Хлор в природе. Один из многих

Цель урока: Сформировать представление о хлоре как химическом элементе и простом веществе.

Задачи урока:

Образовательные:

1. Рассмотреть положение галогенов в Периодической системе химических элементов Д.И. Менделеева.
2. Ознакомить учащихся с нахождением хлора в природе и способами его получения.
3. Сформировать знания о физических и химических свойствах хлора.
4. Охарактеризовать области применения хлора и отметить его токсичность.

Воспитательные:

1. Воспитание чувства сопереживания, взаимопомощи через работу в группах.
2. Формирование экологической грамотности через учебный материал о применении хлора.

Развивающие:

1. Развитие коммуникативных, эмоциональных качеств личности через работу в группе.
2. Развивать способность делать выводы через выполнение заданий групп.

Тип урока: изучение нового материала.

Форма обучения: групповая, индивидуальная, фронтальная.

Методы урока: словесные, наглядные, самостоятельные.

План урока.

  1. Организационный момент – 1 мин.
  2. Актуализация знаний – 4 мин.
  3. Изучение нового материала – 25 мин.
  4. Закрепление изученного – 12 мин.
  5. Подведение итогов урока и домашнее задание – 3 мин.

Ход урока:

Организационный момент

  • Приветствие.

Вводное слово учителя:

– Ребята, чем пахнет водопроводная вода?

– А чем пахнет на кухне, когда раковину чистят “белизной”?

– Чем мы солим суп?

– Что находится в желудке для переваривания пищи?

Таким образом, с каким элементом мы сегодня познакомимся на уроке? (Хлором).

Хлор является представителем галогенов (от греч halos – соль и genes – рождающий).

Актуализация знаний

  1. Определите местоположение галогенов в ПС Д.И. Менделеева, назовите их.
  2. Охарактеризуйте особенности строения атомов галогенов и электронную конфигурацию внешнего слоя.
  3. Какие свойства проявляют галогены в химических реакциях?
  4. Как изменяется окислительная способность галогенов с увеличением порядкового номера?
  5. Назвать самый активный галоген-неметалл? Почему?

Изучение нового материала

Постановка цели урока учащимися (с чем на уроке мы сегодня познакомимся?).

Новый материал изучается при работе в группах по инструктивным карточкам (12 минут). Приложение 1

Отчёт о работах в группах..

Заполнение таблицы в тетради (13 мин).

Закрепление изученного материала

  • Чему равна степень окисления хлора в соединениях с металлами и водородом?
  • Чему равна степень окисления атомов хлора в следующих соединениях: HCL, Сl 2 О 7 , НClO 4 , KClO 3 , НClO?
  • Какой вид химической связи и тип кристаллической решетки характерны для Сl 2, NaCL HCL?
  • Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
  • CL 2 ->HCL->NaCL->AgCL

    Тест “Хлор”

    Тест выдан каждому ученику.

    Вариант 1

    1. Какая электронная конфигурация внешнего энергетического уровня соответствует атому хлора?
    а) 2s 22p 6; б) 2s 22p 3; в) 3s 23p 5; г) 2s 22p 5.

    2. Хлор впервые получил
    а) А. Авогадро; б) А.Беккерель; в) К. Шееле; г) Г. Кавендиш.

    3. Галоген, обладающий наибольшим значением электроотрицательности - это
    а) I; б) Br; в) CL; г) F.

    4. Положительную степень окисления хлор проявляет в соединении
    а) HCLO; б) KCLO 3 ; в) HCL; г) Cl 2 O 7 .

    5. Объём хлороводорода (н.у.) полученного при сжигании 10л водорода в хлоре, равен
    а) 22,4 л; б) 10 л; в) 20 л; г) 44,8 л.

    Вариант 2

    1. Степень окисления –1 хлор проявляет в соединении:
    а) HCL; б) CL 2 ; в) Cl 2 O 7 ; г) KCLO 3 .

    2. Хлор при обычных условиях:
    а) бесцветный газ с резким удушливым запахом;
    б) газ жёлто-зелёного цвета с резким удушливым запахом;
    в) жидкость красно-бурого цвета;
    г) кристаллы темно-фиолетового цвета.

    3. На наружном энергетическом уровне атомов галогенов находится:
    а) два s-электрона и пять р-электронов;
    б) один s-электрон;
    в) пять р-электронов;
    г) два s-электрона и шесть р-электронов.

    4. Объём хлора (н.у) затраченного на получение 2л хлороводорода, равен
    а) 2 л; б) 22.4 л; в) 1 л; г) 44,8 л.

    5. Галоген, обладающий наименьшим значением электроотрицательности-это
    а) I; б) Br; в) CL; г) F.

    6. Установите соответствие между химической формулой соединения и степенью окисления хлора в нем.

    Тесты сдают на проверку учителю.

    Домашнее задание.

    П. 46, 47, стр. 164 задача №2 (учебник Г.Е Рудзитис и Ф.Г.Фельдман химия 8).

    Подведение итогов урока. Рефлексия.

    На партах лежат сигнальные карточки трех цветов: красная – “всё понятно”, зеленая – “есть затруднения”, синяя – “нужна помощь”. Выберите карточки по мере вашего усвоения материала, подпишите их и сдайте.

    Хлор, Cl, - это химический элемент VII группы , порядковый номер 17, атомный вес (масса) 35,453, валентность в соединениях от -1 до +7. В свободном состоянии желто-зеленый, с резким удушающим запахом, ядовитый газ; молекулы состоят из двух (Cl 2). Растворяется в воде и органических жидкостях.

    В состав организма человека входит около 0,15% хлора, который поступает с пищей, в основном в виде хлористого натрия. Ионы Cl- играют большую роль в поддержании осмотического давления крови, регуляции водного обмена, кислотно-щелочного равновесия, в образовании желудочного сока и др. Из организма выводится с мочой, потом и .

