При каких условиях существует тройная точка воды. Тройная точка. Реализация реперных точек металлов

Наука о драгоценных камнях

Геммоло́гия (от лат. gemma - самоцвет, драгоценный камень, и др.-греч. λογος - наука) - наука о самоцветах (драгоценных и поделочных камнях).

Согласно Е. Я. Киевленко (1982), геммология - это совокупность сведений о драгоценных и поделочных камнях, главным образом о физических свойствах, особенностях химического состава, декоративно - художественных достоинствах минералов и минеральных агрегатов, использующихся в ювелирном и камнерезном производстве. Изучает геологию месторождений, а также технологию обработки драгоценных и поделочных камней. Важное прикладное назначение геммологии - определение минерального вида драгоценного камня и его происхождения (нередко осуществляемое по ограненному образцу, заметное воздействие на который недопустимо), а также установление отличий природных драгоценных камней от их синтетических аналогов и имитаций. Кроме того, геммология включает разработку методов облагораживания драгоценных и поделочных камней.

К.Худоба и Е.Гюбелин определяют геммологию (немецкий аналог - Edelsteinkunde) как учение о свойствах поделочных и драгоценных камней, о законах, обуславливающих их формы и физические свойства, об их химическом составе и месторождениях с целью практического использования. Она рассматривает также имитации, синтетические аналоги природных камней и синтетические материалы, не имеющие природных аналогов. Практическая геммология занимается всеми видами обработки камней - огранкой, облагораживанием, окраской и т. п.

Геммология тесно связана с минералогией. петрографией и кристаллографией. кроме методов этих наук она использует методы физики. химии. петрологии. геологии и биологии. Тесная связь с минералогией определяется тем, что подавляющее большинство драгоценных и поделочных камней представляют собой минералы. По данным Г.Смита (1984), из более чем 4 тысяч известных минералов почти треть так или иначе используется в ювелирном деле. Однако не все драгоценные и поделочные камни - минералы. По определению, минерал - это природное химическое соединение с определенной кристаллической структурой. образовавшееся в ходе природных геологических процессов. Минералами в строгом смысле слова не являются некристаллические образования, такие как янтарь или вулканические стёкла. но они - также являются объектами изучения геммологии. Не относятся к минералам и благородные органогенные продукты: жемчуг. коралл. гагат и т. п. Наконец, минералами не являются ювелирные камни, полученные синтетическим путём в лабораториях и на заводах (фианит. иттрий-алюминиевые и галлий-гадолиниевые гранаты), и их синтетические аналоги - искусственные алмазы, корунды. кварц. авантюрин. цоизит и множество других имитаций природных ювелирных камней. В 1902 году французский химик М. А. Вернейль впервые получил и начал поставлять на мировой рынок синтетические рубины. а чуть позже синтетические сапфиры и синтетическую шпинель. Появление большого количества синтетических камней не снизило, а, наоборот, повысило значение и стоимость натуральных природных самоцветов.

Основные направления геммологии:

  • диагностическое
  • описательное
  • эстетическое
  • генетическое
  • прикладное и технико-экономическое
  • экспериментальное
  • региональное

Перспективные направления геммологических исследований:

  • накопление диагностических данных о ювелирных камнях для повышения надежности их идентификации экспрессными неразрушающими методами
  • исследование свойств синтетических камней и критериев их отличия от природных аналогов
  • изучение современных методов облагораживания и поиск методов распознавания следов облагораживания
  • исследование оптических свойств алмазов и оптимизация огранки бриллиантов
  • исследование окраски драгоценных камней с применением компьютерного моделирования

Литература

  • Киевленко Е. Я. Сенкевич Н. Н. Гаврилов А. П. Геология месторождений драгоценных камней. М. «Недра», 1982
  • Путолова Л. С. Самоцветы и цветные камни. М. Недра, 1991
  • Смит Г. Драгоценные камни. М. Мир, 1984
  • Элуэлл Д. Искусственные драгоценные камни. М. Мир, 1986

Геммология – раздел науки о камнях

Изучением горных пород и минералов занимается минералогия – древнейшая наука о камнях, основы которой заложили ученые и философы Древней Греции. В самостоятельное направление учение выделили ее лишь в XVIII в. Позже выяснилось, что все вопросы, связанные с изучением камней просто невозможно уместить в рамках одного раздела. Поэтому из минералогии возникли смежные направления, ставшие вскоре самостоятельными отраслями науки.

Виды и особенности минералогии

Изучением минералов и их свойств начали заниматься философы Древней Греции. Правда в то время, большее внимание уделялось не физическим свойствам, химическому составу и практическому пользе самородков, а мистической стороне вопроса.

У современного человека вызовет улыбку научный трактат, посвященный драгоценным камням, рассказывающий о том, польются ли слезы из змеиных глаз, если подержать перед ними изумруд. А между тем, столетия назад этому и подобным вопросам уделялось большое внимание. И к описанию магических свойств камней относились очень серьезно.

Учение о камнях и минералах начало развитие как научное направление в XV веке. И через три столетия выделилось в отдельное направление. Большой вклад в это учение внесли немецкие и российские ученые. К одним из таких людей относится М.В. Севергин, последователь М.В. Ломоносова.

Кстати, исследователи называют объекты своей деятельности минералами и горными породами, а не камнями.

В разных сферах деятельности в это понятие вкладывается свой смысл. Ведь камень, который используют в строительстве и для изготовления украшений – две совершенно разные вещи.

Вскоре из минералогии выделили отдельные направления:


Наука о драгоценных камнях и профессия геммолог

Геммология – наука о драгоценных камнях. В отдельную отрасль выделилась в конце XIX века. Потребность в таком учении появилась из-за активного производства искусственных образцов и подделок.

С развитием технологий, отличить искусственный камень от природного стало очень трудно, поэтому одна из главных функций геммологии – диагностическая.

Исследования геммологов направлены на изучение:


Геммологи уделяют пристальное внимание и имитациям. Именно эти специалисты могут отличить, какой драгоценный камень использовался для изготовления украшения – натуральный или синтетический.

В задачи геммологии входит диагностика и описание самоцветов, выявление их важнейших характеристик и определения практического значения.

