Что можно узнать с помощью глобуса и географической карты? §43. решение задач с помощью звездного глобуса

Всю жизнь эти два предмета идут рядом, и всегда они удивляют своей непохожестью. С одной стороны и то, и другое — всего лишь уменьшенная , а с другой — целый пласт в истории развития .

Правда, тут тоже надо быть аккуратным. Ведь стандартные глобусы в тридцать, а то и в восемьдесят миллионов раз меньше реальной планеты, так что область, покрытая пальцем, может включить в себя несколько островов или даже стран.

Так что если всерьез решили узнать, куда лучше направиться, то стоит использовать глобус, изготовленный к Парижской выставке 1889 года. Он то всего чуть меньше земного шара. В какой-то миллион раз. Тут не промахнешься.

Безусловно, появился куда позже, чем карты, но успел получить свою долю популярности. Будучи впервые изготовленным в 1492 году, он успел пригодиться и для мореплавания, и для школьного учебного пособия, хотя в последнее время в качестве пособия его используют куда чаще.

Нужно отметить, что название Глобус появилось не случайно, хотя тот, кто придумал его, не отличался бурной фантазией. Глобус с латыни переводится как шар. Да, просто шар — ёмко и понятно.

Остается нерешенным только один вопрос. Если взять глобус и карту с одинаковым и наклеить карту на глобус, то совпадут ли горы и реки? Любопытно? Ну тогда можете попробовать. Хотя лучше сначала спросить у учителя.

Земля имеет форму шара. Это было окончательно доказано, когда искусственные спутники облетели вокруг Земли во всех направлениях. Они получили фотографии Земли, отчётливо показывающие выпуклость земной поверх-ности (рис. 33).

На глобус нанесены части света, океаны, моря, реки , горы и другие географические объекты. На глобусе можно увидеть, что большую часть земной поверхности занимают океаны . Выделяют четыре океана: Тихий , Индийский , Атлантический , Северный Ледовитый .

Огромные участки суши, со всех сторон омываемые водами океанов , называются материками или континентами. Материков на земном шаре шесть: Евразия , Северная Америка , Южная Америка , Африка , Антарктида , Австралия .

Материк или часть материка вместе с близлежащими остро-вами называется частью света. Частей света шесть: Евро-па , Азия , Африка , Америка , Австралия , Антарктида . Как видно, на одном континенте Евразия находятся две части света: Европа и Азия. Условную границу между этими частями света проводят по восточному склону Уральских гор, реке Урал, Каспийскому морю, севернее Кавказских гор по Кумо-Манычской впадине, Чёрному морю.

Первые глобусы были созданы еще в Древней Гре-ции. В эпоху Великих географи-ческих открытий в 1492 году был создан первый из сохранивших-ся до наших дней глобус. На нем были показаны только материки Старого Света. По мере изучения различных частей Земли создавались все бо-лее точные глобусы.

Если глобус разрезать по одному из меридианов пополам, то получится два полушария, на каж-дом из которых будет изображена половина поверхности земно-го шара.

Такими полушариями пользоваться уже удобнее, так как сразу можно увидеть поверхность всего земного шара. На гло-бусе же видна только та часть, которая обращена к наблюда-телю. Если полушария показать на плоскости, на бумаге, то это и будет карта полушарий, которая помещена в атласах.

Но изобразить полушарие на плоскости нельзя без того, чтобы оно не смялось в складки, а местами и разорвалось. Правда, можно разрезать глобус по меридианам на доли (рис. 35) и из этих долей составить карту (рис. 36). Понятно, что на такой карте неизбежны искажения, причём они возрастают по направлению от Экватора к полюсам. Поэтому, когда требуется узнать расстояние между двумя пунктами, то желательно это делать по глобусу, так как он почти в точности повторяет форму Земли.

Градусная сетка (параллели и меридианы) — это условные линии, на самой поверхно-сти Земли их нет. На карте и глобусе их проводят для то-го, чтобы можно было точно указать, где находится тот или иной географический объект, где находятся путешественники. Мери-дианы и параллели помогают ориентироваться , то есть опреде-лять свое положение на местности и на карте по отношению к сторонам горизонта. Параллели и меридиа-ны располагаются перпен-дикулярно друг другу.