    Применяют для получения соляной кислоты (см.) и ряда органических соединений, хлорирования питьевых и , в производстве отбеливающих и дезинфицирующих средств (см. ), для уничтожения грызунов - вредителей (см. ).

    Сильно раздражает слизистые оболочки глаз и дыхательных путей.

    Хранят и транспортируют хлор под давлением 6 атм. в стальных баллонах защитного цвета, имеющих в верхней части зеленую полосу.

    Острые отравления. При вдыхании высоких концентраций хлора развивается так называемая молниеносная форма поражения. Пострадавший задыхается, лицо его синеет, движения некоординированны, частый и затем нитевидный. Смерть наступает быстро в результате рефлекторной остановки дыхания. При несколько меньших концентрациях хлора развивается тяжелая форма поражения, рефлекторная остановка дыхания короче, дыхание возобновляется, но становится частым, поверхностным, судорожным; дыхание останавливается через 5-25 минут после вдыхания хлора. Смерть наступает от ожога легких.

    При отравлении средними и низкими концентрациями хлора пострадавший испытывает резкие боли за грудиной, резь в глазах, слезотечение. Возникает мучительный сухой кашель. Через 2-3 часа после вдыхания хлора увеличивается одышка, развивается отек легких, характеризующийся появлением пенистой желтой или красноватой мокроты со значительным количеством слизи.

    В легких случаях отравление хлором ограничивается покраснением конъюнктивы, мягкого и глотки, астмоидным бронхитом, небольшой одышкой и часто рвотой. Иногда развивается отек и воспаление легких.

    Хроническое отравление хлором проявляется в виде воспаления десен, слизистой оболочки носа, хронических бронхитов; длительный контакт с Cl 2 приводит к кариесу зубов. Хлор при высокой концентрации может вызвать острый дерматит, иногда переходящий в .

    Первая помощь при отравлении - чистый воздух, покой, тепло, как можно раньше ингаляция кислорода. Госпитализация. При явлениях раздражения верхних дыхательных путей вдыхание распыленного 2% раствора тиосульфата (гипосульфит) натрия, 0,5% раствора гидрокарбоната натрия (), теплое молоко с боржомом или содой, кофе.

    Меры предупреждения: герметизация аппаратуры, систематический контроль содержания хлора в воздухе производственных помещений, индивидуальные .

    Хлор

    ХЛОР -а; м. [от греч. chlōros - бледно-зелёный] Химический элемент (Cl), удушливый газ зеленовато-жёлтого цвета с резким запахом (используется как отравляющее и обеззараживающее средство). Соединения хлора. Отравление хлором.

    Хло́рный (см.).

    хлор

    (лат. Chlorum), химический элемент VII группы периодической системы, относится к галогенам. Название от греческого chlōros - жёлто-зелёный. Свободный хлор состоит из двухатомных молекул (Cl 2); газ жёлто-зелёного цвета с резким запахом; плотность 3,214 г/л; t пл -101°C; t кип -33,97°C; при обычной температуре легко сжижается под давлением 0,6 МПа. Химически очень активен (окислитель). Главные минералы - галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов. Применяют в производстве хлорсодержащих органических соединений (60-75%), неорганических веществ (10-20%), для отбеливания целлюлозы и тканей (5-15%), для санитарных нужд и обеззараживания (хлорирования) воды. Токсичен.