Перспективными направлениями развития науки является исследование свойств синтетических аналогов, поиск способов их распознавания, оптимизация процессов обработки драгоценных образцов.

Профессия геммолога очень ответственная и кропотливая, но в то же время интересная. Специалист занимается:

  • оценкой;
  • определением;
  • сертификацией минералов.

В обязанности геммолога входит работа с документами, сортировка минералов, оценка камней в ювелирных украшениях. Эта профессия достаточно редкая, но востребованная. Человек, решивший посвятить жизнь работе с самоцветами, должен иметь хорошее зрение и цветовосприятие, быть ответственным и усидчивым. Получить такую профессию можно, поступив на факультет геологии.

Драгоценные и ювелирные камни с точки зрения геммологии

Развитие геммологии положило начало классификации ценных минералов. Хотя сразу стоит оговориться, что и сейчас нет единого определения понятия драгоценный камень.

Чаще всего так называют редкие и красивые образцы (или их сочетания) с высокой твердостью. Твердость – одна из главных характеристик, которая означает, что камень не подвержен истиранию, механическим повреждениям. Такие минералы практически не подвластны времени.

Если твердость минерала более-менее постоянный параметр, то красота – понятие относительное. На протяжении всей истории представления о ней менялись. Причем иногда коренным образом. Это привело к тому, что минералы, считавшиеся когда-то драгоценными, сейчас практически забыты. А невзрачные, с точки зрения древних людей, теперь могут так именоваться.

Часто встречается термин полудрагоценный камень. Это название не совсем корректное с научной точки зрения, но широко распространено в торговле и среди обывателей. В общем виде, так называют менее ценные и твердые породы.

Ювелирные или поделочные – это скорее собирательное название всех минералов для украшений. Хотя часто так называют недорогие самородки. В отличие от самоцветов, их часто используют в декоративно-прикладном или камнерезном искусстве.

Попытки классифицировать минералы предпринимались неоднократно. В каждый период истории подходы к систематизации отличались. Часто в их основе лежало ранжирование по стоимости. Жаркие споры о том, какие минералы считать драгоценными, а какие нет, не умолкали долго.

Единственное, в чем мнения ученых сходились всегда, это то, что самые ценные самородки – это:

Сейчас существует немало классификаций. В их основе лежит распределение минералов по группам, исходя из степени их прочности, твердости, состава, способа образования. Некоторые из них были разработаны больше ста лет назад, но актуальны до сих пор. Правда, из-за открытия новых минералов и соединений, периодически дополняются.

Сокращенный вариант распределения минералов по группам, понятный обычному человеку, приведен в книге «Замечательные минералы»:

Блеск и переливы, которые очень ценятся у рубинов и сапфиров.

Конечно, все вышеперечисленные свойства, которые изучает наука о камнях, далеко не единственные.

Но они являются базовыми при изучении того или иного минерала. Наука о камнях, минералогия, и ее более узкая отрасль, геммология, – одни из древнейших учений. Описанием драгоценных камней и их свойств посвящали свои труды философы и великие мыслители Древней Эллады и Рима, ученые Средневековья и наших дней.

За тысячи лет изменились методы, позволяющие различать минералы, критерии, определяющие их ценность. Неизменным осталось лишь одно – как и много столетий назад, самоцветы продолжают поражать человеческое воображение своей красотой и магической силой.

Горные породы — классификация и общий механизм образования

Камень — это всякая твердая нековкая составная часть земной коры в виде сплошной массы или отдельных кусков. Ювелир понимает под этим словом драгоценные камни, строитель — материалы, с помощью которых мостят улицы и возводят дома. Геологи же, занимающиеся наукой о Земле, называют объекты своего изучения не «камнями», а горными породами и минералами.

Горная порода, или как чаще говорят, порода, представляет собой сочетание (агрегат) минералов естественного (природного) происхождения. Обычно породы слагают более или менее значительные площади. Песок и суглинок тоже причисляют к горным (точнее — рыхлым осадочным) породам. Наука, изучающая горные породы, носит название петрографии.

Минерал — это внутренне однородный твердый компонент земной коры, образовавшийся естественным путем. С началом эры космических полетов минералами стали называть и твердые составные части горных пород Луны и других планет Солнечной системы. Большинство минералов выделяется в виде кристаллов, имеющих определенные формы. Слово «минерал» происходит от латинского слова «мина» — шахта. Наука о минералах именуется минералогией.

Кристалл — это однородное по составу тело строго геометрической формы с закономерным внутренним строением — кристаллической решеткой. Структура кристаллической решетки определяет разнообразие физических свойств кристаллов, а тем самым и минералов. Раздел науки, изучающий кристаллы, называется кристаллографией.

Драгоценный камень — понятие, не имеющее единого определения. Чаще всего к драгоценным камням относят красивые и редкие минералы (в некоторых случаях и минеральные агрегаты), обладающие достаточно высокой твердостью, а потому весьма стойкие к истиранию, иными словами, почти не подвластные времени. Но разумеется, представление о красоте камня с течением времени менялось, вот почему отдельные камни, ранее слывшие драгоценными, давно забыты, тогда как другие минералы ныне, наоборот, возведены в ранг драгоценных камней.

Понятие полудрагоценный камень, как прежде называли не очень твердые ювелирные и поделочные камни, еще менее четко и на сегодняшний день не вполне правомочно. Ювелирно-поделочный камень — собирательное понятие, охватывающее все камни, используемые в качестве украшений (в том числе и в декоративных целях). В более узком смысле слова поделочными камнями называют относительно недорогие самоцветы, которые тем самым как бы противопоставляются «настоящим» драгоценным камням. Наука о драгоценных камнях носит название геммологии.

Руда в общем случае представляет собой минеральную смесь с промышленным содержанием металлов. В последнее время рудами иногда называют и некоторые виды неметаллического минерального сырья, обладающие полезными свойствами. Поскольку практическая ценность руды (иначе говоря, кондиционность, пригодность для разработки) зависит от факторов, которые с течением времени могут изменяться (технические возможности добычи и обогащения, экономическая конъюнктура, транспортные условия), понятие «руда» применимо не только к определенным минералам или горным породам.