На глобусах и картах прове-дены также условные линии полюсов, экватора, тропиков и полярных кругов. Существует также условная линия перемены дат.

Градусная сетка

22 декабря, в день зимнего солнцестояния , солнечные лу-чи падают вертикально вниз над Южным тропиком — па-раллелью 23,5° ю.ш., а Солнце не заходит над Южным полярным кругом на широте 66,5° ю.ш. В Южном полушарии лето. Солнце не показывается над Южным полярным кругом 22 июня, зимой Южного полушария. Дважды в год, 21 марта и 23 сентября , лучи Солнца падают вертикально вниз над экватором и равномерно освещают Землю от полюса до полюса. В эти дни весеннего и осеннего равноденствия день и ночь повсюду длятся по 12 часов.

Линия перемены дат

Географические координаты

Географиче-скими координатами какой-либо точки называют ее широту и долготу. Координаты любого места земной поверхности можно определить по глобусу или по карте. И наоборот, зная координаты географического объекта, можно найти его место на карте или глобусе.

  • §14. Изменение экваториальных координат Солнца в течение года
  • Глава 5. Орбитальное и видимое движение планет, Луны и искусственных спутников
  • §18. Фазы и возраст Луны
  • §21. Орбитальное движение искусственных спутников
  • Глава 6. Измерение времени
  • §22. Основы измерения времени
  • §23. Звездные сутки. Звездное время. Основная формула времени
  • §26. Поясное, декретное, летнее, московское и стандартное времена, их связь с местной системой
  • §28. Понятие о точных шкалах времени
  • Глава 7. Вычисление видимых координат светил. МАЕ
  • §31. Понятие о вычислении видимых координат светил на ЭВМ
  • §32. Устройство таблиц МАЕ для расчета часовых углов и склонений светил
  • §33. Определение времени кульминации светил
  • §34. Обоснование расчета времени видимого восхода (захода) Солнца и Луны и времени сумерек
  • §35. Определение времени восхода и захода Солнца и Луны и времени сумерек по МАЕ
  • Глава 8. Измерители времени. Судовая служба времени
  • Глава 9. Звездное небо. Звездный глобус
  • §42. Устройство звездного глобуса, его установка. Понятие о других пособиях
  • §43. Решение задач с помощью звездного глобуса
  • Глава 10. Секстан
  • §44. Основы теории навигационного секстана
  • §45. Устройство навигационных секстанов
  • §46. Понятие об инструментальных ошибках секстана и их учете
  • §47. Понятие о секстанах с искусственным горизонтом
  • Глава 11. Наблюдения с навигационным секстаном
  • §48. Выверка навигационного секстана на судне
  • §50. Приемы измерения высот светил над видимым горизонтом
  • §53. Наклонение видимого горизонта. Наклонение зрительного луча
  • §55. Общий случай исправления высот светил, измеренных над видимым горизонтом
  • §56. Частные случаи исправления высот светил
  • §57. Приведение высот светил к одному зениту (месту) и одному моменту
  • §58. Определение средних квадратических ошибок поправок и измерения углов
  • §59. Определение средней квадратической ошибки измерения высот светил в море
  • Глава 13. Астрономическое определение поправки компаса
  • §60. Основы астрономического определения поправки компаса
  • §62. Пеленгование светил. Точность поправки компаса
  • §63. Определение поправки компаса. Общий случай
  • Глава 14. Теоретические основы определения места судна по светилам
  • §65. Общие принципы астрономического определения места
  • §67. Метод линий положения. Высотная линия положения
  • §72. Ошибки в высотной линии. Оценка ее точности и вес
  • Глава 16. Методы отыскания места судна и оценки его точности при наличии ошибок в высотных линиях
  • Глава 17. Определение места по одновременным наблюдениям светил. Общий случай
  • §76. Особенности определения места по одновременным наблюдениям светил
  • §77. Общий случай определения места по звездам
  • §78. Определение места днем по одновременным наблюдениям Луны и Солнца
  • §79. Определение места днем по одновременным наблюдениям Венеры и Солнца
  • §80. Определение места по одновременным наблюдениям Венеры, Луны и Солнца
  • Глава 18. Определение места судна по разновременным наблюдениям Солнца
  • §81. Особенности определения места по разновременным наблюдениям Солнца
  • §82. Влияние ошибок счисления и наивыгоднейшие условия для определения места по Солнцу
  • §83. Определение места по Солнцу в общем случае
  • §84. Определение места комбинированием навигационных и астрономических линий положения
  • Глава 19. Ускоренные способы обработки наблюдений
  • §86. Обзор приемов ускорения обработки наблюдений
  • §87. Прием перемещения счислимого места
  • §88. Определение места с предварительной обработкой (предвычислением) линий положения
  • §92. Решение астрономических задач на клавишных ЭВМ
  • Глава 20. Частные методы определения координат места судна
  • §93. Определение широты места по меридиональной и наибольшей высотам Солнца. Понятие о близмеридиональных высотах
  • §96. Определение координат места в малых широтах по соответствующим высотам Солнца
  • §97. Графический способ определения места при высотах Солнца, больших 88°
  • §98. Особенности определения места в высоких широтах
  • Глава 21. Перспективы развития методов астрономических определений в море. Краткий исторический очерк
  • §99. Понятие об астронавигационных системах и навигационных комплексах
  • §100. Краткий очерк истории мореходной астрономии
  • Список литературы
  • НО-214), но они оказались неудобными. В настоящее время для подбора звезд широко применяют таблицы типа НО-249 (см. §90), где даны h и А семи звезд по φ и SM через 1°.