    ХЛОР

    ХЛОР (лат. Сhlorum), Cl (читается «хлор»), химический элемент с атомным номером 17, атомная масса 35,453. В свободном виде - желто-зеленый тяжелый газ с резким удушливым запахом (отсюда название: греч. chloros - желто-зеленый).
    Природный хлор представляет смесь двух нуклидов (см. НУКЛИД) с массовыми числами 35 (в смеси 75,77% по массе) и 37 (24,23%). Конфигурация внешнего электронного слоя 3s 2 p 5 . В соединениях проявляет главным образом степени окисления –1, +1, +3, +5 и +7 (валентности I, III, V и VII). Расположен в третьем периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам (см. ГАЛОГЕНЫ) .
    Радиус нейтрального атома хлора 0,099 нм, ионные радиусы равны, соответственно (в скобках указаны значения координационного числа): Cl - 0,167 нм (6), Cl 5+ 0,026 нм (3) и Clr 7+ 0,022 нм (3) и 0,041 нм (6). Энергии последовательной ионизации нейтрального атома хлора равны, соответственно, 12,97, 23,80, 35,9, 53,5, 67,8, 96,7 и 114,3 эВ. Сродство к электрону 3,614 эВ. По шкале Полинга электроотрицательность хлора 3,16.
    История открытия
    Важнейшее химическое соединение хлора - поваренная соль (химическая формула NaCl, химическое название хлорид натрия) - было известно человеку с древнейших времен. Имеются свидетельства того, что добыча поваренной соли осуществлялась еще 3-4 тысячи лет до нашей эры в Ливии. Возможно, что, используя поваренную соль для различных манипуляций, алхимики сталкивались и с газообразным хлором. Для растворения «царя металлов» - золота - они использовали «царскую водку» - смесь соляной и азотной кислот, при взаимодействии которых выделяется хлор.
    Впервые газ хлор получил и подробно описал шведский химик К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) в 1774 году. Он нагревал соляную кислоту с минералом пиролюзитом (см. ПИРОЛЮЗИТ) MnO 2 и наблюдал выделение желто-зеленого газа с резким запахом. Так как в те времена господствовала теория флогистона (см. ФЛОГИСТОН) , новый газ Шееле рассматривал как «дефлогистонированную соляную кислоту», т. е. как окись (оксид) соляной кислоты. А.Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) рассматривал газ как оксид элемента «мурия» (соляную кислоту называли муриевой, от лат. muria - рассол). Такую же точку зрения сначала разделял английский ученый Г. Дэви (см. ДЭВИ Гемфри) , который потратил много времени на то, чтобы разложить «окись мурия» на простые вещества. Это ему не удалось, и к 1811 году Дэви пришел к выводу, что данный газ - это простое вещество, и ему отвечает химический элемент. Дэви первым предложил в соответствие с желто-зеленой окраской газа назвать его chlorine (хлорин). Название «хлор» элементу дал в 1812 французский химик Ж. Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи) ; оно принято во всех странах, кроме Великобритании и США, где сохранилось название, введенное Дэви. Высказывалось мнение о том, что данный элемент следует назвать «галоген» (т. е. рождающий соли), но оно со временем стало общим названием всех элементов группы VIIA.
    Нахождение в природе
    Содержание хлора в земной коре составляет 0,013% по массе, в заметной концентрации он в виде иона Cl – присутствует в морской воде (в среднем около 18,8 г/л). Химически хлор высоко активен и поэтому в свободном виде в природе не встречается. Он входит в состав таких минералов, образующих большие залежи, как поваренная, или каменная, соль (галит (см. ГАЛИТ) ) NaCl, карналлит (см. КАРНАЛЛИТ) KCl·MgCl 2 ·6H 21 O, сильвин (см. СИЛЬВИН) КСl, сильвинит (Na, K)Cl, каинит (см. КАИНИТ) КСl·MgSO 4 ·3Н 2 О, бишофит (см. БИШОФИТ) MgCl 2 ·6H 2 O и многих других. Хлор можно обнаружить в самых разных породах, в почве.
    Получение
    Для получения газообразного хлора используют электролиз крепкого водного раствора NaCl (иногда используют KCl). Электролиз проводят с использованием катионообменной мембраны, разделяющей катодное и анодное пространства. При этом за счет процесса
    2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2
    получают сразу три ценных химических продукта: на аноде - хлор, на катоде - водород (см. ВОДОРОД) , и в электролизере накапливается щелочь (1,13 тонны NaOH на каждую тонну полученного хлора). Производство хлора электролизом требует больших затрат электроэнергии: на получение1 т хлора расходуется от 2,3 до 3,7 МВт.
    Для получения хлора в лаборатории используют реакцию концентрированной соляной кислоты с каким-либо сильным окислителем (перманганатом калия KMnO 4 , дихроматом калия K 2 Cr 2 O 7 , хлоратом калия KClO 3 , хлорной известью CaClOCl, оксидом марганца (IV) MnO 2). Наиболее удобно использовать для этих целей перманганат калия: в этом случае реакция протекает без нагревания:
    2KMnO 4 + 16HCl = 2KСl + 2MnCl 2 + 5Cl 2 + 8H 2 O.
    При необходимости хлор в сжиженном (под давлением) виде транспортируют в железнодорожных цистернах или в стальных баллонах. Баллоны с хлором имеют специальную маркировку, но даже при ее отсутствии хлорный баллон легко отличить от баллонов с другими неядовитыми газами. Дно хлорных баллонов имеет форму полушария, и баллон с жидким хлором невозможно без опоры поставить вертикально.
    Физические и химические свойства

