноземельные металлы.

В отличие от щелочных металлов они более твёрдые. Ножом можно разрезать только стронций. Наиболее плотный металл - радий (5,5 г/см 3).

Бериллий взаимодействует с кислородом только при нагревании до 900°С. С водородом и водой не реагирует при любых условиях. Магний окисляется при температуре 650°С и взаимодействует с водородом под высоким давлением.

В таблице отражены основные химические свойства щелочноземельных металлов.

Реакция

Особенности

Уравнение

С кислородом

Образуют оксидные плёнки. При нагревании до 500°С самовоспламеняются

2Mg + O 2 → 2MgO

С водородом

При высокой температуре образуют гидриды

Sr + H 2 → SrH 2

С галогенами и неметаллами

Реагируют при нагревании

Be + Cl 2 → BeCl 2 ;

Mg + S → MgS;

3Ca + 2P → Ca 3 P 2 ;

3Ca + N 2 → Ca 3 N 2 ;

Ba + 2C → BaC 2

При комнатной температуре

Mg + 2H 2 O → Mg(OH) 2 + H 2

С кислотами

Реагируют все металлы с образованием солей

4Ca + 10HNO 3 (конц.) → 4Ca(NO 3) 2 + N 2 O + 5H 2 O

Со щелочами

Реагирует только бериллий

Be + 2NaOH + 2H 2 O → Na 2 + H 2

Замещение

Замещают менее активные металлы в оксидах. Исключение - бериллий

2Mg + ZrO 2 → Zr + 2MgO

Ионы щелочных и щелочноземельных металлов в солях легко обнаружить по изменению цвета пламени. Соли натрия горят жёлтым пламенем, калия - фиолетовым, рубидия - красным, кальция - кирпично-красным, бария - жёлто-зелёным. Соли этих металлов используют для создания фейерверков.

Рис. 3. Качественная реакция.

Что мы узнали?

Щелочные и щелочноземельные металлы - активные элементы периодической таблицы, вступающие в реакции с простыми и сложными веществами. Щелочные металлы более мягкие, бурно реагируют с водой и галогенами, легко окисляются на воздухе, образуя оксиды, пероксиды, надпероксиды, взаимодействуют с кислотами и аммиаком. При нагревании вступают в реакцию с неметаллами. Щелочноземельные металлы реагируют с неметаллами, кислотами, водой. Бериллий не взаимодействует с водородом и водой, но реагирует со щелочами и с кислородом при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 113.

Элементы подгруппы кальция но­сят название щелочноземельных металлов. Происхождение этого названия связано с тем, что их окислы («земли» алхимиков) сообщают воде щелочную реакцию. К щёлочноземельным металлам чаще относят только кальций, стронций, барийи радий , реже магний. Первый элемент этой подгруппы, бериллий, по большинству свойств гораздо ближе к алюминию.

Распространённость:

На долю кальция приходится 1,5% общего числа атомов земной коры, тогда как содержание в ней радия очень мало (8- 10 -12 %). Про­межуточные элементы - стронций (0,008) и барий (0,005%)-стоят ближе к кальцию. Барий открыт в 1774 г., стронций - в 1792 г. Элементарные Ca, Sr и Ва впервые получены в 1808 г. Природный кальци й слагается из изо­топов с массовыми числами 40 (96,97%), 42 (0,64), 43 (0,14), 44 (2,06), 46 (0,003), 48 (0,19); стронций - 84 (0,56%), 86 (9,86), 87 (7,02), 88 (82,56); барий -130 (0,10%), 132 (0,10), 134 (2,42), 135 (6,59), 136 (7,81), 137 (11,32), 138 (71,66). Из изотопов радия основ­ное значение имеет встречающийся в природе 226 Ra (средняя продолжительность жизни ато­ма 2340 лет).

Соединения кальция (известняк, гипс) были известны и практически исполь­зовались еще в глубокой древности. Помимо различных силикатных пород Са, Sr и Ва встречаются главным образом в виде своих труднорастворимых углекислых и серно­кислых солей, каковыми являются минералы:

СаС0 3 - кальцит CaS0 4 - ан гидрит

SrC0 3 - стронцианит SrS0 4 - целестин

ВаС0 3 - витерит BaS0 4 - тяжелый шпат

CaMg(CO 3) 2 - доломит MgCO 3 - магнезит

Углекислый кальций в виде известняка и мела иногда обра­зует целые горные хребты. Значительно реже встречается окристаллизованная форма СаСО 3 - мрамор. Для сернокислого кальция наибо­лее типично нахождение в виде минерала гипса (CaSO 4 2Н 2 0), ме­сторождения которого нередко обладают громадной мощностью. Кроме перечисленных выше важным минералом кальция является флюо­рит -CaF 2 , используемый для получения плавиковой кислоты по уравнению:

CaF 2 +H 2 SO 4(конц.) →CaSO 4 +HF

Для стронция и бария сернокислые минералы более распространены, чем углекислые. Первичные месторождения радия связаны с урановыми рудами (причем на 1000 кг урана руда содержит лишь 0,3 г радия).

Получение:

Алюмотермическое получение свободных щелочноземельных металлов прово­дится при температурах около 1200 °С по схеме:

ЗЭ0 + 2А l =Аl 2 O 3 +ЗЭ

накаливанием их окислов с металлическим алюминием в высоком ва­кууме. При этом щелочноземельный металл отгоняется и оседает на более холодных частях установки. В большом масштабе (порядка тысяч тонн ежегодно) вырабатывается лишь кальций, для получения которого пользуются также электролизом расплавленного СаСl 2 . Процесс алюмотермии сложен тем, что при нем происходит частичное сплавление с Al 2 O 3 .Например, в случае кальция реакция идет по уравнению:

3СаО + Аl 2 O 3 →Сa 3 (АlO 3) 2

Может иметь место также частичное сплавление образующегося щелочноземельного ме­талла с алюминием.

