Цветаева я бренная пена морская. Мне имя — Марина… (Поклонникам М. Цветаевой). Анализ стихотворения «Имя твое - птица в руке» Цветаевой

В процессе эволюции зрения у некоторых животных возникают довольно сложные оптические приборы. К таким, безусловно, можно отнести глаза фасеточные. Они сформировались у насекомых и ракообразных, некоторых членистоногих и беспозвоночных. Чем отличается фасеточный глаз от простого, каковы его основные функции? Об этом поговорим в нашем сегодняшнем материале.

Глаза фасеточные

Это оптическая система, растровая, где отсутствует единая сетчатка. А все рецепторы объединены в небольшие ретинулы (группы), образуя выпуклый слой, не содержащий более никаких нервных окончаний. Таким образом, глаз состоит из множества отдельных единиц - омматидий, объединяющихся в общую систему зрения.

Глаза фасеточные, присущие, к отличаются от бинокулярных (присущих в том числе и человеку) плохим определением мелких деталей. Зато они способны различать колебания света (до 300 Гц), тогда как для человека предельные возможности - 50 Гц. А еще мембрана такого типа глаз имеет трубчатую структуру. Ввиду этого глаза фасеточные не имеют таких особенностей рефракции, как дальнозоркость или близорукость, для них неприменимо понятие аккомодации.

Некоторые особенности строения и зрения

У многих насекомых занимают большую часть головы и фактически неподвижны. К примеру, глаза фасеточные у стрекозы состоят из 30 000 частиц, образуя сложную структуру. У бабочек - 17 000 омматидиев, у мухи - 4 тысячи, у пчелы - 5. Наименьшее количество частичек у муравья рабочего - 100 штук.

Бинокулярное или фасеточное?

Первый тип зрения позволяет воспринимать объем предметов, их мелкие детали, оценивать расстояния до объектов и их расположение по отношению друг к другу. Однако человека ограничивается углом в 45 градусов. Если обзор необходим более полный, глазное яблоко осуществляет движение на рефлекторном уровне (либо мы повернем голову вокруг оси). Фасеточные глаза в виде полусфер с омматидиями позволяют видеть окружающую действительность со всех сторон, не поворачивая органов зрения или головы. Причем изображение, которое передает при этом глаз, очень похоже на мозаику: одной структурной единицей глаза воспринимается отдельный элемент, а вместе они отвечают за воссоздание полной картины.

Разновидности

Омматидии имеют анатомические особенности, в результате чего и различаются их оптические свойства (к примеру, у разных насекомых). Ученые определяют три вида фасета:


Кстати, некоторые виды насекомых имеют смешанный тип фасеточных органов зрения, а у многих, кроме рассматриваемых нами, имеются еще и простые глаза. Так, у мухи, к примеру, по бокам головы расположены парные фасеточные органы довольно больших размеров. А на темени есть три простых глаза, выполняющих вспомогательные функции. Такая же организация органов зрения и у пчелы - то есть всего пять глаз!

У некоторых ракообразных фасеточные глаза как бы сидят на подвижных выростах-стебельках.

А у некоторых амфибий и рыб имеется еще и дополнительный (теменной) глаз, который различает свет, но обладает предметным зрением. Сетчатка его состоит только из клеток и рецепторов.

Современные научные разработки

В последнее время глаза фасеточные - предмет изучения и восторга ученых. Ведь такие органы зрения, ввиду своего оригинального строения, дают почву для научных изобретений и изысканий в мире современной оптики. Основные преимущества - широкий обзор пространства, разработка искусственных фасеток, используемых преимущественно в миниатюрных, компактных, секретных системах наблюдения.


Тремя путями воспринимают свет насекомые: всей поверхностью тела, простыми глазками и сложными, так называемыми фасеточными глазами.

Как показали опыты, всей поверхностью тела чувствуют свет гусеницы, личинки водяных жуков, тли, жуки (даже слепые пещерные), мучные черви, тараканы и, конечно, многие другие насекомые. Свет через кутикулу проникает к голове и вызывает соответствующие реакции в воспринимающих его клетках мозга.