    §43. РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ ЗВЕЗДНОГО ГЛОБУСА

    С помощью звездного глобуса можно приближенно решить любую задачу мореходной астрономии, но практически решаются три типа задач: определение названия неопознанной звезды или планеты; получение h и А звезд или планет на заданное время и варианты этой задачи (подбор звезд для наблюдений, определение ∆А, ∆К и др.); определение времени прихода светила в заданное положение, например времени восхода светила, прихода на заданную высоту и т.п.

    Определение названия неопознанной звезды или планеты. На практике часто бывают случаи, когда небо покрыто облаками с просветами, в которые видны лишь отдельные звезды. В этом случае определить, какая именно звезда наблюдалась, довольно трудно и приходится прибегать к помощи звездного глобуса. Кроме того, подобные задачи решаются при изучении звездного неба. Порядок решения этой задачи следующий:

    1. После измерения высоты звезды определить ее пеленг по компасу и заметить Т с . Снять с карты φс и λс .

    SM =tE M ± λ W Ost

    3. Установить глобус по φ и S M . При установке SМ его значение приводят на середину кольца меридиана.

    4. Перевести пеленг в азимут четвертного счета. Установить дугу вертикала по азимуту и индекс вертикала по высоте.

    5. Найти под индексом звезду по ее месту в созвездии, которое приведено

    в латинском или русском написании, например из созвездия Taurus (Телец). С помощью списка звезд в МАЕ определить номер звезды. По названию и номеру

    выбрать координаты из МАЕ, так, Телец α - номер 24 (Альдебаран).

    6. Если под индексом не окажется звезды, то либо сделан промах при решении задачи, либо наблюдалась планета. Первым признаком планеты является ее расположение около эклиптики, а также ее яркость. Проверив решение и установив его правильность, опознают планету. Для опознавания планеты с глобуса снимают α и δ точки под индексом. С полученными данными и датой входят в ежедневные таблицы МАЕ и отыскивают, у какой планеты α и δ будут наиболее близкими к данным.

    Пример 43. 5 мая 1977 г. около Tс =20Ч 30M ; φс =39°55" N; λ=34°20"W (№=1W) наблюдали светило ос=21°10,5"; TXP =9ч 26м 40c ; u=+0М 55c ; КП=127°(–1°).

    Опознать светило.

    Решение. Решение производится по общей схеме вычислений линий положения.