    При обычных условиях хлор - желто-зеленый газ, плотность газа при 25°C 3,214 г/дм 3 (примерно в 2,5 раза больше плотности воздуха). Температура плавления твердого хлора –100,98°C, температура кипения –33,97°C. Стандартный электродный потенциал Сl 2 /Сl - в водном растворе равен +1,3583 В.
    В свободном состоянии существует в виде двухатомных молекул Сl 2 . Межъядерное расстояние в этой молекуле 0,1987 нм. Сродство к электрону молекулы Сl 2 2,45 эВ, потенциал ионизации 11,48 эВ. Энергия диссоциации молекул Сl 2 на атомы сравнительно невелика и составляет 239,23 кДж/моль.
    Хлор немного растворим в воде. При температуре 0°C растворимость составляет 1,44 масс.%, при 20°C - 0,711°C масс.%, при 60°C - 0,323 масс. %. Раствор хлора в воде называют хлорной водой. В хлорной воде устанавливается равновесие:
    Сl 2 + H 2 O H + = Сl - + HOСl.
    Для того, чтобы сместить это равновесие влево, т. е. понизить растворимость хлора в воде, в воду следует добавить или хлорид натрия NaCl, или какую-либо нелетучую сильную кислоту (например, серную).
    Хлор хорошо растворим во многих неполярных жидкостях. Жидкий хлор сам служит растворителем таких веществ, как ВСl 3 , SiCl 4 , TiCl 4 .
    Из-за низкой энергии диссоциации молекул Сl 2 на атомы и высокого сродства атома хлора к электрону химически хлор высоко активен. Он вступает в непосредственное взаимодействие с большинством металлов (в том числе, например, с золотом) и многими неметаллами. Так, без нагревания хлор реагирует с щелочными (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) и щелочноземельными металлами (см. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ) , с сурьмой:
    2Sb + 3Cl 2 = 2SbCl 3
    При нагревании хлор реагирует с алюминием:
    3Сl 2 + 2Аl = 2А1Сl 3
    и железом:
    2Fe + 3Cl 2 = 2FeCl 3 .
    С водородом H 2 хлор реагирует или при поджигании (хлор спокойно горит в атмосфере водорода), или при облучении смеси хлора и водорода ультрафиолетовым светом. При этом возникает газ хлороводород НСl:
    Н 2 + Сl 2 = 2НСl.
    Раствор хлороводорода в воде называют соляной (см. СОЛЯНАЯ КИСЛОТА) (хлороводородной) кислотой. Максимальная массовая концентрация соляной кислоты около 38%. Соли соляной кислоты - хлориды (см. ХЛОРИДЫ) , например, хлорид аммония NH 4 Cl, хлорид кальция СаСl 2 , хлорид бария ВаСl 2 и другие. Многие хлориды хорошо растворимы в воде. Практически нерастворим в воде и в кислых водных растворах хлорид серебра AgCl. Качественная реакция на присутствие хлорид-ионов в растворе - образование с ионами Ag + белого осадка AgСl, практически нерастворимого в азотнокислой среде:
    СаСl 2 + 2AgNO 3 = Ca(NO 3) 2 + 2AgCl.
    При комнатной температуре хлор реагирует с серой (образуется так называемая однохлористая сера S 2 Cl 2) и фтором (образуются соединения ClF и СlF 3). При нагревании хлор взаимодействует с фосфором (образуются, в зависимости от условий проведения реакции, соединения РСl 3 или РСl 5), мышьяком, бором и другими неметаллами. Непосредственно хлор не реагирует с кислородом, азотом, углеродом (многочисленные соединения хлора с этими элементами получают косвенными путями) и инертными газами (в последнее время ученые нашли способы активирования подобных реакций и их осуществления «напрямую»). С другими галогенами хлор образует межгалогенные соединения, например, очень сильные окислители - фториды ClF, ClF 3 , ClF 5 . Окислительная способность хлора выше, чем брома, поэтому хлор вытесняет бромид-ион из растворов бромидов, например:
    Cl 2 + 2NaBr = Br 2 + 2NaCl
    Хлор вступает в реакции замещения со многими органическими соединениями, например, с метаном СН 4 и бензолом С 6 Н 6:
    СН 4 + Сl 2 = СН 3 Сl + НСl или С 6 Н 6 + Сl 2 = С 6 Н 5 Сl + НСl.
    Молекула хлора способна присоединятся по кратным связям (двойным и тройным) к органическим соединениям, например, к этилену С 2 Н 4:
    С 2 Н 4 + Сl 2 = СН 2 СlСН 2 Сl.
    Хлор вступает во взаимодействие с водными растворами щелочей. Если реакция протекает при комнатной температуре, то образуются хлорид (например, хлорид калия КCl) и гипохлорит (см. ГИПОХЛОРИТЫ) (например, гипохлорит калия КClО):
    Cl 2 + 2КОН = КClО + КСl +Н 2 О.
    При взаимодействии хлора с горячим (температура около 70-80°C) раствором щелочи образуется соответствующий хлорид и хлорат (см. ХЛОРАТЫ) , например:
    3Сl 2 + 6КОН= 5КСl + КСlО 3 + 3Н 2 О.
    При взаимодействии хлора с влажной кашицей из гидроксида кальция Са(ОН) 2 образуется хлорная известь (см. ХЛОРНАЯ ИЗВЕСТЬ) («хлорка») СаСlОСl.
    Степени окисления хлора +1 отвечает слабая малоустойчивая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО. Ее соли - гипохлориты, например, NaClO - гипохлорит натрия. Гипохлориты - сильнейшие окислители, широко используются как отбеливающие и дезинфицирующие агенты. При взаимодействии гипохлоритов, в частности, хлорной извести, с углекислым газом СО 2 образуется среди других продуктов летучая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) , которая может разлагаться с выделением оксида хлора (I) Сl 2 О:
    2НСlО = Сl 2 О + Н 2 О.
    Именно запах этого газа Сl 2 О - характерный запах «хлорки».
    Степени окисления хлора +3 отвечает малоустойчивая кислота средней силы НСlО 2 . Эту кислоту называют хлористой, ее соли - хлориты (см. ХЛОРИТЫ (соли)) , например, NaClO 2 - хлорит натрия.
    Степени окисления хлора +4 соответствует только одно соединение - диоксид хлора СlО 2 .
    Степени окисления хлора +5 отвечает сильная, устойчивая только в водных растворах при концентрации ниже 40%, хлорноватая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО 3 . Ее соли - хлораты, например, хлорат калия КСlО 3 .
    Степени окисления хлора +6 соответствует только одно соединение - триоксид хлора СlО 3 (существует в виде димера Сl 2 О 6).
    Степени окисления хлора +7 отвечает очень сильная и довольно устойчивая хлорная кислота (см. ХЛОРНАЯ КИСЛОТА) НСlО 4 . Ее соли - перхлораты (см. ПЕРХЛОРАТЫ) , например, перхлорат аммония NH 4 ClO 4 или перхлорат калия КСlО 4 . Следует отметить, что перхлораты тяжелых щелочных металлов - калия, и особенно рубидия и цезия мало растворимы в воде. Оксид, соответствующий степени окисления хлора +7 - Сl 2 О 7 .
    Среди соединений, содержащих хлор в положительных степенях окисления, наиболее сильными окислительными свойствами обладают гипохлориты. Для перхлоратов окислительные свойства нехарактерны.
    Применение
    Хлор - один из важнейших продуктов химической промышленности. Его мировое производство составляет десятки миллионов тонн в год. Хлор используют для получения дезинфицирующих и отбеливающих средств (гипохлорита натрия, хлорной извести и других), соляной кислоты, хлоридов многих металлов и неметаллов, многих пластмасс (поливинилхлорида (см. ПОЛИВИНИЛХЛОРИД) и других), хлорсодержащих растворителей (дихлорэтана СН 2 СlСН 2 Сl, четыреххлористого углерода ССl 4 и др.), для вскрытия руд, разделения и очистки металлов и т.д. Хлор применяют для обеззараживания воды (хлорирования (см. ХЛОРИРОВАНИЕ) ) и для многих других целей.
    Биологическая роль
    Хлор относится к важнейшим биогенным элементам (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) и входит в состав всех живых организмов. Некоторые растения, так называемые галофиты, не только способны расти на сильно засоленных почвах, но и накапливают в больших количествах хлориды. Известны микроорганизмы (галобактерии и др.) и животные, обитающие в условиях высокой солености среды. Хлор - один из основных элементов водно-солевого обмена животных и человека, определяющих физико-химические процессы в тканях организма. Он участвует в поддержании кислотно-щелочного равновесия в тканях, осморегуляции (см. ОСМОРЕГУЛЯЦИЯ) (хлор - основное осмотически активное вещество крови, лимфы и др. жидкостей тела), находясь, в основном, вне клеток. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.
    Мышечная ткань человека содержит 0,20-0,52% хлора, костная - 0,09%; в крови - 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.
    Особенности работы с хлором
    Хлор - ядовитый удушливый газ, при попадании в легкие вызывает ожог легочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л. Хлор был одним из первых химических отравляющих веществ (см. ОТРАВЛЯЮЩИЕ ВЕЩЕСТВА) , использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 . ПДК хлора в воздухе рабочих помещений 1 мг/м 3 , в воздухе населенных пунктов 0,03 мг/м 3 .