В геологии горными породами называются минеральные смеси природного происхождения. Из почти 3000 минералов лишь немногие принимают существенное участие в составе горных пород. Ниже приведено процентное содержание минералов в земной коре до глубины 16 км (по Г. Шуману. 1957):
Полевые шпаты и фельдшпатоиды — 60%
Пироксены и амфиболы — 16%
Кварц — 12%
Слюды — 4%
Прочие минералы — 8%

В основу группирования горных пород могут быть положены самые разные принципы. В петрографии горные породы подразделяются преимущественно по способу их образования — генезису. Такого подразделения мы и будем придерживаться в дальнейшем.

По способу образования различают три главные группы пород: магматические, или мигматиты, осадочные и метаморфические, или метаморфиты. Как они связаны между собой в природном геологическом цикле, видно из приведенного здесь рисунка.

Минералы могут образовываться по-разному. Такие широко известные минералы как полевой шпат, кварц и слюда, кристаллизуются из огненножидких расплавов и газов преимущественно в недрах Земли, реже — из лав, излившихся на земную поверхность. Некоторые минералы образуются из водных растворов или возникают при участии организмов, некоторые — путем перекристаллизации уже существующих минералов под воздействием больших давлений и высоких температур (метаморфизм).

Многие минералы часто встречаются в определенных сообществах, или ассоциациях, так называемых парагенезисах (например, полевой шпат и кварц), но бывают и исключающие друг друга минералы (например, полевой шпат и каменная соль, которые никогда не встречаются вместе).

Большинство минералов имеет определенный химический состав. Входящие в них примеси хотя и способны влиять на физические свойства минералов или даже изменять их, но в химических формулах обычно не упоминаются. При определении минералов весьма существенную роль играет форма их кристаллов. Типичные формы кристаллов объединены в семь кристаллографических систем, называемых сингониями. Различие между ними проводится по кристаллографическим осям и углам, под которыми эти оси пересекаются.

Магматические породы . или магматиты, возникают путем затвердевания магматического расплава на поверхности или в глубинах земной коры. Их называют также изверженными или массивными породами и подразделяют на глубинные — интрузивные и поверхностные — эффузивные, или эффузивы.

Осадочные породы образуются путем отложения материала разрушенных или растворенных горных пород любого генезиса как на суше, так и в море и залегают слоями. В рыхлом, не сцементированном состоянии такие отложения называют осадками.

Метаморфические породы . или метаморфиты, формируются путем преобразования горных пород в глубинах земной коры под воздействием высоких температур и больших давлений. Иногда метаморфические породы называют метаморфическими или кристаллическими сланцами.

Прежде магматиты и метаморфиты считали древнейшими образованиями земной коры и называли первозданной породой. Сегодня известно, что эти породы могут появляться в любую геологическую эпоху, поэтому понятия «первозданная порода» следует избегать.

В строительном деле специалистов интересуют не столько происхождение и состав горных пород, сколько их твердость. Именно твердостью пород определяется их долговечность, выбор инструмента и машин для их добычи и обработки. К числу твердых пород относят все изверженные породы, кроме базальтовых лав, а также гнейсы и амфиболиты, кварциты и граувакки; к числу мягких пород — главным образом песчаники, известняки, туфы и базальтовые лавы. Кроме того, в строительном деле различают крепкие и рыхлые породы, Их разграничивают по очевидному проявлению прочности, или связности — сцеплению между зернами минералов.

В отличие от искусственного строительного камня применяемые в строительном деле горные породы называют природным камнем. Штучным камнем строители называют природный камень, которому путем надлежащей обработки придана определенная форма (тесаный камень) — но нужно помнить, что в украинском языке «штучный камень» дословно переводится именно как «искусственный камень». Ниже приведено процентное соотношение различных генетических групп горных пород в составе верхней части земной коры до глубины 16 км (по Г. Шуману, 1957):
Магматические породы — 95%
Осадочные породы — 1%
Метаморфические породы — 4%

В настоящее время известно более 3000 минералов, и ежегодно ученые открывают все новые и новые их виды. Но лишь около 100 минералов имеют сравнительно большое практическое значение: одни — в силу их широкой распространенности, другие — благодаря особым, ценным для человека свойствам. И только четверть из них играют существенную роль в составе горных пород благодаря своей широкой распространенности в природе.

Коллекционирование минералов является одним из наиболее популярных увлечений. В разнообразии их форм, а быть может, в их колдовском блеске таится очарование, делающее мир минералов столь близким нашему сердцу. Но какими заурядными кажутся в сравнении с ними горные породы! Мало кто даст себе труд нагнуться за куском известняка, гнейса или гранита — и совершенно зря. Именно горные породы формируют облик Земли. Тысячелетиями они влияли на облик поселений и городов, их архитектурных ансамблей, служили материалом для строительства, мощения городских улиц и площадей. А можно ли восхищаться красотой природы, не ощущая, какая роль принадлежит в ней горным породам?

Для нас — прирожденных горожан — именно горы обладают наиболее притягательной и манящей силой. Сегодня одним из популярных элементов городского дизайна является оформление интерьера, клумб, скверов или парков «дикими камнями» — декоративными горными породами. «Альпийские горки» с растениями на склонах и в садах с «дикими камнями» — остромодное направление современного ландшафтного дизайна. В Японии же существует целое искусство оформления так называемого «сухого сада» глыбами горных пород и камней, сформировавшееся и отточенное в XVIII-XIX веках.

Если минералы дарят нашему глазу радость и отдохновение, то горные породы демонстрируют свою мощь. Тому, кто умеет их правильно «читать», горные породы могут рассказать об истории и изменениях земной коры, о горах, вздымавшихся в глубокой древности, о наступлении морей или пустынь. Тысячелетиями камень вместе с деревом и костью служил важнейшим материалом для изготовления утвари и оружия. Но даже и сегодня, в век металлов и синтетики, он играет куда большую роль в нашей жизни, чем мы себе обычно представляем: непрерывно возрастает значение драгоценных и поделочных камней в технике и промышленности. Как ни парадоксально, но в строительстве распространение стальных каркасных конструкций сделало природный камень еще более желанным материалом для облицовки зданий, а большинство современных строительных материалов производят из добываемых горных пород.