    Тс

    20ч 30м

    Т хр

    9ч 26м 40c

    t E ГР

    178о 36,8"

    127о

    Т гр

    Т гр

    21ч 27м 35c

    5/V tE ГР

    126о

    tE M

    151о 11,7"

    о SO

    2. Устанавливаем глобус по φ=39,9° N, поднимая P N над точкой N на 39,9° (отсчет на кольце склонений у N 50,1°). Для установки по времени поворачиваем глобус до прихода на середину кольца меридиана SM =151,2°. На крестовине вертикалов ставим h=21° и А=54° SO.

    3. Под индексом читаем: α Девы (Virgo), по списку звезд в МАЕ № 92.

    КП=353°(+1°).

    Т ГРП

    6ч 30м 00c

    330о 44,4"

    353о

    T СКМ

    Т гр

    6ч 33м 13c

    t E ГР

    354о

    tE M

    139о 22"

    о NW

    Устанавливаем глобус по φ=36,2°S (над точкой S) и SM =139,4°, а вертикалы по А и h. Под индексом ничего нет, но точка близка к эклиптике. Снимаем по экватору α=136°, δ=19° N. Из МАЕ на эти даты внизу с. 120 подходит планета Сатурн.

    Получение высоты и азимута светила на заданное время.

    1. Рассчитать T с и Tгр для момента предполагаемых наблюдений и снять с карты φс и λс на это время. Чаще всего звезды наблюдают в сумерки так, что рассчитывают Тс сумерек.

    3. Установить глобус по φ и S M .

    4. Установить крестовину так, чтобы оцифрованный вертикал был ближе

    к звезде, направить индекс на место звезды, снять и записать отсчеты h и А звезды.

    5. Если требуется получить h и А планеты, то ее место предварительно наносят на глобус по и δ, как показано в §42.

    в утренние сумерки определить α и δ звезды α Волопаса (α Bootis). Решение.

    1. Определили начало гражданских сумерек T С =4Ч 22М .

    4ч 22м

    59о 16,3"

    3. Устанавливаем глобус по

    φ=35,3о N, SM =293,1o

    Снимаем: h=18,5o ;

    Т гр

    13ч 22м 6/V

    t E ГР

    A=80o NW:

    АКР =280о

    SM =tE M

    293о 7"

    Подбор звезд для определения места. Первой операцией является выбор времени наблюдений. Для сумеречных наблюдений вечером начало наблюдений планируют на середину гражданских сумерек, утром - на середину навигационных. После этого рассчитывают время пуска секундомера, его удобнее принимать на целые градусы S M . Далее по S M через 1 o подбирают звезды.

    При определении места по двум звездам разность азимутов их должна быть по возможности близка к 90°. При определении по трем звездам разность азимутов в каждой паре должна быть близкой к 120°, а для четырех звезд разность азимутов в каждой паре близка к 180°, между парами - к 90°. Кроме того, должна учитываться освещенность горизонта и видимость звезд. Первой подбирают самую яркую звезду вечером, слабую - утром (наблюдения лучше начинать с Ost -a). В остальном задача сводится к предыдущей.

    Пример 46. 5 мая 1977 г. в Индийском океане подобрать звезды для наблюдений в вечерние сумерки. На Тс =17Ч 30M ; φ=28°32"S; К=110°26"Os t (№=– 8), u=+0M 37c ; начать наблюдения в середину гражданских сумерек.

    Решение. 1. Определение времени начала наблюдений (см. рис. 53): Заход Солнца

    17ч 24м

    ∆Т СУМ

    ТМ

    T ГР

    18ч 14м

    Тс

    Т ХРП

    10ч 12м 58c

    4. Подбор звезд. Устанавливаем глобус φ=28,5S; SM =127o (128o и т.д.) и с помощью вертикалов подбираем звезды, начиная с яркой – Сириуса.

    62o ,5

    293o

    β Ю.Креста

    38o ,5

    215o

    Определение времени прихода светила в заданное положение (восход,

    кульминацию, заданную высоту или разность азимутов и т.п.).

    1. Снять с карты φс и λс на предполагаемое Тс явления (на вечер, ночь,

    2. Установить глобус по широте.

    3. Поворотом сферы привести намеченную звезду или планету в требуемое положение (на горизонт, на первый вертикал и т.п.).