Наиболее примитивные простые глазки, пожалуй, у личинок некоторых комаров. Это пигментные пятна с небольшим числом светочувствительных клеток (их нередко всего две или три). У личинок пилильщиков (отряд перепончатокрылых) и жуков глазки более сложные: пятьдесят и больше светочувствительных клеток, прикрытых сверху прозрачной линзой - утолщением кутикулы.

Красные глаза гусеницы. Фото: Jes

С каждой стороны головы личинки жука-скакуна шесть глазков, два из которых много больше других (в них 6 тысяч зрительных клеток). Хорошо ли они видят? Едва ли они способны передать в мозг впечатление о форме предмета. Однако приблизительные размеры увиденного два больших глазка засекают неплохо.

Личинка сидит в вертикальной норке, вырытой в песке. С расстояния в 3-6 сантиметров она замечает жертву или врага. Если проползающее близко насекомое не больше 3-4 миллиметров, личинка хватает его челюстями. Когда больше, прячется в норку.
Пять-шестъ простых глазков на каждой стороне головы гусениц содержат каждый всего по одной «ритинальной палочке» - зрительному элементу - и прикрыты сверху линзой, способной концентрировать свет.

Каждый глаз в отдельности не дает представления о форме наблюдаемого предмета. Однако в опытах гусеница проявляла поразительные способности. Вертикальные предметы она видит лучше, чем горизонтальные. Из двух столбов или деревьев выбирает более высокое и ползет к нему, даже если заклеить черной краской все ее простейшие глазки, оставив лишь один. В каждый данный момент он видит лишь точку света, но гусеница вертит головой, рассматривая единственным своим глазом поочередно разные пункты предмета, и этого достаточно, чтобы в ее мозгу сложилась приблизительная картина увиденного. Конечно, неясная, нечеткая, но все-таки показанный ей объект гусеница замечает.

Простые глазки типичны для личинок насекомых, есть они, впрочем, и у многих взрослых. У последних главное - так называемые сложные, или фасеточные, глаза: по бокам головы. Сложены они из множества удлиненных простых глазков - омматидиев. В каждом омматидии - соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее - удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной кутикулярной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4000 (комнатная муха), 9000 (жук-плавунец), 17 000 (бабочки) и 10 000-28 000 у разных стрекоз.


Фасеточные глаза у бабочки Монарх. Фото: Monica R.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей насекомое картины мира. Из множества отдельных точек, увиденных каждым из омматидиев, складывается в мозгу насекомого мозаичное «панно» предметов ландшафта.
У ночных насекомых (светлячков, других жуков, у мотыльков) эта мозаичная картина оптического видения, так сказать, более смазанная. Ночью пигментные клетки, отделяющие омматидии сложного глаза друг от друга, сокращаясь, стягиваются кверху, к роговице. Лучи света, попадающие в каждую фасетку, воспринимаются не только ее светочувствительной клеткой, но и клетками, расположенными в соседних омматидиях. Ведь теперь они не закрыты темными пигментными «шторками». Этим достигается более полное улавливание света, которого не так уж много в ночном мраке.

Днем же пигментные клетки заполняют все промежутки между омматидиями, и каждый из них воспринимает только те лучи, которые концентрирует его собственный хрусталик. Иными словами, «суперпозиционный», так его называют, глаз ночных насекомых, днем функционирует как «аппозиционный» глаз насекомых дневных.