  • Горные породы — классификация и общий механизм образования
  • Горстово-сбросовые структуры — горные породы и минералы на литосферных трещинах и поддвигах
  • Магматические породы — плутониты и жильные породы, образовавшиеся в результате прорыва магмы
  • Магматические породы — вулканические (эффузивные) породы, образовавшиеся в ходе извержения
  • Осадочные породы. образованные путем механических разрушений пород (продукт разрушения)
  • Осадочные породы. новообразованные породы, возникшие при участии химического выветривания
  • Метаморфические породы (метаморфиты) — гнейсы, сланцы, мраморы, известняки, кимберлитовые тектиты
  • Метеориты и руды. рудные минералы и добыча полезных ископаемых
  • Мировая добыча драгоценных камней и самоцветов, месторождения

Драгоценные камни: виды и названия

Даже во времена, когда из всех методов исследования человечеству было известно лишь визуальное наблюдение, наши предки подмечали какую-то магическую силу камней. Древние люди были не только хорошо знакомы со многими камнями, но и пытались их классифицировать. Об этом свидетельствует рукописное сочинение Феофраста «О камнях», датированное 315 годом до нашей эры. А в средневековье даже составлялись своеобразные энциклопедии — лапидарии, повествующие о лечебных и мистических свойствах драгоценных камней.

Современна наука о драгоценных камнях — геммология (от санскритского gema, так называли некоторые драгоценные камни) — появилась лишь в 1892 году. При этом до сих пор нет четкой классификации драгоценных камней.

На данный момент науке известно около 2400 минералов (минерал — неорганический элемент с выраженной кристаллической структурой). В ювелирном деле также используются и органические материалы: янтарь, жемчуг, коралл, гагат и другие. При этом, чтобы камень считался драгоценным, то есть имел определенную ценность, он должен обладать рядом признаков.

  • Красота. Совершенно неприметный на первый взгляд камень после соответствующей обработки может заиграть так, что глаз не оторвать. Искусcтво ювелира состоит не только в умелой огранке, но и в способности разглядеть в неказистом камне будущую красоту.
  • Износостойкость. Нет материалов неподвластных времени. Но способность сохранять красоту при разумных условиях эксплуатации — важный критерий для драгоценного камня.
  • Редкость. Все редкое всегда ценится дороже, и драгоценные камни яркое этому подтверждение.
  • Традиционность применения. Один из основных факторов оценки камней. Традиционно натуральные материалы ценятся выше имитаций, хотя порой и уступают им в красоте и износостойкости. Но тягу обладать настоящей, а не поддельной драгоценностью искоренить невозможно.
  • Компактность. Драгоценные камни во все времена были мерилом стоимости. Во времена войн и природных катастроф именно драгоценные камни, благодаря высокой цене и компактности, позволяли с легкостью перемещать капитал.

Исходя из этих критериев, лишь более 100 из всех минералов обрабатываются в драгоценные камни. А широкое применение в ювелирном деле приобрели и вовсе порядка двадцати.

Классификация ювелирных драгоценных камней подвержена изменению. Это связано и с открытием новых месторождений, и с изменением приоритетов, и с изменением рынка. Одни камни кочуют из разряда драгоценных в полудрагоценные и обратно, другие всегда занимают место в разряде драгоценных. Поэтому приведенная ниже классификация тоже может быть временной.

Итак, по классификации У.Я.Киевленко все камни можно условно разделить на три группы: драгоценные, ювелирно-поделочные и поделочные камни. Каждая группа имеет свою градацию (порядок), чем выше порядок, тем выше ценность камня.

алмаз, изумруд, синий сапфир, рубин

александрит, благородный жадеит, оранжевый, желтый и фиолетовый сапфир, благородный черный опал

демантоид (хризолит), благородная шпинель, благородный белый и огненный опал, аквамарин, топаз, лунный камень, родолит, красный турмалин

синий, зеленый, розовый и полихромный турмалин, циркон (гиацинт), берилл, бирюза, аметист, хризопраз, гранат, цитрин, благородный сподумен

раухтопаз, гематит-кровавик, янтарь, горный хрусталь, жадеит, нефрит, лазурит, малахит, авантюрин

агат, цветной халцедон, гелиотроп, розовый кварц, иризирующий обсидиан, обыкновенный опал, лабрадор и другие непрозрачные иризирующие шпаты

яшмы, гранит, окаменелое дерево, мраморный оникс, обсидиан, гагат, селенит, флюорит, цветной мрамор и др

Запутывают классификацию камней и их названия. Многие названия камни получили еще в библейские времена, многие названия основаны на районах добычи, некоторые камни в разных районах называют по-разному. Кроме того, бывали времена, когда все желтые камни называли топазами, а синие — сапфирами. Современная наука установила стандарты, основанные на характеристиках минералов, их кристаллической структуре и окраске. Таким образом, были выделены виды (характеризуется определенным химическим составом), близкие виды объединили в группы, а в зависимости от цвета и прозрачности виды разделили на разновидности.

Таким образом, появилась следующая классификация драгоценных камней по их названиям.

Драгоценные камни

Драгоце́нные ка́мни - минералы. которые обладают красивым внешним видом (как правило, только после шлифовки и/или полировки) и при этом достаточно редки, чтобы быть дешевыми. Их широко используют для производства ювелирных изделий. Многие виды драгоценных камней производятся искусственным путем (синтетические камни стоят намного дешевле натуральных). В 1902 году французский химик М.А.Вернейль впервые получил и начал поставлять на мировой рынок синтетические рубины. а чуть позже синтетические сапфиры и синтетическую шпинель. Появление большого количества синтетических камней не снизило, а, наоборот, повысило значение и стоимость натуральных, природных самоцветов. Менее редкие минералы часто называют полудрагоценными.
Изучением минералов как драгоценных камней занимается раздел минералогии. называемый геммология.

Список драгоценных камней Править

Полудрагоценные Править

Поделочные камни Править

«Камни» органического происхождения Править

Виды обработки драгоценных камней Править

Распределение драгоценных и полудрагоценных камней по цвету Править

Непрозрачные или просвечивающие камни

Бесцветный или белый

Желтый или оранжевый

ЛИТЕРАТУРА краткий справочник «Альфа и Омега», изд. четвертое, стр. &3.. - Таллин. А/О Принтэст, 1991.