    4. Снять отсчет t E M =SM у полуденной части кольца меридиана наблюдателя по его центру.

    5. Рассчитать tE ГР =tE M ± λ W Ost и с помощью МАЕ получить TГР и затем Тс явления (см. §33, пример 31).

    Если Тс значительно отличается от предполагаемого, то координаты φ и λ уточняют и, если нужно, решение выполняют во втором приближении.

    Пример 47 . 24 мая 1977 г. ориентировочно на Тс =12ч ; φс =34°5"N; λс =147о 40"Ost (№=-9) По звездному глобусу определить время, когда Венера и Солнце имеют наибольшую разность азимутов.

    Решение. 1. Координаты Солнца и Венеры на Тгр =3ч 24/V.

    t E ГР

    236o 36,1"

    286o 36,1"

    t ГР

    60o 46,8"

    18o 23,2"

    20,7о N

    6,4о N

    Наносим Солнце и Венеру на глобус.

    2.Устанавливаем глобус по φ и вращением его приводим Венеру и Солнце по разные стороны меридиана, при этом подбирается ∆Амакс =90°. У меридиана снимаемS M 400 .

    3. Расчет Тс по SM

    SM 40

    tE ГР 252o 20"

    МАЕ tT 241 28,7 …

    ∆tE 10o 51,3" ....

    ∆T"ГР 0ч 24/V ∆Т 43м 18c

    ∆TГР 0 43 -

    № 9

    Т ХР П 9ч 43м

    Глобус - это точная, но уменьшенная в миллионы раз копия нашей планеты. Без этой модели весьма сложно представить себе такую науку, как география. Глобус "изобрели" еще в XV веке, но и сегодня он активно используется в различных сферах человеческой жизни.

    Что такое глобус?

    Следует признать, что первым картографическим изображением поверхности Земли была карта. Вернее, это был рисунок местности, начерченный на стене пещеры. Глобусы появились намного позже, когда человек осознал масштабы нашей планеты и выяснил, что она имеет шарообразную форму.

    Что такое глобус? Каковы основные свойства этого способа изображения земной поверхности?

    Ответ на вопрос "что такое глобус" должен знать каждый школьник. В переводе с латыни слово globus означает "шар". Таким образом, глобус - это изображения земной поверхности, при котором сохраняется геометрическая форма нашей планеты, а также все линии, площади и контуры изображаемых объектов. Единственное уточнение: все это уменьшается в миллионы раз.

    По сравнению с географической картой на глобусе все искажения земной поверхности минимальны. Материки, океаны, моря и острова на нем полностью соответствуют их расположению на Точно наносить все географические объекты на глобус помогает градусная сетка, состоящая из линий

    Свойства и использование глобуса

    К основным свойствам глобуса следует отнести следующие:

    • сохраняется шарообразность Земли;
    • сохраняется взаимное расположение полюсов, параллелей и меридианов;
    • масштаб одинаков на всех участках модели;
    • формы всех фигур на земной поверхности не искажаются.

    На протяжении XVII-XVIII веков глобусами активно пользовались мореплаватели, путешественники и первооткрыватели. Сейчас же они применяются исключительно в научной и образовательной (намного чаще) деятельности. Глобус школьный является неотъемлемым атрибутом любого кабинета географии.

    История глобуса

    Древнейший глобус, который сохранился до наших дней, датируется 1492 годом. Его создал - немецкий ученый и путешественник. За основу он взял данные Птолемея и Тосканелли. Глобус Бехайма хранится в музее в Нюрнберге. Так как Америка на то время еще не была открыта, на ее месте Бехайм изобразил восточную оконечность Азии, а также множество не существующих островов.

    Однако самый первый глобус, согласно письменным античным упоминаниям, был изготовлен 1700 лет назад. Его автором стал ученик Аристотеля - древнегреческий мыслитель Кратес. Он создал шарообразную которая, однако, не дошла до наших дней. Но другие античные философы описывают, что на ней была изображена сплошная суша, разделенная на четыре части двумя перпендикулярно пересекающимися реками.