Электролизер для получения металлического кальция представляет собой печь с внутренней графи­товой обкладкой, охлаждаемой снизу проточной водой. В печь загружается безводный СаСl 2 , а электродами служат железный катод и графитовые аноды. Процесс ведут при на­пряжении 20-30В, силе тока до 10 тыс. ампер, низ­кой температуре (около 800 °С). Благодаря последнему обстоятельству графитовая обкладка печи остается все время покрытой защитным слоем твердой соли. Так как кальций хорошо осаждается лишь при достаточно большой плотности тока на катоде (порядка 100 а/см 3), последний по мере хода электролизе постепенно поднимают кверху, с тем чтобы погруженным в расплав оставался лишь его конец. Таким образом, фактически катодом является сам металлический кальций (который изолируется от воздуха застывшей солевой коркой).Очистка его проводится обычно путем перегонки в ва­кууме или в атмосфере аргона.

Физические свойства:

Кальций и его аналоги представляют собой ковкие серебристо-белые металлы. Из них сам кальций довольно тверд, стронций и особенно барий значительно мягче. Некоторые константы щелочноземельных ме­таллов сопоставлены ниже:

Плотность, г/см 3

Температура плавления, °С

Температура кипения, °С

Летучие соединения щелочноземельных металлов окрашивают пламя в характерные цвета: Са - в оранжево-красный (кирпичный), Sr и Ra - в карминово-красный, Ва - в желтовато-зеленый. Этим пользуются при химических анализах для открытия рассматриваемых элементов.

Химические свойства :

На воздухе кальций и его аналоги покрываются пленкой, наряду с нормальными окислами (ЭО) частично содержащей также перекиси (Э0 2) и нитриды (Э 3 N 2). В ряду напряжений щелочноземельные ме­таллы располагаются левее магния и поэтому легко вытесняют водород не только из разбавленных кислот, но и из воды. При переходе от Са к Ra энергичность взаимодействия увеличивается. В своих соединениях рассматриваемые элементы двухвалентны. С металлоидами щелочноземельные металлы соединяются весьма энергично и с значительным выделением тепла.

· Обычно при взаимодействии ЩЗМ(щелочноземельные) металлов с кислородом, указывают образование оксида:

2Э +O 2 →2ЭO

Важно знать тривиальные названия нескольких соединений:

белильная, хлорная (хлорка) – CaCl 2 ∙ Ca(ClO) 2

гашёная (пушонка) – Ca(OH) 2

извёстка – смесь Ca(OH) 2 , песка и воды

известковое молоко – суспензия Ca(OH) 2 в известковой воде

натронная – смесь твёрдых NaOH и Ca(OH) 2 или CaO

негашёная (кипелка) – СаО

· Взаимодействие с водой, на примере кальция и его оксида:

Ca+2H 2 O→Ca(OH) 2 +H 2

CaO+H 2 O→Ca(OH) 2 +16 ккал("гашение"извести)

При взаимодействии с кислотами окислы и гидроокиси щелочнозе­мельных металлов легко образуют соответствующие соли, как правило, бесцветные.

Это интересно:

Если при гашении извести заменить воду раство­ром NaOH, то получается так называемая натронная известь. Практически при ее выработке к концентри­рованному раствору едкого натра добавляют измельчен­ную СаО (в весовом соотношении 2:1 к NaOH). После перемешивания образующейся массы ее выпаривают до­суха в железных сосудах, слабо прокаливают и затем измельчают. Натронная известь представляет собой тесную смесь Са(ОН) 2 с NaOH и широко применяется в лабора­ториях для поглощения углекислого газа.

Наряду с нормальными окислами для элементов подгруппы каль­ция известны белые перекиси типа Э0 2 . Практическое значение из них имеет перекись бария (Ва0 2), применяемая, в частности, как ис­ходный продукт для получения перекиси водорода:

BaO 2 + H 2 SO 4 =BaSO 4 + H 2 O 2

Технически Ва0 2 получают нагреванием ВаО в токе воздуха до 500 °С. При этом происходит присоединение кислорода по реакции

2ВаО +O 2 = 2BaO 2 + 34 ккал

Дальнейшее нагревание ведет, наоборот, к распаду Ва0 2 на окись бария и кислород. Поэтому сжигание металлического бария сопровождается образованием только его окиси.

· Взаимодействие с водородом, с образованием гидридов:

Гидриды ЭН 2 не растворяются (без разложения) ни в одном из обычных растворителей. С водой (даже ее следами) они энергично реагируют по схеме:

ЭH 2 + 2H 2 O = Э(OH) 2 + 2H 2

Реакция эта может служить удобным методом получения водорода, так как для своего проведения требует кроме СаН 2 (1 кг которого дает приблизительно 1 м 3 Н 2) только воду. Она сопровождается настолько значительным выделением тепла, что смоченный небольшим количеством воды СаН 2 самовоспламеняется на воздухе. Еще энергичнее протекает взаимодействие гидридов ЭН 2 с разбавленными кислотами. Напротив, со спиртами они реагируют спокойнее, чем с водой:

CaH 2 +2HCl→СаСl 2 +2H 2

CaH 2 +2ROH→2RH+Ca(OH) 2

3CaH 2 +N 2 → Ca 3 N 2 +ЗH 2

CaH 2 +O 2 →CaO+H 2 O

Гидрид кальция используется в качестве эффективного осушителя жидкостей и газов. Он успешно применяется также для количественного определения содержания воды в органических жидкостях, кристаллогидратах и т. д.