Ссылки Править

Обнаружено использование расширения AdBlock.

Викия - это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Тройная точка воды – что это такое, и что происходит с водой в этот момент …

Очевидно, что многие из нас слышали про тройную точку воды, однако далеко не все знают и понимают, что это такое.

Для начала, для лучшего и более объемного понимания этого термина, приведем несколько определений из различных источников.

Тройная точка воды, это …

Большой Энциклопедический словарь

ТРОЙНАЯ точка — состояние равновесного сосуществования. Тройная точка воды трех фаз вещества, обычно твердой, жидкой и газообразной. Температура тройной точки воды (точки сосуществования льда, воды и пара, рис.) равна 0,01 .С (273,16 К) при давлении 6,1 гПа (4,58 мм рт. ст.).

Большой Энциклопедический словарь. 2000

Энциклопедический словарь по металлургии

Тройная точка — точка на термодинамической диаграмме состояния , соответствующая равновесию трех фаз рассматриваемой термодинамической системы. Например, тройная точка воды соответствует равновесию системы, состоящей из льда, воды и водяного пара. Температура тройной точки воды 0°С или 273,16 К.

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг. Главный редактор Н.П. Лякишев. 2000

Физическая энциклопедия

Тройная точка – в термодинамике, точка на диаграмме состояния, соответствующая равновесному сосуществованию трёх фаз в-ва. Из Гиббса правила фаз следует, что химически индивидуальное в-во (однокомпонентная система) в равновесии не может иметь больше трёх фаз. Эти три фазы (напр., твёрдая, жидкая и газообразная или, как у серы, жидкая и две аллотропные разновидности кристаллической) могут совместно сосуществовать только при значениях темп-ры Тт и давления рт, определяющих на диаграмме р - Т координаты Т. т. (рис.). Для СО2, напр., Tт=216,6К, рт=5,16 105 Н/м2, для Т. т. воды - осн. реперной точки абс. термодинамич. температурной шкалы - Тт=273,16К (точно), рт=4,58 мм рт. ст. (609 Н/м2).

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988

Научно-технический энциклопедический словарь

ТРОЙНАЯ ТОЧКА, температура и давление, при которых все три состояния вещества (твердое, жидкое, газообразное) могут существовать одновременно. Для воды тройная точка находится при температуре 273,16 К и давлении 610 Ра.

Научно-технический энциклопедический словарь

Подводя итог, можем сказать, что в природе существует некоторое соотношение температуры, и давления при котором вещество может существовать одновременно в трех состояниях.

Для воды тройная точка соответствует таким показаниям температуры и давления:

  • Температура — 273,16 К;
  • Давление — 610 Ра.

Тройная точка воды – видео

Предлагаем посмотреть вам видео, которое прекрасно визуализирует поведение воды в тройной точке.

Как мы видим, вода находится в непрерывной циклической трансформации своих состояний … весьма интересное зрелище – вечное движение.

Тройная точка – это вещество в трех «ипостасях» одновременно …

Точка соответствует самому низкому давлению, при котором еще возможно превращение вещества из твердого состояния в жидкое и обратно, т. е. равновесное состояние между твердой и жидкой фазами; при меньших давлениях жидкое состояние не существует. На этом же чертеже нанесена кривая зависимости давления насыщенного пара от температуры, о которой упоминалось в § 13 ч. II (см. рис. 11.25) и в § 17 (см. формулу (3.32)). Слева от этой кривой вещество находится при температурах, которые меньше температуры кипения, т. е. в жидком состоянии; точки, расположенные справа от этой кривой, соответствуют более высоким температурам и, следовательно, состояниям ненасыщенного пара. Вдоль самой кривой жидкость и насыщенный пар существуют одновременно, т. е. каждая точка этой кривой соответствует равновесному состоянию между кипящей жидкостью и ее насыщенным паром. Точка этой кривой соответствует самой низкой температуре и дамому низкому давлению, при которых еще может существовать жидкость в равновесии со своим насыщенным паром. Точка называется тройной точкой данного вещества. В этой точке одновременно существуют в равновесии друг с другом все три фазы или агрегатные состояния вещества: твердое, жйдкое и газообразное (насыщенный пар). Для каждого вещества имеются определенные

значения давления и температуры тройной точки. При меньших давлениях могут существовать только твердое и газообразное состояния. Кривая показывает зависимость между давлением и температурой насыщенного пара, находящегося в равновесии с твердой фазой.

Непосредственное испарение твердых тел (называемое «возгонкой», или сублимацией) происходит при температурах, меньших, чем температура тройной точки.

Для многих веществ (металлы и др.) нормальная температура (15° С) значительно ниже температуры их тройных точек. Согласно кривой эти вещества при нормальной температуре имеют очень маленькое давление насыщенных паров. Очевидно, чем больше давление насыщенного пара над поверхностью твердого тела, тем интенсивнее может протекать процесс испарения этих тел. Например, легко испаряется йод, который в своей тройной точке (114° С) имеет давление насыщенных паров, равное 90 мм рт. ст. Высыхание мокрого белья на морозе объясняется тем, что находящаяся в нем вода сначала замерзает, а образующийся лед затем испаряется, так как на морозе температура льда меньше, чем температура тройной точки воды а давление насыщенных водяных паров достигает нескольких миллиметров ртутного столба (при -10° С это давление равно

Заметим, что удельная теплота возгонки, т. е. теплота, необходимая для превращения вещества из твердого состояния непосредственно в газообразное, оказывается равной сумме удельных теплот плавления и парообразования.

Температура тройной точки воды используется как реперная температура термодинамической шкалы Кельвина. Допустим, что идеальное рабочее тело, совершая идеальный цикл Карно, получает теплоту при температуре и отдает теплоту при температуре Измеряя можно, согласно § найти отношение температур Для того чтобы построить температурную шкалу, необходимо придать определенные («реперные») значения. В качестве таких реперных температур можно взять температуры кипения воды и таяния льда при нормальных условиях, приняв их разность за 100° С. Тогда по измеренному отношению и выбранной разности можно определить всю температурную шкалу. Очевидно, реперные точки должны воспроизводиться с очень большой точностью, так как они определяют величину градуса. Поэтому В. Томсон (Кельвин) и независимо от него Д. И. Менделеев предложили создать шкалу с одной реперной температурой, в качестве которой выбрана очень точно воспроизводимая (с ошибкой, не превышающей градуса) тройная точка воды. В Международной системе единиц физических величин дано следующее определение градуса: кельвин - единица температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды установлено значение 273,16° (точно).