Не менее важна, чем число фасеток, другая их особенность - угол зрения каждого омматидия. Чем он меньше, тем выше разрешающая способность глаза и тем более мелкие детали наблюдаемого объекта он может увидеть. У омматидия уховертки угол зрения - 8 градусов, у пчелы - 1 градус. Подсчитано, что на каждую точку в мозаичной картине увиденного уховерткой у пчелы приходится 64 точки. Следовательно, мелкие детали наблюдаемого предмета глаз пчелы улавливает в десятки раз лучше.
Но в глаз с меньшим углом зрения проникает и меньше света. Поэтому величина фасеток в сложных глазах насекомых неодинакова. В тех направлениях, где нужна более яркая видимость и не так уж необходимо точное рассматривание деталей, располагаются более крупные фасетки. У слепня, например, в верхней половине глаза фасетки заметно крупнее, чем в нижней.
Подобные же четко разделенные арены с разновеликими омматидиями есть и у некоторых мух. У пчелы иное устройство фасеток: их угол зрения в направлении горизонтальной оси тела в два-три раза больше, чем по вертикали.

У жуков-вертячек и самцов-поденок по существу два глаза с каждой стороны: один с крупными, другой с мелкими фасетками.
Помните, как гусеница, рассматривая предмет всего одним глазом (другие были замазаны краской), могла, однако, составить известное, правда очень грубое, представление о его форме. Она, вертя головой, весь объект разглядывала по частям, а запоминающий аппарат мозга складывал в единое впечатление все увиденные в каждый данный момент точки. Так же поступают и насекомые с фасеточными глазами: рассматривая что-либо, вертят головой. Сходный эффект достигается и без поворота головы, когда наблюдаемый объект движется или когда летит само насекомое. На лету фасеточные глаза видят лучше, чем в покое.
Пчела, например, способна постоянно держать в поле зрения предмет, который мелькает 300 раз в секунду. А наш глаз даже и вшестеро более медленного мелькания не заметит.

Близкие предметы насекомые видят лучше, чем дальние. Они очень близоруки. Четкость увиденного у них намного хуже, чем у нас.
Интересный вопрос: какие цвета различают насекомые? Опыты показали, что пчелы и падальные мухи видят самые коротковолновые лучи спектра (297 миллимикрон), которые только есть в солнечном свете. Ультрафиолет - к нему наш глаз совершенно слеп - различают также муравьи, ночные бабочки и, очевидно, многие другие насекомые.


Глаза насекомого. Фото: USGS Bee Inventory and Monitoring Laboratory

Чувствительность к противоположному концу спектра у насекомых разная. Пчела слепа к красному свету: он для нее все равно, что черный. Самые длинные волны, которые она еще воспринимает, - 650 миллимикрон (где-то на границе между красным и оранжевым). Осы, натренированные прилетать за кормом на черные столики, путают их с красными. Красное не видят и некоторые бабочки, сатиры например. Но другие (крапивница, капустница) красный цвет различают. Рекорд, однако, принадлежит светлячку: он видит темно-красный цвет с длиной волны в 690 миллимикрон. Ни одно из исследованных насекомых на такое не было способно.
Для человеческого глаза самая яркая часть спектра - желтая. Опыты с насекомыми показали, что у одних зеленая часть спектра воспринимается глазом как самая яркая, у пчелы - ультрафиолетовая, у падальной мухи наибольшая яркость отмечалась в красной, сине-зеленой и ультрафиолетовой полосах спектра.

Несомненно, бабочки, шмели, некоторые мухи, пчелы и другие насекомые, посещающие цветы, различают цвета. Но в какой мере и какие именно, мы еще мало знаем. Необходимы дополнительные исследования.
С пчелами в этом отношении были проведены наиболее многочисленные опыты. Пчела видит окружающий мир, окрашенный в четыре основных цвета: красно-желто-зеленый (не каждый из названных в отдельности, а вместе, слитно, как единый неведомый нам цвет), затем - сине-зеленый, сине- фиолетовый и ультрафиолетовый. Тогда как объяснить, что пчелы прилетают и на красные цветы, на маки, например? Они, а также многие белые и желтые цветы отражают много ультрафиолетовых лучей, поэтому пчела их видит. В какой цвет окрашены они для ее глаз, нам неизвестно.