· Напрямую могу взаимодействовать с неметаллами:

Ca+Cl 2 →CaCl 2

· Взаимодействие с азотом. Э 3 N 2 белые тугоплавкие тела. Очень медленно образуются уже при обычных условиях:

3Э+N 2 →Э 3 N 2

Водой разлагаются по схеме:

Э 3 N 2 +6H 2 O→3Ca(OH) 2 +2NH 3

4Э 3 N 2 →N 2 +3Э 4 N 2)(для Ba и Sr субнитриды)

Э 4 N 2 +8H 2 O→4Э(OH) 2 +2NH 3 +H 2

Ba 3 N 2 +2N 2 →3 Ba N 2 (пернитрид бария)

При взаимодействии с разбавленными кислотами эти пернитриды наряду с двумя молекулами аммиака отщепляют и молекулу свободного азота:

Э 4 N 2 +8HCl→4ЭСl 2 +2NH 3 +H 2

Э 3 N 2 +ЗСО = 3ЭO+N 2 +ЗС

Иначе идет реакция в случае бария:

B a 3 N 2 +2СО = 2ВаО + Ba(CN) 2

Это интересно :

Э+NH 3(жидкий) →(Э(NH 2) 2 +H 2 +ЭNH+H 2)

4Э(NH 2) 2 → ЭN 2 +2H 2

Интересно, что Э(NH 3) 6 - аммиакаты образуются при взаимодействии элементов с газообразным аммиаком, и способны разлагаться по схеме:

Э(NH 3) 6 →Э(NH 2) 2 +4NH 3 +H 2

Дальнейшее нагревание:

Э(NH 2) 2 →ЭNH+NH 3

3ЭNH→NH 3 +Э 3 N 2

Но взаимодействие металла с аммиаком при высокой температуре протекает по схеме:

6Э+2 NH 3 →Э H 2 +Э 3 N 2

Нитриды способны присоединять галогениды:

Э 3 N 2 +ЭHal 2 →2Э 2 NHal

· Оксиды ЩЗМ и гидроокиси проявляют основные свойства, за исключением бериллия:

CaO +2 HCl →СаС l 2 +H 2 O

Ca(OH) 2 +2HCl→ СаС l 2 +2H 2 O

Be+2NaOH+2H 2 O→Na 2 +H 2

BeO+2HCl→Be С l 2 +H 2 O

BeO+2NaOH→Na 2 BeO 2 +H 2 O

· Качественные реакции на катионы ЩЗМ.В большинстве изданий указывают только качественные реакции на Ca 2+ и Ba 2+ .Рассмотрим их сразу в ионной форме:

Ca 2+ +CO 3 2- →CaCO 3 ↓ (белый осадок)

Ca 2+ +SO 4 2- →CaSO 4 ↓ (белый хлопьевидный осадок)

CaCl 2 + (NH 4) 2 C 2 O 4 →2NH 4 Cl + CaC 2 O 4 ↓

Ca 2+ +C 2 O 4 2- → CaC 2 O 4 ↓(белый осадок)

Ca 2+ -окрашивание пламени в кирпичный цвет

Ba 2+ +CO 3 2- →BaCO 3 ↓ (белый осадок)

Ba 2+ +SO 4 2- →BaSO 4 ↓(белый осадок)

Ba 2+ +CrO 4 2- →BaCrO 4 ↓(желтый осадок, аналогично для стронция)

Ba 2+ +Cr 2 O 7 2- +H 2 O→2BaCrO 4 +2H + (желтый осадок, аналогично для стронция)

Ba 2+ - окрашивание пламени в зелёный цвет.

Применение:

Промышленное применение находят почти исключительно соеди­нения рассматриваемых элементов, характерные свойства которых и определяют области их использования. Исключение представляют соли радия, практическое значение которых связано с их общим свойством - радиоактивностью. Практическое использование (главным образом в металлургии) нахо­дит почти исключительно кальций.Нитрат кальция широко применяется в качестве азотсодержащего минерального удобрения. Нитраты строн­ция и бария служат в пиротехнике для изготовления составов, сгораю­щих красным (Sr) или зеленым (Ва) пламенем.Применение отдельных природных разновидностей СаС0 3 различно. Известняк непосредственно используется при строительных работах, а также служит исходным сырьем для получения важнейших строи­тельных материалов - извести и цемента. Мел потребляется в качестве минеральной краски, как основа составов для полировки и т. д. Мрамор является прекрасным материалом для скульптурных работ, изго­товления электрических распределительных щитов и т.д. Практическое применение находит главным образом природный СаF 2 , который широко используется в керамической промышленности, служит исходным материалом для получении HF.

Безводный СаСl 2 ввиду его гигроскопичности часто используется в качестве осушающего средства. Весьма разнообразны медицинские применения растворов хлористого кальция (внутрь и внутривенно). Хлористый барий употребляется дли борьбы с вредителями сельского хозяйства и как важный реактив (на ион SO 4 2-) в химических лабораториях.

Это интересно:

Если 1 вес. ч. насыщенного раствора Са(СН 3 СОО) 2 быстро влить в сосуд, содержащий 17 вес. ч. этилового спирта, то вся жидкость тотчас же затвердевает. Получаемый подобным путем «сухой спирт» после поджигания медленно сгорает не коптящим пламенем. Такое топливо особенно удобно для туристов.

Жёсткость воды.

Содержание в природной воде солей кальция и магния часто оце­нивают, говоря о той или иной ее «жесткости». При этом различают жесткость карбонатную («временную») и некарбонатную («постоянную»). Первая обусловлена присутствием Са(НС0 3) 2 , реже Mg(HC0 3) 2 . Временной она названа потому, что может быть устранена простым кипячением воды: бикарбонаты при этом разрушаются, и не­растворимые продукты их распада (карбонаты Са и Mg) оседают на стенках сосуда в виде накипи:

Ca(HCO 3) 2 →CaCO 3 ↓+CO 2 +H 2 O

Mg(HCO 3) 2 →MgCO 3 ↓+CO 2 +H 2 O

Постоянная жесткость воды обусловлена присутствием в ней солей кальция и магния, не дающих осадка при кипячении. Наиболее обычны сульфаты и хлориды. Из них особое значение имеет малорастворимый CaS0 4 , который оседает в виде очень плотной накипи.

При работе парового котла на жесткой воде его нагреваемая по­верхность покрывается накипью. Так как последняя плохо проводит тепло, прежде всего становится неэкономичной сама работа котла: уже слой накипи толщиной 1 мм повышает расход топлива приблизительно на 5%. С другой стороны, изолированные от воды слоем накипи стенки котла могут нагреться до весьма высоких температур. При этом железо постепенно окисляется и стенки теряют прочность, что может повести к взрыву котла. Так как паросиловое хозяйство существует во многих промышленных предприятиях, вопрос о жесткости воды весьма практи­чески важен.