Если система является однокомпонентной, т. е. состоящей из химически однородного вещества или его соединения, то понятие фазы совпадает с понятием агрегатного состояния. Согласно § 60, одно и то же вещество в зависимости от соотношения между удвоенной средней энергией, при­ходящейся на одну степень свободы ха­отического теплового движения молекул, и наименьшей потенциальной энер­гией взаимодействия молекул может на­ходиться в одном из трех агрегатных состояний: твердом, жидком или газооб­разном. Это соотношение, в свою очередь, определяется внешними условиями - тем­пературой и давлением. Следовательно, фазовые превращения также определяют­ся изменениями температуры и давления. Для наглядного изображения фазовых превращений используется диаграмма со­стояния (рис. 115), на которой в коорди­натах р, Т задается зависимость между температурой фазового перехода и давле­нием в виде кривых испарения (КИ), плавления (КП) и сублимации (КС), раз­деляющих поле диаграммы на три об­ласти, соответствующие условиям су­ществования твердой (ТТ), жидкой (Ж) и газообразной (Г) фаз. Кривые на ди­аграмме называются кривыми фазового равновесия, каждая точка на них соответ-

ствует условиям равновесия двух сосуще­ствующих фаз: КП - твердого тела и жидкости, КИ - жидкости и газа, КС - твердого тела и газа.

Точка, в которой пересекаются эти кривые и которая, следовательно, опреде­ляет условия (температуру T тр и соответ­ствующее ей равновесное давление р тр) одновременного равновесного сосущество­вания трех фаз вещества, называется тройной точкой. Каждое вещество имеет только одну тройную точку. Тройная точка воды характеризуется температурой 273,16 К (по шкале Цельсия ей соответ­ствует температура 0,01 °С) и является ос­новной реперной точкой для построения термодинамической температурной шкалы.

Термодинамика дает метод расчета кривой равновесия двух фаз одного и того же вещества. Согласно уравнению Кла­пейрона - Клаузиуса, производная от равновесного давления по температуре

где L - теплота фазового перехода, (V 2 -V 1) -изменение объема вещества при переходе его из первой фазы во вто­рую, Т - температура перехода (процесс изотермический).

Уравнение Клапейрона - Клаузиуса позволяет определить наклоны кривых равновесия. Поскольку L и Т положитель­ны, наклон задается знаком V 2 -V 1 . При испарении жидкостей и сублимации твер­дых тел объем вещества всегда возраста­ет, поэтому, согласно (76.1), dp /dT >0; следовательно, в этих процессах повыше­ние температуры приводит к увеличению давления, и наоборот. При плавлении большинства веществ объем, как правило, возрастает, т. е. dp /dT >0; следовательно, увеличение давления приводит к повыше­нию температуры плавления (сплошная КП на рис. 115). Для некоторых же ве­ществ (H 2 O, Ge, чугун и др.) объем жид­кой фазы меньше объема твердой фазы, т. е. dp /dT <0; следовательно, увеличение давления сопровождается понижением температуры плавления (штриховая ли­ния на рис. 115).

Диаграмма состояния, строящаяся на

основе экспериментальных данных, позво­ляет судить, в каком состоянии находится данное вещество при определенных р и Т, а также какие фазовые переходы будут происходить при том или ином процессе. Например, при условиях, соответствую­щих точке 1 (рис. 116), вещество находит­ся в твердом состоянии, точке 2 - в газо­образном, а точке 3 - одновременно в жидком и газообразном состояниях. До­пустим, что вещество в твердом состоянии, соответствующем точке 4, подвергается изобарному нагреванию, изображенному на диаграмме состояния горизонтальной штриховой прямой 4- 5-6. Из рисунка видно, что при температуре, соответствую­щей точке 5, вещество плавится, при более высокой температуре, соответствующей точке 6 ,- начинает превращаться в газ. Если же вещество находится в твердом состоянии, соответствующем точке 7, то при изобарном нагревании (штриховая прямая 7-8) кристалл превращается в газ минуя жидкую фазу. Если вещество находится в состоянии, соответствующем точке 9, то при изотермическом сжатии (штриховая прямая 9-10) оно пройдет следующие три состояния: газ - жид­кость - кристаллическое состояние.

На диаграмме состояний (см. рис. 115 и 116) видно, что кривая испарения заканчивается в критической точке К. По­этому возможен непрерывный переход ве­щества из жидкого состояния в газообраз­ное и обратно в обход критической точки, без пересечения кривой испарения (пере­ход 11 -12 на рис. 116), т. е. такой пере­ход, который не сопровождается фазовы­ми превращениями. Это возможно благо­даря тому, что различие между газом и жидкостью является чисто количествен-

ным (оба эти состояния, например, явля­ются изотропными). Переход же кристал­лического состояния (характеризуется анизотропией) в жидкое или газообразное может быть только скачкообразным (в ре­зультате фазового перехода), поэтому

кривые плавления и сублимации не могут обрываться, как это имеет место для кри­вой испарения в критической точке. Кри­вая плавления уходит в бесконечность, а кривая сублимации идет в точку, где р = 0 и Т= 0.

Контрольные вопросы

Чем отличаются реальные газы от идеальных? Каков смысл поправок при выводе уравнения Ван-дер-Ваальса?

Почему перегретая жидкость и пересыщенный пар являются метастабильными состояниями? При адиабатическом расширении газа в вакуум его внутренняя энергия не меняется. Как изме­нится температура, если газ идеальный? реальный?

Каковы суть и причины эффекта Джоуля - Томсона? Когда его называют положительным? отрицательным?

Почему у всех веществ поверхностное натяжение уменьшается с температурой? Что представляют собой поверхностно-активные вещества? При каком условии жидкость смачивает твердое тело? не смачивает? От чего зависит высота поднятия смачивающей жидкости в капилляре? Чем отличаются монокристаллы от поликристаллов? Как можно классифицировать кристаллы?