У бабочек, очевидно, цветовое зрение более близкое к нашему, чем у пчелы. Мы уже знаем, что некоторые бабочки (крапивница и капустница) различают красный цвет. Ультрафиолет они видят, но он не играет для них такой большой роли, как в зрительных восприятиях пчелы. Наиболее привлекают этих бабочек два цвета - сине-фиолетовый и желто-красный.
Разными методами было доказано, что и многие другие насекомые различают цвета, и лучшим образом цвета растений, на которых кормятся либо размножаются. Некоторые бражники, жуки- листоеды, тли, шведские мушки, клопы сухопутные и водяной клоп гладыш - вот далеко не полный перечень таких насекомых. Интересно, что у гладыша только верхняя и задняя часть глаза обладает цветовым зрением, нижняя и передняя - нет. Почему так, непонятно.

Помимо восприятия ультрафиолетовых лучей другое свойство глаза насекомых, которого лишены наши глаза, - это чувствительность к поляризованному свету и способность ориентироваться по нему. Не только фасеточные глаза, но и простые глазки, как показали опыты с гусеницами и личинками перепончатокрылых, способны воспринимать поляризованный свет. Рассмотрели под электронным микроскопом глаз некоторых, и нашли в ретинальной светочувствительной палочке молекулярные структуры, действующие, очевидно, как поляроид.

Некоторые наблюдения последних лет убеждают: ночные насекомые обладают органами, улавливающими инфракрасные лучи.



Глаз насекомого при большом увеличении похож на мелкую решетку.

Это потому, что глаз насекомого состоит из множества маленьких "глазков"-фасеток. Глаза насекомых называют фасеточными . Крошечный глазок-фасетка называется омматидий . Омматидий имеет вид длинного узкого конуса, основание которого - линза, имеющая вид шестигранника. Отсюда и название фасеточного глаза: facette в переводе с французского означает "грань" .

Пучок омматидиев составляет сложный, круглый, глаз насекомого.

Каждый омматидий имеет очень ограниченное поле зрения: угол обзора омматидиев в центральной части глаза - всего около 1°, а по краям глаза - до 3°. Омматидий «видит» только тот крошечный участок находящегося перед глазами предмета, на который он "нацелен", то есть куда направлено продолжение его оси. Но так как омматидии тесно прилегают друг к другу, а их оси в круглом глазу расходятся лучеобразно, то весь сложный глаз охватывает предмет в целом. Причём изображение предмета получается в нем мозаичным, то есть составленным из отдельных кусочков.

Число омматидиев в глазу у разных насекомых различно. У рабочего муравья в глазу всего около 100 омматидиев, у комнатной мухи - около 4000, у рабочей пчелы - 5000, у бабочек - до 17 000, а у стрекоз - до 30 000! Таким образом, у муравья зрение весьма посредственное, тогда как огромные глаза стрекозы - два радужных полушария - обеспечивают максимальное поле зрения.

Из-за того, что оптические оси омматидиев расходятся под углами 1-6°, четкость изображения насекомых не очень высока: мелких деталей они не различают. Кроме того, большинство насекомых близоруки: видят окружающие предметы на расстоянии лишь нескольких метров. Зато фасеточные глаза отлично умеют различать мелькания (мигания) света с частотой до 250–300 герц (для человека предельная частота около 50 герц). Глаза насекомых способны определять интенсивность светового потока (яркость), а кроме того, они обладают уникальной способностью: умеют определять плоскость поляризации света. Эта способность помогает им ориентироваться, когда солнца не видно на небосклоне .

Насекомые различают цвета, но совсем не так, как мы. Например, пчелы «не знают» красного цвета и не отличают его от чёрного, но зато воспринимают невидимые для нас ультрафиолетовые лучи, которые расположены на противоположном конце спектра . Ультрафиолет различают также некоторые бабочки, муравьи и другие насекомые. Кстати, именно слепостью насекомых-опылителей нашей полосы к красному цвету объясняется любопытный факт, что среди нашей дикорастущей флоры нет растений с алыми цветками.

Свет, идущий от солнца, не поляризован, то есть его фотоны имеют произвольную ориентацию. Однако, проходя через атмосферу, свет поляризуется в результате рассеивания молекулами воздуха, и при этом плоскость его поляризации всегда направлена на солнце

Кстати...