Так как очистка воды от растворенных солей при помощи перегонки слишком дорога, в местностях с жесткой водой для ее «умягчения» пользуются химическими методами. Карбонатную жесткость обычно устраняют, прибавляя к воде Са(ОН) 2 в количестве, строго отвечающем найденному по анализу содержанию бикарбонатов. При этом по реакции

Ca(HCO 3) 2 + Са(ОН) 2 = 2CaCO 3 ↓ + 2H 2 O

весь бикарбонат переходит в нормальный карбонат и осаждается. От некарбонатной жесткости чаще всего освобождаются добавлением к воде соды, которая вызывает образование осадка по реакции:

СaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4

Воде дают затем отстояться и лишь после этого пользуются ею для пи­тания котлов или в производстве. Для умягчения небольших количеств жесткой воды (в прачечных и т. п.) обычно добавляют к ней немного соды и дают отстояться. При этом кальций и магний полностью оса­ждаются в виде карбонатов, а остающиеся в растворе соли натрия не мешают.

Из изложенного следует, что содой можно пользоваться для устра­нения и карбонатной, и некарбонатной жесткости. Тем не менее втехнике все же стараются при возможности применять именно Са(ОН) 2 , что обусловлено гораздо большей дешевизной этого продукта сравни­тельно с содой

И карбонатная, и некарбонатная жесткость воды оценивается суммарным числом содержащихся в одном литре миллиграмм-эквивалентов Са и Mg (мг-экв/л). Сумма временной и постоянной жесткости определяет общую жесткость воды. Последняя характеризуется по данному признаку следующими наименованиями: мяг­кая (<4), средне жёсткая (4-8), жесткая (8-12), очень жесткая (>12 мг-экв/л). Жесткость отдельных естественных вод колеблется в весьма широких пределах. Для открытых водоемов она часто зависит от времени года и даже погоды. Наиболее «мягкой» природной водой является атмосферная (дождь, снег), почти не содержащая растворенных солей. Интересно имеющееся указание на то, что сердечные заболевания более распространены в местностях с мягкой водой.

Для полного умягчения воды вместо соды часто применяют Na 3 PO 4 , осаж­дающий кальций и магний в виде их труднорастворимых фосфатов:

2Na 3 PO 4 +3Ca(HCO 3) 2 →Ca 3 (PO 4) 2 ↓+6NaHCO 3

2Na 3 PO 4 +3Mg(HCO 3) 2 →Mg 3 (PO 4) 2 ↓+6NaHCO 3

Для расчета жёсткости воды есть специальная формула:

Где 20,04 и 12,16 эквивалентные массы кальция и магния соответственно.

Редактор: Харламова Галина Николаевна

Видеоурок 1: Неорганическая химия. Металлы: щелочные, щелочноземельные, алюминий

Видеоурок 2: Переходные металлы

Лекция: Характерные химические свойства и получение простых веществ - металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)

Химические свойства металлов

Все металлы в химических реакциях проявляют себя, как восстановители. Они легко расстаются с валентными электронами, окисляясь при этом. Вспомним, что, чем левее располагается металл в электрохимическом ряду напряженности, тем более сильным восстановителем он является. Следовательно, самый сильный - это литий, самый слабый - золото и наоборот, золото - самый сильный окислитель, а литий - самый слабый.

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Cr→Zn→Fe→Cd→Co→Ni→Sn→Pb→H→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

Все металлы вытесняют из раствора солей другие металлы, т.е. восстанавливают их. Все, кроме щелочных и щелочноземельных, так как они взаимодействуют с водой. Металлы, расположенные до Н, вытесняют его из растворов разбавленных кислот, а сами растворяются в них.

Рассмотрим некоторые общие химические свойства металлов:

  • Взаимодействие металлов с кислородом образует основные (СаО, Na 2 O, 2Li 2 O и др.) или амфотерные (ZnO, Cr 2 O 3 , Fe 2 O 3 и др.) оксиды.
  • Взаимодействие металлов с галогенами (главная подгруппа VII группы) образует галогеноводородные кислоты (HF - фтороводород, HCl - хлороводород и др.).
  • Взаимодействие металлов с неметаллами образует соли (хлориды, сульфиды, нитриды и др.).
  • Взаимодействие металлов с металлами образует интерметаллиды (MgB 2 , NaSn, Fe 3 Ni и др.).
  • Взаимодействие активных металлов с водородом образует гидриды (NaH, CaH 2, KH и др.).
  • Взаимодействие щелочных и щелочноземельных металлов с водой образует щелочи (NaOH, Ca(OH) 2 , Cu(OH) 2 и др.).
  • Взаимодействие металлов (только, стоящих в электрохимическом ряду до Н) с кислотами образует соли (сульфаты, нитриты, фосфаты и др.). Следует иметь ввиду, что металлы реагируют с кислотами достаточно неохотно, тогда как с основаниями и солями взаимодействуют практически всегда. Для того, чтобы реакция металла с кислотой прошла нужно, чтобы металл был активным, а кислота сильной.

Химические свойства щелочных металлов

К группе щелочных металлов относятся следующие химические элементы: литий (Li), натрий (Na), калий (К), рубидий (Rb), цезий (Cs), франций (Fr). С перемещением сверху вниз по группе I Периодической таблицы их атомные радиусы увеличиваются, а значит возрастают металлические и восстановительные свойства.

Рассмотрим химические свойства щелочных металлов:

  • Не имеют признаков амфотерности, так как обладают отрицательными значениями электродных потенциалов.
  • Самые сильные восстановители среди всех металлов.
  • В соединениях проявляют только степень окисления +1.
  • Отдавая единственный валентный электрон, атомы данных химических элементов преобразуются в катионы.
  • Образуют многочисленные ионные соединения.
  • Практически все растворяются в воде.