    Разновидности глобусов

    • малые (до 60 см в диаметре);
    • средние (от 60 до 120 см);
    • большие (свыше 120 см в диаметре).

    Кроме земных, также существуют глобусы других небесных тел Солнечной системы (Луны, Марса, Меркурия и т. д.), а также звездного неба. Шарообразные модели нашей планеты также могут изготавливаться из разных материалов. Это может быть пластик, бумага, стекло или камень.

    Заключение

    Итак, что такое глобус? Теперь вы с легкостью сможете ответить на этот вопрос. Это модель Земли, которая в точности повторяет её форму, не искажая при этом площади и контуры объектов на всех участках поверхности. Считается, что самый первый глобус создал немецкий ученый Мартин Бехайм в 1492 году. Однако самые ранние упоминания о подобных приборах датируются еще третьим столетием до нашей эры.

    Модель Земли

    Уменьшенной моделью Земли, наиболее полно отображающей ее поверхность, является глобус, что в переводе с латинского означает шар. С помощью глобуса можно представить себе вращение Земли вокруг оси, наклон земной оси к плоскости орбиты. А главное, на глобусе мы наблюдаем в уменьшенном виде всю поверхность нашей планеты.

    Первый упоминаемый в литературе земной глобус - глобус Кратеса из Пергамы - был сделан во II в. до н. э. Однако ни сам глобус, ни его изображение не найдены. В I в. н.э. среднеазиатский ученый Бируни, родившийся в городе Кяте - древней столице Хорезма (ныне г. Бируни Каракалпакской АССР) изготовил оригинальный глобус, наиболее точно для того времени передававший представление о земном шаре. О том, как ученый создавал свой глобус, он рассказывал сам: «Я начал с уточнения расстояний и названий мест и городов, основываясь на слышанном от тех, кто по ним странствовал, и собранном из уст тех, кто их видел. Предварительно я проверил надежность материала и принял меры предосторожности путем сопоставления сведений одних лиц со сведениями других». К сожалению и этот глобус до нас не дошел.

    Первым из сохранившихся считается глобус, изготовленный в 1492 г. немецким географом М. Бехаймом. На нем еще не было Америки, и расстояние между западным побережьем Европы и восточным побережьем Азии было в два раза меньше, чем в действительности.

    Уникальным памятником отечественной науки и техники XVIII в. является большой академический глобус, диаметр которого составляет 3 м 10 см. На наружной поверхности его нанесена карта Земли, а на внутренней - звездного неба. Глобус укреплен на железной оси, нижний конец которой упирается в пол, а верхний с помощью специальных растяжек крепится к стенам зала. Внутри глобуса на его оси смонтированы стол и скамья. Здесь могут разместиться одновременно 10-12 человек. С помощью особого механизма глобус вращается вокруг оси, а сидящие внутри зрители, оставаясь на неподвижной скамье, могут наблюдать движение небесных светил. Этот глобус хранится в музее М. В. Ломоносова в Ленинграде.

    В настоящее время фигуру Земли представляют в виде эллипсоида, так как экваториальный радиус Земли больше полярного примерно на 21 км. Возникает вопрос, почему же глобусы изготовляют в виде шара, а не эллипсоида?

    Решим следующую задачу. Допустим, глобус имеет диаметр 50 см. На какую величину экваториальный радиус на таком глобусе больше полярного? Это можно определить, пользуясь следующим соотношением:

    R/ΔR = r/Δr,

    где R - средний радиус Земли, r - радиус глобуса; ΔR, Δr - разности экваториального и полярного радиусов Земли и глобуса.

    Из этой формулы следует, что разность экваториального и полярного радиусов глобуса составляет

    Δr = (ΔR/R)r = 21/6370*25 = 0,1 см.

    Понятно, что такое малое расхождение радиусов глобуса не может быть ощутимо. И действительно, с космических высот наша планета представляется правильным шаром с затуманенными из-за наличия атмосферы краями.

    Неровности земной поверхности также не отобразятся на глобусе. Даже такая величайшая вершина мира, как г. Джомолунгма, и та будет на глобусе незаметной песчинкой высотой несколько микрометров.