Кроме фасеточных глаз у насекомых есть еще три простых глазка диаметром 0,03-0,5 мм, которые располагаются в виде треугольника на лобно-теменной поверхности головы. Эти глазки не приспособлены для различения объектов и нужны для совсем другой цели. Они измеряют усредненный уровень освещенности, который при обработке зрительных сигналов используется в качестве точки отсчета («ноль-сигнала»). Если заклеить насекомому эти глазки, оно сохраняет способность к пространственной ориентации, но летать сможет только при более ярком свете, чем обычно. Причина этого в том, что заклеенные глазки принимают за «средний уровень» черное поле и тем самым задают фасеточным глазам более широкий диапазон освещенности, а это, соответственно, снижает их чувствительность.

Кто создан из камня, кто создан из глины,-
А я серебрюсь и сверкаю!
Мне дело — измена, мне имя — Марина,
Я — бренная пена морская.

Кто создан из глины, кто создан из плоти —
Тем гроб и нагробные плиты…
— В купели морской крещена — и в полете
Своем — непрестанно разбита!

Сквозь каждое сердце, сквозь каждые сети
Пробьется мое своеволье.
Меня — видишь кудри беспутные эти?-
Земною не сделаешь солью.

Дробясь о гранитные ваши колена,
Я с каждой волной — воскресаю!
Да здравствует пена — веселая пена —
Высокая пена морская!

Анализ стихотворения «Кто создан из камня, кто создан из глины» Цветаевой

М. Цветаева еще до революции остро ощущала свое одиночество и отличие от окружающих людей. Это чувство значительно усилилось после установления советской власти. Поэтесса не признавалась новым режимом, ее произведения подвергались жесткой критике и не печатались. К этим трудностям добавились трагедии в личной жизни. Цветаеву покидает муж, отправившийся в эмиграцию. Через некоторое время у нее умирает дочь. Такая ситуация способна довести до отчаяния любого человека, но поэтесса находит в себе силы. В 1920 г. он создает жизнеутверждающее стихотворение «Кто создан из камня, кто создан из глины…»

В основу стихотворения поэтесса положила значение своего имени (Марина – с лат. «морская»). Она использует сравнение двух основных мировых стихий: земли и воды. Называя себя «бренной пеной морской», Цветаева противопоставляет ее камню и глине, олицетворяющими землю. Она не случайно выбрала эти образы. Согласно двум основным мировым религиям (христианство и мусульманство) творец создал первого человека из глины. Эти представления связаны с податливостью материала, с возможностью придания ему любой формы. Но застывшая и обожженная глина становится подобна камню, ее уже нельзя изменить. Камень вечен, он теряет всякую одухотворенность. В произведении содержится прямая аналогия – «могильная плита».

Себя поэтесса связывает со стихией воды, которая находится в постоянном движении и изменении. Она не имеет законченной формы. Возможно, Цветаева сравнивает себя с Афродитой, которая по легенде была рождена из морской пены. По крайней мере, она приписывает себе некоторые качества любвеобильной богини: «измена», «своеволье», «кудри беспутные».

Поэтесса дерзко отвечает всем своим недоброжелателям, что ее невозможно сломать или уничтожить. Вода способна преодолеть любую преграду, так как продолжает жизнь с каждой новой волной. Столкновение воды с камнем символизирует противостояние Цветаевой с жестким политическим режимом. Другой вариант – свой изменчивый и веселый характер поэтесса сравнивает с человеческой черствостью и равнодушием.

Неизвестно, была ли до конца искренна Цветаева в этом стихотворении. Возможно, это – отчаянный самообман измученной души. Дальнейшая трагическая судьба и самоубийство подтверждают, что и вода может покориться непреодолимой силе. Однако в свое время произведение бесспорно вызвало ярость в тех, кто считал поэтессу уже окончательно сломленным и утратившим веру в жизнь человеком.