Взаимодействие щелочных металлов с другими элементами:

1. С кислородом, образуя индивидуальные соединения, так оксид образует только литий (Li 2 O), натрий образует пероксид (Na 2 O 2), а калий, рубидий и цезий - надпероксиды (KO 2 , RbO 2 , CsO 2).

2. С водой, образуя щелочи и водород. Помните, эти реакции взрывоопасны. Без взрыва с водой реагирует только литий:

    2Li + 2Н 2 О → 2LiO Н + Н 2 .

3. С галогенами, образуя галогениды (NaCl - хлорид натрия, NaBr - бромид натрия, NaI - йодид натрия и др.).

4. С водородом при нагревании, образуя гидриды (LiH, NaH и др.)

5. С серой при нагревании, образуя сульфиды (Na 2 S, K 2 S и др.). Они бесцветны и хорошо растворимы в воде.

6. С фосфором при нагревании, образуя фосфиды (Na 3 P, Li 3 P и др.), очень чувствительны к влаге и воздуху.

7. С углеродом при нагревании карбиды образуют только литий и натрий (Li 2 CO 3 , Na 2 CO 3), тогда как калий, рубидий и цезий не образуют карбидов, они образуют бинарные соединения с графитом (C 8 Rb, C 8 Cs и др).

8. С азотом при обычных условиях реагирует только литий, образуя нитрид Li 3 N, с остальными щелочными металлами реакция возможна только при нагревании.

9. С кислотами реагируют со взрывом, поэтому проведение таких реакций очень опасно. Данные реакции проходят неоднозначно, потому что щелочной металл активно реагирует с водой, образуя щелочь, которая потом нейтрализуются кислотой. Таким образом создается конкуренция между щелочью и кислотой.

10. С аммиаком, образуя амиды - аналоги гидроксидов, но более сильные основания (NaNH 2 - амид натрия, KNH 2 - амид калия и др.).

11. Со спиртами, образуя алкоголяты.

Франций - радиоактивный щелочной металл, один из редчайших и наименее устойчивых среди всех радиоактивных элементов. Его химические свойства изучены недостаточно.


Получение щелочных металлов:

Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего - хлоридов, образующих природные минералы:

  • NaCl → 2Na + Cl 2 .
Есть и другие способы получения щелочных металлов:
Натрий также можно получить, прокаливая соду с углем в закрытых тиглях:
  • Na 2 CO 3 + 2C → 2Na + 3CO.
Известен способ получения лития из его оксида в вакууме при 300°С:
  • 2Li 2 O + Si + 2CaO → 4Li + Ca 2 SiO 4 .
Калий получают, пропуская пары натрия через расплав хлорида калия при 800°С, выделяющие пары калия конденсируют:
  • KCl + Na → K + NaCl.

Химические свойства щелочноземельных металлов

К щелочноземельным металлам относятся элементы главной подгруппы II группы: кальций (Ca), стронций (Sr), барий (Ba), радий (Ra). Химическая активность данных элементов растет также, как и у щелочных металлов, т.е. с увеличением вниз по подгруппе.

Химические свойства щелочноземельных металлов:

    Строение валентных оболочек атомов этих элементов ns 2 .

  • Отдавая два валентных электрона, атомы данных химических элементов преобразуются в катионы.
  • В соединения проявляют степень окисления +2.
  • Заряды ядер атомов на единицу больше, чем у щелочных элементов тех же периодов, что приводит к уменьшению радиуса атомов и увеличению ионизационных потенциалов.

Взаимодействие щелочноземельных металлов с другими элементами:

1. С кислородом все щелочноземельные металлы, кроме бария образуют оксиды, барий образует пероксид BaO 2 . Из данных металлов берилий и магний, покрытые тонкой защитной оксидной пленкой взаимодействуют с кислородом только при очень высоких t. Основные оксиды щелочноземельных металлов реагируют с водой, за исключением оксида берилия BeO, обладающего амфотерными свойствами. Реакция оксида кальция и воды называется реакцией гашения извести. Если реагентом является CaO образуется негашенная известь, если Ca(OH) 2 , гашенная. Также основные оксиды реагируют с кислотными оксидами и кислотами. К примеру:

  • 3CaO + P 2 O 5 → Ca 3 (PO 4) 2 .

2. С водой щелочноземельные металлы и их оксиды образуют гидроксиды - белые кристаллические вещества, которые в сравнении с гидроксидами щелочных металлов хуже растворяются в воде. Гидроксиды щелочноземельных металлов являются щелочами, кроме амфотерного Be(OH) 2 и слабого основания Mg(OH) 2 . Поскольку берилий не реагирует с водой, Be(OH) 2 может быть получен другими способами, например гидролизом нитрида:

  • Be 3 N 2 + 6Н 2 О → 3Be(OH) 2 + 2NН 3.

3. С галогенами при обычных условиях реагирую все, кроме бериллия. Последний вступает в реакцию только при высоких t. Образуются галогениды (MgI 2 – иодид магния, CaI 2 – иодид кальция, СаBr 2 – бромид кальция и др.).

4. С водородом реагируют при нагревании все щелочноземельные металлы, кроме берилия. Образуются гидриды (BaH 2 , CaH 2 и др.). Для реагирования магния с водородом помимо высокой t требуется еще и повышенное давление водорода.

5. С серой образуют сульфиды. К примеру:

  • Сa + S → СaS .

Сульфиды служат для получения серной кислоты и соответствующих металлов.

6. С азотом образуют нитриды. К примеру:

  • 3Be + N 2 Be 3 N 2 .

7. С кислотами образуя соли соответствующей кислоты и водород. К примеру:

  • Ве + Н 2 SO 4(разб.) → BeSO 4 + H 2 .

Эти реакции протекают также, как и в случае щелочных металлов.

Получение щелочно-земельных металлов:


Бериллий получают восстановлением фторида:
  • BeF 2 + Mg –t о → Be + MgF 2
Барий получают восстановлением оксида:
  • 3BaO + 2Al –t о → 3Ba + Al 2 O 3
Остальные металлы получают электролизом расплавов хлоридов:
  • CaCl 2 → Ca + Cl 2

Химические свойства алюминия

Алюминий – активный, легкий металл, под порядковым номером 13 в таблице. В природе самый распространенный из всех металлов. А из химических элементов занимает третью позицию по распространению. Высокий тепло- и электропроводник. Устойчив к коррозии, поскольку покрывается оксидной пленкой. Температура плавления равна 660 0 С.