Как получить закон Дюлонга и Пти исходя из классической теории теплоемкости? Некоторое количество твердого вещества смешано с тем же веществом в жидком состоянии. Почему при некотором нагреве этой смеси ее температура не поднимается? Чем отличается фазовый переход I рода от фазового перехода II рола?

Задачи

10.1. Углекислый газ массой m=1 кг находится при температуре 290 К в сосуде вместимостью 20 л. Определить давление газа, если: 1) газ реальный; 2) газ идеальный. Объяснить разли­чие в результатах. Поправки а и b принять равными соответственно 0,365 Н м 4 /моль 2 и 4,3 10 -5 м 3 /моль. [ 1) 2,44 МПа; 2) 2,76 МПа ]

10.2. Кислород, содержащий количество вещества v = 2 моль, занимает объем V 1 = 1 л. Опреде­лить изменение T температуры кислорода, если он адиабатически расширяется в вакуум до объема V 2 =10 л. Поправку а принять равной 0,136 Н м 4 /моль 2 . [-11,8 К |

10.3. Показать, что эффект Джоуля - Томсона всегда отрицателен, если дросселируется газ, для которого силами притяжения молекул можно пренебречь.

10.4. Считая процесс образования мыльного пузыря изотермическим, определить работу А, кото­рую надо совершить, чтобы увеличить его диаметр от d 1 =2 см до d 2 =6 см. Поверхностное натяжение о мыльного раствора принять равным 40 мН/м.

10.7. Для нагревания металлического шарика массой 25 г от 10 до 30 °С затратили количество теплоты, равное 117 Дж. Определить теплоемкость шарика из закона Дюлонга и Пти и мате­риал шарика. [М107 кг/моль; серебро]

*П. Лаплас (1749 -1827) -вранцузский ученый.

* К. Линде (1842-1934) -немецкий фи­зик и инженер.

Вопрос о методиках реализации реперных точек постоянно обсуждается на международных конференциях и рассматривается в документах ККТ, в частности наиболее полно методики были представлены в обзоре, подготовленном РГ1/ККТ и опубликованном в журнале «Метрология»: B. W. Mangum, P. Bloembergen, M. V. Chattle, B. Fellmuth, P. Marcarino. Metrologia 36 (1999) . В данном разделе рекоммендации по реализации фазовых переходов, которые могут быть полезны поверителям при работе с ампулами реперных точек.

Тройная точка воды (273,16 К)

Тройная точка воды - самая простая в реализации реперная точка. Для ее хранения и воспроизведения может использоваться термостат или сосуд Дьюара, наполненный смесью дробленого льда и воды. Разработаны также специальные термостаты для хранения сосудов тройных точек воды и поддержания их в рабочем состоянии длительное время.

Особенности реализации с наивысшей точностью: Начинать измерения рекомендуется через сутки после приготовления ледяной мантии. Необходимо устранить попадание света от внешних источников на сосуд и термометр (во избежании подвода тепла излучением). Для этого рекомендуется закрыть термометр плотной тканью. Глубина погружения зависит от типа термометра. Для эталонных платиновых термометров диаметром 5-7 мм она составляет не менее 15 см.

Приготовление ледяной мантии может осуществляться несколькими способами. Наиболее распространенный и быстрый способ - с использованием жидкого азота и металлических стержней. Стержень погружается в жидкий азот, затем в канал тройной точки воды, заполненный чистым спиртом. Процедура повторяется, пока на стенках канала не образуется ледяная мантия толщиной не менее 1 см. Другой способ - заполнение канала мелкодробленым сухим льдом. Ледяная мантия может также формироваться путем переохлаждения воды. Сосуд тройной точки погружается в смесь льда и поваренной соли, имеющую температуру около -10 °С. Через 20 мин. сосуд извлекается из смеси и встряхивается. При этом можно наблюдать впечатляющую картину быстрого образования ячеистого льда по всему объему воды, который в последствии формирует нормальную ледяную мантию вокруг канала. Этот способ сейчас реализуется в некоторых специальных термостатах для реализации реперных точек. Перед началом измерений в точке необходимо убедиться, что ледяная мантия может свободно вращаться вокруг канала. Если этого не происходит, то рекомендуется на несколько секунд ввести в канал алюминиевый или стеклянный стержень, имеющий комнатную температуру, затем повторно проверить вращение мантии. Канал, как правило заполняется чистой водой. Если образуется большой зазор между стенками канала и термометром, то рекомендуется использовать заполняющие металлические втулки длиной, равной длине чувствительного элемента термометра.

Реализация реперных точек металлов

Наиболее подробно принципы реализации температур плавления и затвердевания металлов изложены в разделе

Два условия получения качественных площадок плавления и затвердевания металлов: 1. Использовать металл высокой чистоты и не допускать загрязнения металла во время заплавки в тигель; 2. Обеспечить равномерность температурного поля в печи на длине тигля.

Для градуировки ПТС с максимальной точностью необходимо использовать металлы чистотой не менее 99,9999%. В этом случае температура, реализуемая точкой (до 420 °С) будет отличаться от температуры идеально чистого металла не более, чем на 0,1-0,2 мК. Отклонение температуры реперной точки от значения МТШ-90 зависит от вида примеси и ее взаимодействия с конкретным металлом. Оценка показывает, что если используется металл чистотой 99,999%, то для точек Al, Ag, Au, Cu отклонение составит несколько мК. (из документа «Дополнительная информация к шкале МТШ-90»). Подробно влияние примесей на температуру реперных точек исследуется в работе: B. Fellmuth and K. D. Hill, Metrologia 43 (2006). (сайт www.bipm.org)

Рекоммендация ККТ - перепад температуры по длине тигля для эталонных ампул затвердевания металлов при температуре, близкой к реперной точке не должен превышать 10 мК. Чем выше температура, тем сложнее обеспечить равномерность температурного поля в печи. Для точек выше Al в большинстве лабораторий-хранителей первичных эталонов используются тепловые трубы.