    Cl 2 при об. Т - газ желто-зеленого цвета с резким удушающим запахом, тяжелее воздуха - в 2,5 раза, малорастворим в воде (~ 6,5 г/л); х. р. в неполярных органических растворителях. В свободном виде встречается только в вулканических газах.


    Способы получения

    Основаны на процессе окисления анионов Cl -


    2Cl - - 2e - = Cl 2 0

    Промышленный

    Электролиз водных растворов хлоридов, чаще - NaCl:


    2NaCl + 2Н 2 O = Cl 2 + 2NaOH + H 2

    Лабораторные

    Окисление конц. HCI различными окислителями:


    4HCI + MnO 2 = Cl 2 + МпCl 2 + 2Н 2 O


    16НСl + 2КМпО 4 = 5Cl 2 + 2MnCl 2 + 2KCl + 8Н 2 O


    6HCl + КСlO 3 = ЗCl 2 + KCl + 3Н 2 O


    14HCl + К 2 Сr 2 O 7 = 3Cl 2 + 2CrCl 3 + 2KCl + 7Н 2 O

    Химические свойства

    Хлор - очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, превращаясь при этом в очень устойчивые анионы Cl - :


    Cl 2 0 + 2e - = 2Cl -

    Реакции с металлами

    Активные металлы в атмосфере сухого газообразного хлора воспламеняются и сгорают; при этом образуются хлориды металлов.



    Cl 2 + 2Na = 2NaCl


    3Cl 2 + 2Fe = 2FeCl 3


    Малоактивные металлы легче окисляются влажным хлором или его водными растворами:



    Cl 2 + Сu = CuCl 2


    3Cl 2 + 2Аu = 2AuCl 3

    Реакции с неметаллами

    Хлор непосредственно не взаимодействует только с O 2 , N 2 , С. С остальными неметаллами реакции протекают при различных условиях.


    Образуются галогениды неметаллов. Наиболее важной является реакция взаимодействия с водородом.



    Cl 2 + Н 2 =2НС1


    Cl 2 + 2S (расплав) = S 2 Cl 2


    ЗCl 2 + 2Р = 2РCl 3 (или РCl 5 - в избытке Cl 2)


    2Cl 2 + Si = SiCl 4


    3Cl 2 + I 2 = 2ICl 3

    Вытеснение свободных неметаллов (Вr 2 , I 2 , N 2 , S) из их соединений


    Cl 2 + 2KBr = Br 2 + 2KCl


    Cl 2 + 2KI = I 2 + 2KCl


    Cl 2 + 2HI = I 2 + 2HCl


    Cl 2 + H 2 S = S + 2HCl


    ЗСl 2 + 2NH 3 = N 2 + 6HCl

    Диспропорционирование хлора в воде и водных растворах щелочей

    В результате самоокисления-самовосстановления одни атомы хлора превращаются в анионы Cl - , а другие в положительной степени окисления входят в состав анионов ClO - или ClO 3 - .


    Cl 2 + Н 2 O = HCl + НClO хлорноватистая к-та


    Cl 2 + 2КОН =KCl + KClO + Н 2 O


    3Cl 2 + 6КОН = 5KCl + KClO 3 + 3Н 2 O


    3Cl 2 + 2Са(ОН) 2 = CaCl 2 + Са(ClO) 2 + 2Н 2 O


    Эти реакции имеют важное значение, поскольку приводят к получению кислородных соединений хлора:


    КClO 3 и Са(ClO) 2 - гипохлориты; КClO 3 - хлорат калия (бертолетова соль).

    Взаимодействие хлора с органическими веществами

    а) замещение атомов водорода в молекулах ОВ

    б) присоединение молекул Cl 2 по месту разрыва кратных углерод-углеродных связей


    H 2 C=CH 2 + Cl 2 → ClH 2 C-CH 2 Cl 1,2-дихлорэтан


    HC≡CH + 2Cl 2 → Cl 2 HC-CHCl 2 1,1,2,2-тетрахлорэтан

    Хлороводород и соляная кислота

    Газообразный хлороводород

    Физические и химические свойства

    HCl - хлорид водорода. При об. Т - бесцв. газ с резким запахом, достаточно легко сжижается (т. пл. -114°С, т. кип. -85°С). Безводный НСl и в газообразном, и в жидком состояниях неэлектропроводен, химически инертен по отношению к металлам, оксидам и гидроксидам металлов, а также ко многим другим веществам. Это означает, что в отсутствие воды хлороводород не проявляет кислотных свойств. Только при очень высокой Т газообразный HCl реагирует с металлами, причем даже такими малоактивными, как Сu и Аg.
    Восстановительные свойства хпорид-аниона в HCl также проявляются в незначительной степени: он окисляется фтором при об. Т, а также при высокой Т (600°С) в присутствии катализаторов обратимо реагирует с кислородом:


    2HCl + F 2 = Сl 2 + 2HF


    4HCl + O 2 = 2Сl 2 + 2Н 2 O


    Газообразный HCl широко используется в органическом синтезе (реакции гидрохлорирования).