Рассмотрим химические свойства и взаимодействие алюминия с другими элементами:

1. Во всех соединениях алюминий находится в степени окисления +3.

2. Практически во всех реакциях проявляет восстановительные свойства.

3. Амфотерный металл, проявляет как кислотные, так и основные свойства.

4. Восстанавливает многие металлы из оксидов. Этот метод получения металлов получил название алюмотермии. Пример получения хрома:

    2Al + Cr 2 О 3 → Al 2 О 3 + 2Cr .

5. Взаимодействует со всеми разбавленными кислотами, образуя соли и выделяя водород. К примеру:

    2Al + 6HCl → 2AlCl 3 + 3H 2 ;

    2Al + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2 .

В концентрированных HNO 3 и H 2 SO 4 алюминий пассивируется. Благодаря этому, возможно хранить и транспортировать данные кислоты в емкостях, изготовленных из алюминия.

6. Взаимодействует со щелочами, так как они растворяют оксидную пленку.

7. Взаимодействует со всеми неметаллами, кроме водорода. Для проведения реакции с кислородом нужен мелкораздробленный алюминий. Реакция возможна только при высокой t:

  • 4Al + 3O 2 → 2Al 2 O 3 .

По своему тепловому эффекту данная реакция относится к экзотермическим. Взаимодействие с серой образует сульфид алюминия Al 2 S 3 , с фосфором фосфид AlP, с азотом нитрид AlN, с углеродом карбид Al 4 C 3 .

8. Взаимодействует с другими металлами, образуя алюминиды (FeAl 3 CuAl 2 , CrAl 7 и др.).

Получение алюминия:

Металлический алюминий получают электролизом раствора глинозема Al 2 O 3 в расплавленном криолите Na 2 AlF 6 при 960–970°С.

  • 2Al 2 O 3 → 4Al + 3O 2 .

Химические свойства переходных элементов

К переходным относятся элементы побочных подгрупп Периодической таблицы. Рассмотрим химические свойства меди, цинка, хрома и железа.

Химические свойства меди

1. В электрохимическом ряду находится правее Н, поэтому данный металл малоактивен.

2. Слабый восстановитель.

3. В соединениях проявляет степени окисления +1 и +2.

4. Взаимодействует с кислородом при нагревании, образуя:

  • оксид меди (I) 2Cu + O 2 → 2CuO (при t 400 0 C)
  • или оксид меди (II): 4Cu + O 2 → 2Cu 2 O (при t 200 0 C).

Оксиды обладают основными свойствами. При нагревании в инертной атмосфере Cu 2 O диспропорционируется: Cu 2 O → CuO + Cu . Оксид меди (II) CuO в реакциях со щелочами образует купраты, к примеру: CuO + 2NaOH → Na 2 CuO 2 + H 2 O.

5. Гидроксид меди Си(ОН) 2 амфотерен, основные свойства в нем преобладают. В кислотах он растворяется легко:

  • Сu(OH) 2 + 2HNO 3 → Cu(NO 3) 2 + 2H 2 O ,

а в концентрированных растворах щелочей с трудом:

  • Сu(OH) 2 + 2NaOH → Na 2 .

6. Взаимодействие меди с серой при различных температурных условиях, также образует два сульфида. При нагревании до 300-400 0 С в вакууме образуется сульфид меди (I):

  • 2Cu + S → Cu 2 S.

При комнатной t, растворив серу в сероводороде, можно получить сульфид меди (II):

  • Cu + S → CuS.

7. Из галогенов взаимодействует со фтором, хлором и бромом, образуя галогениды (CuF 2 , CuCl 2 , CuBr 2), йодом, образуя йодид меди (I) CuI; не взаимодействует с водородом, азотом, углеродом, кремнием.

8. С кислотами - неокислителями не реагирует, потому как они окисляют только металлы, расположенные до водорода в электрохимическом ряду. Данный химический элемент реагирует с кислотами - окислителями: разбавленной и концентрированной азотной и концентрированной серной:

    3Cu + 8HNO 3 (разб) → 3Cu(NO 3) 2 + 2NO + 4H 2 O;

    Cu + 4HNO 3(конц) → Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

    Cu + 2H 2 SO 4(конц) → CuSO 4 + SO 2 + 2H 2 O.

9. Взаимодействуя с солями, медь вытесняет из их состава металлы, расположенные правее неё в электрохимическом ряду. К примеру,

    2FeCl 3 + Cu → CuCl 2 + 2FeCl 2 .

Здесь мы видим, что медь перешла в раствор, а железо (III) восстановилось до железа (II). Данная реакция имеет важное практическое значение и применяется для удаления меди, напыленной на пластмассу.

Химические свойства цинка

1. Самый активный после щелочноземельных металлов.

2. Обладает выраженными восстановительными свойствами и амфотерными свойствами.

3. В соединениях проявляет степень окисления +2.

4. На воздухе покрывается оксидной пленкой ZnO.

5. Взаимодействие с водой возможно при температуре красного каления. В результате образуется оксид цинка и водород:

  • Zn + H 2 O → ZnO + H 2 .

6. Взаимодействует с галогенами, образуя галогениды (ZnF 2 - фторид цинка, ZnBr 2 - бромид цинка, ZnI 2 - йодид цинка, ZnCl 2 - хлорид цинка).

7. С фосфором образует фосфиды Zn 3 P 2 и ZnP 2 .

8. С серой халькогенид ZnS.

9. Непосредственно не реагирует с водородом, азотом, углеродом, кремнием и бором.

10. Взаимодействует с кислотами - неокислителями, образуя соли и вытесняя водород. К примеру:

  • H 2 SO 4 + Zn → ZnSO 4 + H 2
  • Zn + 2HCl → ZnCl 2 + H 2 .