Тройная точка ртути

Наиболее надежными и удобными в обращении считаются герметичные ячейки из нержавеющей стали. Для реализации температуры тройной точки рекомендуется использовать жидкостный термостат с хорошим перемешиванием и высокой воспроизводимостью заданной температуры. Наиболее простой способ получения температурной площадки - метод плавления затвердевшей ртути. Затвердевание достигается либо охлаждением ячейки в термостате до температуры примерно -42°С, либо погружением в канал специального охлаждающего стержня (immersion cooler). Выход на плавление осуществляется плавным повышением температуры в термостате и регулированием на уровне значения, близкого к реперной точке. Для улучшения качества площадки и формирования слоя жидкого металла вокруг канала рекомендуется погрузить в канал перед началом измерений теплый стержень. Хороший жидкостный термостат, заполненный спиртом, позволит без труда получить длительность фазового перехода 10 ч и более.

Точка плавления галлия (29,7646 °С)

Точка плавления галлия является одной из самых стабильных и хорошо воспроизводимых температурных точек МТШ-90. Воспроизводимость температуры плавления галлия в хороших термостатах достигает ±0,2 мК и лучше. Иногда в научных публикациях появляются предложения использовать эту точку вместо тройной точки воды для расчета относительных сопротивлений эталонных платиновых термометров сопротивления. Температура плавления галлия может быть реализована в жидкостных или твердотельных термостатах с равномерным температурным полем. Температура термостата устанавливается на значение на 1,5 -2 °С превышающее температуру реперной точки. В момент, когда контрольный термометр в канале зафиксирует начало плавления, в канал вводится стержень, нагретый примерно до 40 °С или специальный тонкий нагреватель мощностью примерно 10 Вт и выдерживается в канале около 20 мин. Это позволяет создать тонкий расплавленный слой металла вокруг канала и получить более плоскую площадку плавления.

Точка затвердевания олова (231,928 °С)

Особенностью точки затвердевания олова является глубокое переохлаждение олова перед началом затвердевания. Поэтому специальные меры должны быть предприняты для реализации переохлаждения и вывода металла из переохлажденного состояния. Наиболее распространенная методика следующая: олово плавится и перегревается до температуры на 5 °С выше реперной точки, выдерживается при этой температуре в течение 10-15 ч, после чего задание регулятора меняется на значение температуры на 0,5 -1 °С ниже реперной точки и начинается охлаждение металла; после того, как температура, регистрируемая контрольным термометров в канале ячейки достигнет температуры затвердевания, ячейка выводится из печи на воздух и по контрольному термометру отслеживается процесс переохлаждения и спонтанного подъема температуры металла (рекалесценция); ячейка погружается обратно в печь; в канал вводятся последовательно на две минуты два стержня, имеющие комнатную температуру. После этого можно начинать измерения. Для уровня рабочих эталонов и образцовых термометров можно применять упрощенные методики затвердевания. Чтобы получить площадку затвердевания в течение одного рабочего дня можно перегревать олово на 10-15 °С выше температуры точки и выдерживать при этой температуре 1 ч. Если требования к расширенной неопределенности градуировки ПТС не выше 2 мК, и печь имеет равномерное температурное поле, то можно также с успехом работать на площадке плавления. В некоторых ячейках переохлаждение достигает лишь 2-3 °С, в этом случае можно для получения площадки затвердевания не выводить ячейку из печи, а снизить температуру печи на 5-7 °С, и после рекалесценции поднять температуру до значения, близкого к температуре реперной точки. Важнейшее, и как правило самое трудное в исполнении, условие качественной реализации точки олова (как и других точек затвердевания металлов) - равномерность температурного поля по длине тигля с металлом.

Подробно поцесс затвердевания олова описан в следующей монографии: G. F. Strouse and N. P. Moiseeva, NIST Special Publication 260-138 (1999) .

Точки затвердевания индия (156,5985 °С), цинка (419,527 °С), алюминия (660,323 °С), серебра (961,78 °С)

Методика реализации данных точек практически идентична, т.к. переохлаждение металлов не велико. Основной принцип получения качественных площадок затвердевания заключается в обеспечении высокой равномерности температурного поля в тигле. (Необходимо отметить, что перепад температуры в тигле в несколько градусов очень опасен, т.к. может привести к разрушению ампулы, поскольку слой расплавленного металла внизу тигля не имеет возможности расшириться вверх, если верхний слой еще находится в твердом состоянии. В результате металл просачивается сквозь графит.) Методика, предлагаемая ККТ следующая: металл медленно расплавляется, перегревается после плавления на 5 К и выдерживается в печи 10 -15 ч.; температура печи устанавливается на значение на 2-3 °С ниже точки затвердевания, и когда по контрольному термометру наблюдается переохлаждение и рекалесценция, термометр выводится из тигля и в канал вставляются поочередно два кварцевых (или керамических) стержня, имеющие первоначально комнатную температуру. Каждый стержень выдерживается в канале 2 мин. Это способствует образованию тонкого слоя затвердевшего металла, т.е. второй границы раздела фаз, что "термостатирует" термометр, стабилизирует ход затвердевания и в какой-то мере "исправляет" неравномерность температурного поля по длине чувствительного элемента термометра. Для получения максимальной длительности процесса затвердевания температура в печи повышается до значения на 0,5 -1 К ниже реперной точки. После этого можно проводить последовательную градуировку эталонных термометров, причем для увеличения длительности площадки термометры рекомендуется подогревать перед вводом в ампулу.

Изложенные выше рекомендации касаются в основном измерений на эталонном уровне точности, там где требуется расширенная неопределенность не хуже 1-2 мК. Ячейки реперных точек в эталонных установках выполнены из кварца, причем, для первичных государственных эталонов - это ячейки "открытого" типа с регулируемым давлением, для рабочих эталонов, это, как правило ячейки "закрытого" типа (герметичные кварцевые ампулы). В настоящее время появляется все больше установок для реализации реперных точек МТШ-90, используемых для градуировки вторичных эталонов и образцовых термометров. В таких установках могут использоваться ячейки наиболее надежной конструкции: графитовый тигель с металлом помещается в герметичный металлический корпус. Стоит отметить также, что для получения расширенной неопределенности на уровне 3-5 мК, для металлов высокой чистоты в печах с равномерным температурным полем можно использовать площадки плавления.

Более подробная информация о реализации реперных точек МТШ-90 изложена в разделе