    Способы получения

    1. Синтез из простых веществ:


    Н 2 + Cl 2 = 2HCl


    2. Образуется как побочный продукт при хлорировании УВ:


    R-H + Cl 2 = R-Cl + HCl


    3. В лаборатории получают действием конц. H 2 SO 4 на хлориды:


    H 2 SО 4 (конц.) + NaCl = 2HCl + NaHSО 4 (при слабом нагревании)


    H 2 SО 4 (конц.) + 2NaCl = 2HCl + Na 2 SО 4 (при очень сильном нагревании)

    Водный раствор HCl - сильная кислота (хлороводородная, или соляная)

    HCl очень хорошо растворяется в воде: при об. Т в 1 л Н 2 O растворяется ~ 450 л газа (растворение сопровождается выделением значительного количества тепла). Насыщенный раствор имеет массовую долю HCl, равную 36-37 %. Такой раствор имеет очень резкий, удушающий запах.


    Молекулы HCl в воде практически полностью распадаются на ионы, т. е. водный раствор HCl является сильной кислотой.

    Химические свойства соляной кислоты

    1. Растворенный в воде HCl проявляет все общие свойства кислот, обусловленные присутствием ионов Н +


    HCl → H + + Cl -


    Взаимодействие:


    а) с металлами (до Н):


    2HCl 2 + Zn = ZnCl 2 + H 2


    б) с основными и амфотерными оксидами:


    2HCl + CuO = CuCl 2 + Н 2 O


    6HCl + Аl 2 O 3 = 2АlCl 3 + ЗН 2 O


    в) с основаниями и амфотерными гидроксидами:


    2HCl + Са(ОН) 2 = CaCl 2 + 2Н 2 О


    3HCl + Аl(ОН) 3 = АlСl 3 + ЗН 2 O


    г) с солями более слабых кислот:


    2HCl + СаСО 3 = CaCl 2 + СO 2 + Н 3 O


    HCl + C 6 H 5 ONa = С 6 Н 5 ОН + NaCl


    д) с аммиаком:


    HCl + NH 3 = NH 4 Cl


    Реакции с сильными окислителями F 2 , MnO 2 , KMnO 4, KClO 3, K 2 Cr 2 O 7 . Анион Cl - окисляется до свободного галогена:


    2Cl - - 2e - = Cl 2 0


    Уравнения реакция см. "Получение хлора". Особое значение имеет ОВР между соляной и азотной кислотами:


    Реакции с органическими соединениями

    Взаимодействие:


    а) с аминами (как органическими основаниями)


    R-NH 2 + HCl → + Cl -


    б) с аминокислотами (как амфотерными соедимнеиями)


    Оксиды и оксокислоты хлора

    Кислотные оксиды


    Кислоты


    Соли

    Химические свойства

    1. Все оксокислоты хлора и их соли являются сильными окислителями.


    2. Почти все соединения при нагревании разлагаются за счет внутримолекулярного окисления-восстановления или диспропорционирования.



    Хлорная известь

    Хлорная (белильная) известь - смесь гипохлорита и хлорида кальция, обладает отбеливающим и дезинфицирующим действием. Иногда рассматривается как пример смешанной соли, имеющей в своем составе одновременно анионы двух кислот:


    Жавелевая вода

    Водный раствор хлорида и гапохлорита калия KCl + KClO + H 2 O

    Хлор, вероятно, получали еще алхимики, но его открытие и первое исследование неразрывно связано с именем знаменитого шведского химика Карла Вильгельма Шееле . Шееле открыл пять химических элементов – барий и марганец (совместно с Юханом Ганом), молибден, вольфрам, хлор, а независимо от других химиков (хотя и позже) – еще три: кислород, водород и азот. Это достижение впоследствии не смог повторить ни один химик. При этом Шееле, уже избранный членом Шведской королевской академии наук, был простым аптекарем в Чёпинге, хотя мог занять более почетную и престижную должность. Сам Фридрих II Великий , прусский король, предлагал ему занять пост профессора химии Берлинского университета. Отказываясь от подобных заманчивых предложений, Шееле говорил: «Я не могу есть больше, чем мне нужно, а того, что я зарабатываю здесь в Чёпинге, мне хватает на пропитание».

    Многочисленные соединения хлора были известны, конечно, задолго до Шееле. Этот элемент входит в состав многих солей, в том числе и самой известной – поваренной соли. В 1774 Шееле выделил хлор в свободном виде, нагревая черный минерал пиролюзит с концентрированной соляной кислотой: MnO 2 + 4HCl ® Cl 2 + MnCl 2 + 2H 2 O.

    Вначале химики рассматривали хлор не как элемент, а как химическое соединение неизвестного элемента мурия (от латинского muria – рассол) с кислородом. Считалось, что и соляная кислота (ее называли муриевой) содержит химически связанный кислород. Об этом «свидетельствовал», в частности, такой факт: при стоянии раствора хлора на свету из него выделялся кислород, а в растворе оставалась соляная кислота. Однако многочисленные попытки «оторвать» кислород от хлора ни к чему не привели. Так, никому не удалось получить углекислый газ, нагревая хлор с углем (который при высоких температурах «отнимает» кислород от многих содержащих его соединений). В результате подобных опытов, проведенных Гемфри Дэви, Жозеф Луи Гей-Люссаком и Луи Жаком Тенаром, стало ясно, что хлор не содержит кислорода и является простым веществом. К тому же выводу привели и опыты Гей-Люссака, который проанализировал количественное соотношение газов в реакции хлора с водородом.