С кислотами - окислителями тоже реагирует: с конц. серной кислотой образует сульфат цинка и сернистый газ:

  • Zn + 2H 2 SO 4 → ZnSO 4 + SO 2 + 2H 2 O.

11. Активно реагирует со щелочами, так как цинк - амфотерный металл. С растворами щелочей образует тетрагидроксоцинкаты и выделяя водород:

  • Zn + 2NaOH + 2H 2 O → Na 2 + H 2 .

На гранулах цинка, впоследствии реакции, появляются пузырьки газа. С безводными щелочами при сплавлении образует цинкаты и выделяет водород:

  • Zn + 2NaOH → Na 2 ZnO 2 +H 2 .

Химические свойства хрома




1. В обычных условиях инертен, при нагревании активен.

2.

3. Образует окрашенные соединения.

4. В соединениях проявляет степени окисления +2 (основный оксид CrO черного цвета), +3 (амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 зеленого цвета) и +6 (кислотный оксид хрома (VI) CrO 3 и кислоты: хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 и др.).

5. Со фтором взаимодействует при t 350-400 0 C, образуя фторид хрома (IV):

  • Cr+2F 2 → CrF 4 .

6. C кислородом, азотом, бором, кремнием, серой, фосфором и галогенами при t 600 0 C:

  • соединение с кислородом образует оксид хрома(VI) CrO 3 (тёмно-красные кристаллы),
  • соединение с азотом - нитрид хрома CrN (черные кристаллы),
  • соединение с бором - борид хрома CrB (желтые кристаллы),
  • соединение с кремнием - силицид хрома CrSi,
  • соединение с углеродом - карбид хрома Cr 3 C 2 .

7. С водяным паром реагирует, находясь в раскалённом состоянии, образуя оксид хрома (III) и водород:

  • 2Cr + 3H 2 O → Cr 2 O 3 + 3H 2 .

8. С растворами щелочей не реагирует, однако медленно реагирует с их расплавами, образуя хроматы:

  • 2Cr + 6KOH → 2KCrO 2 + 2K 2 O + 3H 2 .

9. В разбавленных сильных кислотах растворяется, образуя соли. Если реакция проходит на воздухе образуются соли Cr 3+ , например:

  • 2Cr + 6HCl + O 2 → 2CrCl 3 + 2H 2 O + H 2 .
  • Cr + 2HCl → CrCl 2 + H 2 .

10. С концентрированными серной и азотной кислотами, а также с царской водкой, реагирует только при нагревании, т.к. при низких t эти кислоты пассивируют хром. Реакции с кислотами при нагревании выглядят так:

    2Сr + 6Н 2 SО 4 (конц) → Сr 2 (SО 4) 3 + 3SО 2 + 6Н 2 О

    Сr + 6НNО 3 (конц) → Сr(NО 3) 3 + 3NO 2 + 3Н 2 О

Оксид хрома(II) CrO - твердое вещество черного или красного цвета, не растворяющееся в воде.

Химические свойства:

  • Обладает основными и восстанавливающими свойствами.
  • При нагревании до 100 0 С на воздухе окисляется до Cr 2 O 3 - оксида хрома (III).
  • Возможно восстановление хрома водородом из данного оксида: CrO + Н 2 → Cr + H 2 O или коксом: CrO + С → Cr + СO.
  • Реагирует с соляной кислотой, при этом выделяя водород: 2CrO + 6HCl → 2CrCl 3 + H 2 + 2H 2 O.
  • Не реагирует со щелочами, разбавленными серной и азотной кислотами.

Оксид хрома (III) Cr 2 O 3 - тугоплавкое вещество, темно-зеленого цвета, нерастворяющееся в воде.

Химические свойства:

  • Обладает амфотерными свойствами.
  • Как основный оксид взаимодействует с кислотами: Cr 2 O 3 + 6HCl → CrCl 3 + 3H 2 O .
  • Как кислотный оксид взаимодействует со щелочами: Cr 2 O 3 + 2КОН → 2КCrО 3 + H 2 O .
  • Сильные окислители окисляют Cr 2 O 3 до хромата H 2 CrO 4 .
  • Сильные восстановители восстанавливают Cr из Cr 2 O 3 .

Гидроксид хрома(II) Cr(OH) 2 - твердое вещество желтого или коричневого цвета, плохо растворяющееся в воде.

Химические свойства:

  • Слабое основание, проявляет основные свойства.
  • В присутствии влаги на воздухе окисляется до Cr(OH) 3 - гидроксида хрома (III).
  • Реагирует с концентрированными кислотами, образуя соли хрома (II) синего цвета: Cr(OH) 2 + H 2 SO 4 → CrSO 4 + 2H 2 O .
  • Не реагирует со щелочами и разбавленными кислотами.

Гидроксид хрома (III) Cr(OH) 3 - вещество серо-зеленого цвета, нерастворяющееся в воде.

Химические свойства:

  • Обладает амфотерными свойствами.
  • Как основный гидроксид взаимодействует с кислотами: Cr(OH) 3 + 3HCl → CrCl 3 + 3H 2 O .
  • Как кислотный гидроксид взаимодействует со щелочами: Cr(OH) 3 + 3NaОН → Na 3 [Cr(OH) 6 ] .

Химические свойства железа




1. Активный металл, обладающий высокой реакционной способностью.

2. Обладает восстановительными свойствами, а также ярко выраженными магнитными свойствами.

3. В соединениях проявляет основные степени окисления +2 (со слабыми окислителями: S, I, HCl, растворами солей), +3 (с сильными окислителями: Br и Cl) и менее характерную +6 (с О и H 2 O ). У слабых окислителей железо принимает степень окисления +2, у более сильных +3. Степени окисления +2 соответствуют чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 , обладающие основными свойствами. Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 , обладающие слабо выраженными амфотерными свойствами. Fe (+2) - слабый восстановитель, а Fe (+3) - чаще слабый окислитель. При изменении окислительно - восстановительных условий, степени окисления железа могут меняться друг с другом.