    Обычно масштабы глобусов очень мелкие - 1:30-1:80 млн., но в отдельных случаях, например у музейных глобусов, они составляют 1:10 млн. и крупнее. Такие глобусы иногда делают рельефными, но рельеф на них изображают в значительно укрупненном масштабе.

    Параллели и меридианы, проведенные на глобусе, образуют своеобразную сетку, которая называется географической. Относительно этой сетки на поверхности глобуса изображены моря и океаны, материки и отдельные страны. Вследствие этого глобус обладает замечательными свойствами. Он не только наглядно представляет фигуру Земли, но и дает правильное представление о положении на земном шаре полюсов и экватора, а также основных частей земной поверхности: материков, океанов, морей, островов и других крупных объектов. Изображение Земли на глобусе имеет свойства равномасштабности, равновеликости и равноугольности. Это значит, что все линейные размеры даются на нем с одинаковым уменьшением, формы фигур подобны действительным очертаниям на земной поверхности, а площади всех объектов, показанных на глобусе, пропорциональны их действительным площадям на земном шаре.

    Глобус как картографическая модель земного шара позволяет рассматривать Землю как бы со стороны, но не издалека и не окутанную в облачный покров, какой она видна из космоса, а расположенную рядом, доступную для непосредственного изучения, измерений и решения различных задач.

    Глобус, безусловно, дает самое верное представление о взаимном расположении материков и океанов, рек, городов, гор. Но с этой моделью нашей планеты не очень удобно работать. Глобусы при всех своих достоинствах очень мелкомасштабны и громоздки. Так, если бы глобус был изготовлен в масштабе 1:1000000, то он имел бы диаметр 12,7 м. Кроме того, на нем трудно производить линейные измерения, определять плановые координаты точек, наносить на него изображения географических объектов. Да и пользоваться глобусом не всегда удобно - ведь его нельзя напечатать в книге или на отдельном листе. Поэтому-то глобусы имеют меньшее распространение и применение, чем карты, которые более удобны для использования и хранения.

    Как пользоваться глобусом

    Глобус обладает такими свойствами, каких не имеет и не может иметь ни одна географическая карта. Его мас­штаб постоянен во всех местах и по всем направлениям. Полное подобие изображения на глобусе действитель­ным очертаниям объектов позволяет легко определять истинные размеры любых частей поверхности Земли и сравнивать их. На глобусе можно измерять площади и расстояния, определять географические координаты пун­ктов, направления на стороны горизонта и т. д.

    Работать с глобусом наиболее удобно, когда он на­ходится в ориентированном положении. Обычно ось гло­буса устанавливают не вертикально, а под углом 66°33" к горизонтальной плоскости. Многие считают, что тем самым задано его ориентирование. Но это не так. Гори­зонтальная плоскость совпадает с плоскостью орбиты только на одной широте - на полярном круге. Только здесь мы можем ориентировать глобус, направив север­ный конец его оси в Полюс мира. На всех других широ­тах обычный глобус не ориентируется.

    Для того чтобы ось глобуса была параллельна оси Земли в любом месте, нужно угол наклона оси к гори­зонтальной плоскости сделать равным широте этого мес­та. Так, например, в Москве, расположенной на 55°45" с. ш., угол наклона оси глобуса должен быть 55°45", а на Северном полюсе ось глобуса должна занять строго вер­тикальное положение.


    Рис. 29. Ориентирование глобуса на широте Москвы: а - с помощью клиновой подставки; б - с помощью цилиндрического кольца

    Ориентирование глобуса можно выполнить следую­щим образом. Установите глобус так, чтобы населенный пункт, где вы живете, был в зените, т. е. на самом вер­ху. В таком положении подложите под основание глобуса какой-нибудь предмет, и ваш глобус будет ориентирован. Впрочем, подставку вы можете сделать заранее из треугольного бруска, подобного показанному на рис. 29, а. Угол у основания этого бруска должен соответствовать разности величины угла наклона оси глобуса и значения широты вашего населенного пункта. Если, например, вы живете на широте Москвы, то разность составит примерно 11°(66°33" - 55°45").