    В 1811 Дэви предложил для нового элемента название «хлорин» – от греч. «хлорос» – желто-зеленый. Именно такой цвет имеет хлор. Этот же корень – в слове «хлорофилл» (от греч. «хлорос» и «филлон» – лист). Спустя год Гей-Люссак «сократил» название до «хлора». Но до сих пор англичане (и американцы) называют этот элемент «хлорином» (chlorine), тогда как французы – хлором (chlore). Приняли сокращенное название и немцы – «законодатели» химии на протяжении почти всего 19 в. (по-немецки хлор – Chlor). В 1811 немецкий физик Иоганн Швейгер предложил для хлора название «галоген» (от греческих «халс» – соль, и «геннао» – рождаю). Впоследствии этот термин закрепился не только за хлором, но и за всеми его аналогами по седьмой группе – фтором, бромом, иодом, астатом.

    Интересна демонстрация горения водорода в атмосфере хлора: иногда во время опыта возникает необычный побочный эффект: раздается гудение. Чаще всего пламя гудит, когда тонкую трубку, по которой подается водород, опускают в заполненный хлором сосуд конической формы; то же справедливо для сферических колб, а вот в цилиндрах пламя обычно не гудит. Это явление назвали «поющим пламенем».

    В водном растворе хлор частично и довольно медленно реагирует с водой; при 25° С равновесие: Cl 2 + H 2 O HClO + HCl устанавливается в течение двух суток. Хлорноватистая кислота на свету разлагается: HClO ® HCl + O. Именно атомарному кислороду приписывают отбеливающий эффект (абсолютно сухой хлор такой способностью не обладает).

    Хлор в своих соединениях может проявлять все степени окисления – от –1 до +7. С кислородом хлор образует ряд оксидов, все они в чистом виде нестабильны и взрывоопасны: Cl 2 O – желто-оранжевый газ, ClO 2 – желтый газ (ниже 9,7 о С – яркокрасная жидкость), перхлорат хлора Cl 2 O 4 (ClO–ClO 3 , светло-желтая жидкость), Cl 2 O 6 (O 2 Cl–O–ClO 3 , ярко-красная жидкость), Cl 2 O 7 – бесцветная очень взрывчатая жидкость. При низких температурах получены нестабильные оксиды Cl 2 O 3 и ClO 3 . Оксид ClO 2 производится в промышленном масштабе и используется вместо хлора для отбеливания целлюлозы и обеззараживания питьевой воды и сточных вод. С другими галогенами хлор образует ряд так называемых межгалогенных соединений, например, ClF, ClF 3 , ClF 5 , BrCl, ICl, ICl 3 .

    Хлор и его соединения с положительной степенью окисления – сильные окислители. В 1822 немецкий химик Леопольд Гмелин путем окисления хлором получил из желтой кровяной соли красную: 2K 4 + Cl 2 ® K 3 + 2KCl. Хлор легко окисляет бромиды и хлориды с выделением в свободном виде брома и иода.

    Хлор в разных степенях окисления образует ряд кислот: HCl – хлороводородная (соляная, соли – хлориды), HClO – хлорноватистая (соли – гипохлориты), HClO 2 – хлористая (соли – хлориты), HClO 3 – хлорноватая (соли – хлораты), HClO 4 – хлорная (соли – перхлораты). В чистом виде из кислородных кислот устойчива только хлорная. Из солей кислородных кислот практическое применение имеют гипохлориты, хлорит натрия NaClO 2 – для отбеливания тканей, для изготовления компактных пиротехнических источников кислорода («кислородные свечи»), хлораты калия (бертолетова соль), кальция и магния (для борьбы с вредителями сельского хозяйства, как компоненты пиротехнических составов и взрывчатых веществ, в производстве спичек), перхлораты – компоненты взрывчатых веществ и пиротехнических составов; перхлорат аммония – компонент твердых ракетных топлив.

    Хлор реагирует со многими органическими соединениями. Он быстро присоединяется к непредельным соединениям с двойными и тройными углерод-углеродными связями (реакция с ацетиленом идет со взрывом), а на свету – и к бензолу. При определенных условиях хлор может замещать атомы водорода в органических соединениях: R–H + Cl 2 ® RCl + HCl. Эта реакция сыграла значительную роль в истории органической химии. В 1840-х французский химик Жан Батист Дюма обнаружил, что при действии хлора на уксусную кислоту с удивительной легкостью идет реакция

    СН 3 СООН + Cl 2 ® CH 2 ClCOOH + HCl. При избытке хлора образуется трихлоруксусная кислота ССl 3 СООН. Однако многие химики отнеслись к работе Дюма недоверчиво. Ведь согласно общепринятой тогда теории Берцелиуса положительно заряженные атомы водорода не могли заместиться отрицательно заряженными атомами хлора. Этого мнения придерживались в то время многие выдающиеся химики, среди которых были Фридрих Вёлер, Юстус Либих и, конечно, сам Берцелиус.

    Чтобы высмеять Дюма, Вёлер передал своему другу Либиху статью от имени некоего Ш.Виндлера (Schwindler – по-немецки мошенник) о новом удачном приложении якобы открытой Дюма реакции. В статье Вёлер с явной издёвкой написал о том, как в уксуснокислом марганце Mn(CH 3 COO) 2 удалось все элементы, в соответствии с их валентностью, заместить на хлор, в результате чего получилось желтое кристаллическое вещество, состоящее из одного только хлора. Далее говорилось, что в Англии, последовательно замещая в органических соединениях все атомы на атомы хлора, обычные ткани превращают в хлорные, и что при этом вещи сохраняют свой внешний вид. В сноске было указано, что лондонские лавки бойко торгуют материалом, состоящим из одного хлора, так как этот материал очень хорош для ночных колпаков и теплых подштанников.