4. На воздухе при t 200 0 C покрывается оксидной пленкой. В обычных атмосферных условиях легко подвергается коррозии. При пропускании кислорода через расплав железа образуется оксид FeО. При сгорании железа на воздухе образуется оксид Fe 2 О 3 . При сгорании в чистом кислороде образуется оксид - железная окалина:
  • 3Fe + 2O 2 → Fe 3 O 4 .

5. C галогенами реагирует при нагревании:

  • соединение с хлором образует хлорид железа(III) FeCl 3 ,
  • соединение с бромом - бромид железа (III) FeBr 3 ,
  • соединение с йодом - йодид железа (II,III) Fe 3 I 8 ,
  • соединение со фтором - фторид железа (II) FeF 2 , фторид железа(III) FeF 3 .
6. С серой, азотом, фосфором, кремнием и углеродом также реагирует при нагревании:
  • соединение с серой образует сульфид железа(II) FeS,
  • соединение с азотом - нитрид железа Fe 3 N,
  • соединение с фосфором - фосфиды FeP, Fe 2 P и Fe 3 P,
  • соединение с кремнием - силицид железа FeSi,
  • соединение с углеродом - карбид железа Fe 3 C.
2Fe + 4H 2 SO 4 → Fe 2 (SO 4) 3 + SO 2 + 4H 2 O

9. С растворами щелочей не реагирует, однако медленно реагирует с расплавами щелочей, являющихся сильными окислителями:

  • Fe + KClO 3 + 2KOH → K 2 FeO 4 + KCl + H 2 O.

10. Восстанавливает металлы, расположенные в электрохимическом ряду правее:

  • Fe + SnCl 2 → FeCl 2 + Sn.
Получение железа: В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
  • 3Fe 2 O 3 + CO → CO 2 + 2Fe 3 O 4 ,
  • Fe 3 O 4 + CO → CO 2 + 3FeO,
  • FeO + CO → CO 2 + Fe.

Оксид железа (II) FeO - кристаллическое вещество черного цвета (вюстит), не растворяющееся в воде.

Химические свойства:

  • Обладает основными свойствами.
  • Реагирует с разбавленной соляной кислотой: FeO + 2HCl → FeCl 2 + H 2 O.
  • Реагирует с концентрированной азотной кислотой: FeO + 4HNO 3 → Fe(NO 3) 3 + NO 2 + 2H 2 O .
  • Не реагирует с водой и солями.
  • С водородом при t 350 0 C восстанавливается до чистого металла: FeO +H 2 → Fe + H 2 O .
  • Также восстанавливается до чистого металла при соединении с коксом: FeO +C → Fe + CO.
  • Получить данный оксид можно различными способами, один из них нагревание Fe при низком давлении О: 2Fe + O 2 → 2FeO .

Оксид железа (III) Fe 2 O 3 - порошок бурового цвета (гематит), нерастворяющееся в воде вещество. Другие названия: окись железа, железный сурик, пищевой краситель E172 и пр.

Химические свойства:

  • Fe 2 O 3 + 6HCl → 2 FeCl 3 + 3H 2 O.
  • С растворами щелочей не реагирует, реагирует с их расплавами, образуя ферриты: Fe 2 O 3 + 2NaOH → 2NaFeO 2 + H 2 O .
  • При нагревании с водородом проявляет окислительные свойства: Fe 2 O 3 + H 2 → 2FeO + H 2 O .
  • Fe 2 O 3 + 3KNO 3 + 4KOH → 2K 2 FeO 4 + 3KNO 2 + 2H 2 O.

Оксид железа (II, III) Fe 3 O 4 или FeO Fe 2 O 3 - серовато-черное твердое вещество (магнетит, магнитный железняк), нерастворяющееся в воде вещество.

Химические свойства:

  • Разлагается при нагревании более 1500 0 С: 2Fe 3 O 4 → 6FeO + O 2 .
  • Реагирует с разбавленными кислотами: Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 + 4H 2 O.
  • С растворами щелочей не реагирует, реагирует с их расплавами: Fe 3 O 4 + 14NaOH → Na 3 FeO 3 + 2Na 5 FeO 4 + 7H 2 O .
  • При реакции с кислородом окисляется: 4Fe 3 O 4 + O 2 → 6Fe 2 O 3 .
  • С водородом при нагревании восстанавливается: Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O .
  • Также восстанавливается при соединении с оксидом углерода: Fe 3 O 4 + 4CO → 3Fe +4CO 2 .

Гидроксид железа(II) Fe(OH) 2 - белое, редко зеленоватое кристаллическое вещество, нерастворяющееся в воде.

Химические свойства:

  • Обладает амфотерными свойствами с преобладанием основных.
  • Вступает в реакции нейтрализации кислоты-неокислителя, проявляя основные свойства: Fe(OH) 2 + 2HCl → FeCl 2 + 2H 2 O .
  • При взаимодействии с азотной или концентрированной серной кислотами проявляет восстановительные свойства, образуя соли железа (III): 2Fe(OH) 2 + 4H 2 SO 4 → Fe 2 (SO 4) 3 + SO 2 + 6H 2 O .
  • При нагревании вступает в реакции с концентрированными растворами щелочей: Fe(OH) 2 + 2NaOH → Na 2 .

Гидроксид железа (II I) Fe(OH) 3 - бурое кристаллическое или аморфное вещество, нерастворяющееся в воде.

Химические свойства:

  • Обладает слабовыраженными амфотерными свойствами с преобладанием основных.
  • Легко взаимодействует с кислотами: Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O .
  • С концентрированными растворами щелочей образует гексагидроксоферраты (III): Fe(OH) 3 + 3NaOH → Na 3 .
  • С расплавами щелочей образует ферраты: 2Fe(OH) 3 + Na 2 CO 3 → 2NaFeO 2 + CO 2 + 3H 2 O .
  • В щелочной среде с сильными окислителями проявляет восстановительные свойства: 2Fe(OH) 3 + 3Br 2 + 10KOH → 2K 2 FeO 4 + 6NaBr + 8H 2 O.
Возник вопрос по теме? Задавайте его репетитору по химии 👉