    Работая с глобусом, вы, наверное, убедились, что по нему трудно изучать континенты и моря Южного полушария. В самом деле, чтобы, например, изучить Антарктиду, а тем более определить координаты антарктических станций и других объектов, нужно перевернуть глобус, придерживая его за основание. Попробуйте в таком положении выполнять на нем какие-либо измерения! Здесь рекомендуем воспользоваться следующим советом. Открутите винт, скрепляющий глобус с осью, выньте глобус и установите его на специально изготовленной подставке в виде широкого цилиндрического кольца (рис. 29, б). Такую подставку можно легко и быстро изготовить из мягкого картона или толстой чертежной бумаги. Размер окружности должен быть примерно равен параллели 40°. Кольцевая подставка служит очень хорошим приспособлением для работы с глобусом в любой его части. Она дает возможность произвести ориентирование глобуса для любого географического пункта. Поворачивая глобус в кольце, мы можем устанавливать его в такое положение, в котором хорошо обозревать любой материк, любую часть акватории моря и выполнять необходимые измерения.

    Расстояния по глобусу можно измерять тонкой металлической линейкой или натянутой нитью. Полученное расстояние в миллиметрах затем переводят в соответствии с масштабом в действительное расстояние в километрах. Нужно только следить, чтобы линейка или нить плотно прилегали к поверхности глобуса и проходили по кратчайшему пути между заданными пунктами, т. е. по дуге большого круга.


    Рис. 30. Кольцевые шкалы и способ определения географических координат по ним

    Очень удобно измерять расстояния по глобусу с помощью отсчетного кольца, которое легко изготовить самим. Узкую полоску толстой бумаги склеивают в кольцо, размер которого точно равен диаметру глобуса. С внешней стороны кольца на половине окружности наносят 20 делений, каждое из которых соответствует 1000 км (рис. 30, а). Полученные интервалы делят точками на сотни километров. Для измерения расстояния между пунктами кольцо надевают на глобус и разворачивают так, чтобы край шкалы проходил через оба пункта, причем нулевой индекс должен быть совмещен с одним из пунктов. В таком положении отсчет по шкале против другого пункта показывает расстояние между ними.

    На второй половине окружности кольца можно нанести градусную шкалу от 0 до 90° в обе стороны (рис. 30,6). По этой шкале определяют географическую широту пунктов. Снимем глобус с оси и наденем на него кольцо так, чтобы край шкалы проходил через центры отверстий, на которые надевается ось, и через заданный пункт, а нулевой штрих совместился бы с линией экватора. Отсчет по шкале против пункта указывает его географическую широту. Для определения долготы подклеим полоску бумаги к кольцу против нулевого штриха, как это показано на рисунке. На этой полоске даются градусные деления интервала между двумя соседними меридианами по экватору, причем оцифровка их для восточной долготы должна идти справа налево, а для западной долготы - наоборот. В примере на рис. 30, в пункт А имеет следующие координаты: 12,5° с. ш., 45,5° в. д. Точность их определения зависит от масштаба. Большой глобус позволяет определять их с точностью до десятых долей градуса. Их можно отсчитать по нашей шкале на глаз.

    Если два пункта находятся на одном и том же меридиане, то, определив их широты, можно узнать расстояние между ними. Так Москва и Аддис-Абеба имеют примерно одну и ту же долготу 38° в. д. Определим их широты: B1 = 55,8° с. ш., В2 = 9,1° с. ш. Разность широт составит протяженность дуги меридиана в градусах. Известно, что 1° дуги меридиана соответствует 111 км. Значит расстояние между городами равно примерно 5180 км (46,7-111). Определив это же расстояние по шкале кольца, вы убедитесь в правильности наших расчетов.

    Не всегда можно быстро дать ответы на вопросы, какой из двух пунктов расположен южнее или какой пункт находится западнее. Глобус позволяет это сделать. Например, какой город и на сколько градусов находится южнее, Ялта или Владивосток? На первый взгляд, кажется, что Ялта находится южнее. На самом деле не так. Измерим по глобусу географические широты городов, и у нас получится, что Владивосток расположен южнее Ялты на 1,3°.

    Куприн А.Н слово о карте 1987