    Реакция хлора с органическими соединениями приводит к образованию множества хлорорганических продуктов, среди которых – широко применяющиеся растворители метиленхлорид CH 2 Cl 2 , хлороформ CHCl 3 , четыреххлористый углерод CCl 4 , трихлорэтилен CHCl=CCl 2 , тетрахлорэтилен C 2 Cl 4 . В присутствии влаги хлор обесцвечивает зеленые листья растений, многие красители. Этим пользовались еще в XVIII в. для отбеливания тканей.

    Хлор как отравляющий газ.

    Получивший хлор Шееле отметил его очень неприятный резкий запах, затруднение дыхания и кашель. Как потом выяснили, человек чувствует запах хлора даже в том случае, если в одном литре воздуха содержится лишь 0,005 мг этого газа, и при этом он уже оказывает раздражающее действие на дыхательные пути, разрушая клетки слизистой оболочки дыхательных путей и легких. Концентрация 0,012 мг/л переносится с трудом; если же концентрация хлора превышает 0,1 мг/л, он становится опасным для жизни: дыхание учащается, становится судорожным, а затем – все более редким, и уже через 5–25 минут происходит остановка дыхания. Предельно допустимой в воздухе промышленных предприятий считается концентрация 0,001 мг/л, а в воздухе жилых районов – 0,00003 мг/л.

    Петербургский академик Товий Егорович Ловиц, повторяя в 1790 опыт Шееле, случайно выпустил значительное количество хлора в воздух. Вдохнув его, он потерял сознание и упал, потом в течение восьми дней страдал от мучительной боли в груди. К счастью, он выздоровел. Чуть не умер, отравившись хлором, и знаменитый английский химик Дэви. Опыты даже с небольшим количеством хлора опасны, так как могут вызвать сильное поражение легких. Рассказывают, что немецкий химик Эгон Виберг одну из своих лекций о хлоре начал словами: «Хлор – ядовитый газ. Если я отравлюсь во время очередной демонстрации, вынесите меня, пожалуйста, на свежий воздух. Но лекцию при этом придется, к сожалению, прервать». Если же выпустить в воздух много хлора, он становится настоящим бедствием. Это испытали на себе во время Первой мировой войны англо-французские войска. Утром 22 апреля 1915 германское командование решило провести первую в истории войн газовую атаку: когда ветер подул в сторону противника, на небольшом шестикилометровом участке фронта в районе бельгийского городка Ипр были одновременно открыты вентили 5730 баллонов, каждый из которых содержал 30 кг жидкого хлора. В течение 5 минут образовалось огромное желто-зеленое облако, которое медленно уходило от немецких окопов в сторону союзников. Английские и французские солдаты оказались полностью беззащитными. Газ проникал через щели во все укрытия, от него не было спасения: ведь противогаз еще не был изобретен. В результате было отравлено 15 тысяч человек, из них 5 тысяч – насмерть. Через месяц, 31 мая немцы повторили газовую атаку на восточном фронте – против русских войск. Это произошло в Польше у города Болимова. На фронте 12 км из 12 тысяч баллонов было выпущено 264 тонны смеси хлора со значительно более ядовитым фосгеном (хлорангидридом угольной кислоты COCl 2). Царское командование знало о том, что произошло при Ипре, и тем не менее русские солдаты не имели никаких средств защиты! В результате газовой атаки потери составили 9146 человек, из них только 108 – в результате ружейного и артиллерийского обстрела, остальные были отравлены. При этом почти сразу же погибло 1183 человека.

    Вскоре химики указали, как спасаться от хлора: надо дышать через марлевую повязку, пропитанную раствором тиосульфата натрия (это вещество применяется в фотографии, его часто называют гипосульфитом). Хлор очень быстро реагирует с раствором тиосульфата, окисляя его:

    Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ® 2H 2 SO 4 + 2NaCl + 6HCl. Конечно, серная кислота тоже не безвредное вещество, но ее разбавленный водный раствор намного менее опасен, чем ядовитый хлор. Поэтому у тиосульфата в те годы появилось еще одно название – «антихлор», но первые тиосульфатные противогазы были мало эффективны.

    В 1916 русский химик, будущий академик Николай Дмитриевич Зелинский изобрел действительно эффективный противогаз, в котором ядовитые вещества задерживали слоем активированного угля. Такой уголь с очень развитой поверхностью мог задержать значительно больше хлора, чем пропитанная гипосульфитом марля. К счастью, «хлорные атаки» остались лишь трагическим эпизодом в истории. После мировой войны у хлора остались только мирные профессии.

    Применение хлора.

    Ежегодно во всем мире получают огромные количества хлора – десятки миллионов тонн. Только в США к концу 20 в. ежегодно путем электролиза получали около 12 млн. тонн хлора (10-е место среди химических производств). Основная его масса (до 50%) расходуется на хлорирование органических соединений – для получения растворителей, синтетического каучука, поливинилхлорида и других пластмасс, хлоропренового каучука, пестицидов, лекарственных средств, многих других нужных и полезных продуктов. Остальное потребляется для синтеза неорганических хлоридов, в целлюлозно-бумажной промышленности для отбеливания древесной пульпы, для очистки воды. В сравнительно небольших количествах хлор используют в металлургической промышленности. С его помощью получают очень чистые металлы – титан, олово, тантал, ниобий. Сжиганием водорода в хлоре получают хлороводород, а из него – соляную кислоту. Хлор применяют также для производства отбеливающих веществ (гипохлоритов, хлорной извести) и обеззараживания воды хлорированием.

    Илья Леенсон