В.А. Старовойтов Местный и дистанционный контроль уровня жидкости. Критические производственные активы и дистанционный контроль в действии. Типы измерительных терминалов

Никки Бишоп (Nikki Bishop) – [email protected], Аарон Круз (Aaron Crews) - [email protected]

Автоматизированный контроль ключевых технологических активов повышает надежность производственного оборудования и сокращает издержки на его техническое обслуживание. Дистанционный контроль обеспечивает мгновенную передачу сигналов предупреждения, удаленную диагностику и позволяет круглосуточно отслеживать состояние ключевых технологических активов.

Развитие коммуникационных технологий в последние годы позволило мгновенно устанавливать связь с кем угодно практически в любой точке мира. Эти технологии можно также применять в заводских цехах для того, чтобы находящееся там оборудование могло сообщать о своем состоянии персоналу. Теперь производственные активы могут «общаться» с диспетчерской. Более того, нужный человек получит оповещение именно тогда, когда оборудованию необходимо уделить внимание.

Но прежде чем перейти к обсуждению дистанционного контроля, необходимо рассмотреть вопрос о том, как выбрать наиболее эффективную стратегию контроля технологических активов. Правильная стратегия автоматизированного мониторинга - это фундамент, на котором строится инфраструктура эффективного дистанционного контроля (рис. 1).

Рис. 1. Автоматизированный контроль позволяет точно и эффективно планировать ремонты

Не секрет, что правильная стратегия профилактического технического обслуживания повышает общую надежность и помогает достичь установленных целевых показателей эксплуатационной готовности производства. Однако не все стратегии профилактического обслуживания дают одинаковый результат. Профилактическое техническое обслуживание, основанное на периодическом и, возможно, нечастом сборе данных, не предоставляет полной информации о работоспособности активов в реальном времени. Периодические данные могут появляться в результате «обходов с планшетом», когда сотрудники через определенные интервалы времени отправляются на места эксплуатации оборудования, чтобы вручную собрать данные. Это может происходить раз в смену, раз в сутки, а может быть и еще реже.

Такой способ обеспечивает получение лишь «моментального снимка» данных о состоянии оборудования, и раннего предупреждения о надвигающихся проблемах может не произойти. Более того, отправка сотрудников для сбора данных вручную на места, где эксплуатируется оборудование, может угрожать их безопасности.

При слабом или полном отсутствии понимания, какие производственные активы на самом деле нуждаются во внимании, возможна ситуация, когда ресурсы тратятся на обслуживание оборудования, которому оно не требуется. Исследования показали, что более 60% обычных выездов технических специалистов по проверке контрольно-измерительных приборов либо не приводят ни к каким действиям, либо приводят к незначительным изменениям конфигурации, которые можно было бы провести, не выезжая на место.

Секреты эффективного техобслуживания

Автоматизированный контроль обеспечивает индикацию работоспособности производственных активов в режиме реального времени и позволяет определять условия технологического процесса, которые могут непреднамеренно или без ведома персонала привести к неисправности оборудования. Операторы вносят корректировки в работу оборудования, связанного с технологическим процессом, что позволяет избежать его отказов. При наличии развитой системы предупреждения персонал, осуществляющий техническое обслуживание, может работать именно с тем оборудованием, которое в нем на самом деле нуждается, а не терять время на поиски проблем, проводя контроль вручную.

Оценка важности того или иного технологического актива часто определяет и подход к управлению. Если контроль (и защита) в реальном времени критически важного оборудования, такого как большие компрессоры или турбины, является обычной практикой на многих производственных площадках, то онлайн-контроль оборудования второго уровня, такого как насосы, теплообменники, вентиляторные установки, небольшие компрессоры, градирни и теплообменники с воздушным охлаждением (с вентиляторами и оребрением), традиционно считается чрезмерно дорогим, чтобы его реализовывать, или слишком сложным. Даже несмотря на то, что эти не охваченные контролем или контролируемые вручную активы могут быть изначально не классифицированы как «критические», их выход из строя или неисправность может привести к серьезному нарушению технологического процесса или его остановке. В результате - простой и возросшая нагрузка на персонал производственного участка, который будет вынужден заняться внеплановым неотложным ремонтом. Такие активы можно назвать «ключевыми технологическими активами» (рис. 2).

Рис. 2. Ключевые активы обычно не имеют уже установленных систем контроля, но последствия их отказов могут быть серьезными

Решения по контролю в режиме реального времени повышают их общую надежность, одновременно сокращая издержки на техническое обслуживание.

Слагаемые эффективного контроля технологических активов

Контроль технологических активов - это не только сбор данных (рис. 3). Сбор информации, прежде всего, закладывает основу для стратегии контроля активов. Можно использовать существующие средства измерения или легко добавить новые беспроводные каналы измерения. После того как инфраструктура измерений создана, предварительно разработанные решения контроля (используются в режиме «подключи и работай», Plug&Play) принимают необработанные данные и посредством анализа преобразуют их в содержательные предупреждающие сигналы. Данные о технологическом процессе и активах можно объединять для определения условий, которые могут привести к неисправности оборудования. Можно скорректировать условия технологического процесса таким образом, чтобы вовсе исключить подобный вид отказов.

Рис. 3. Cбора данных недостаточно для эффективного контроля. Чтобы программа успешно работала, необходимо сочетание сбора данных, анализа, информированности и действий

Предупреждающие сигналы, которые формируются путем анализа данных и их объединения, полезны только в том случае, если они вовремя доходят до тех сотрудников, которым они предназначены. Организация процесса информирования - очень важная составляющая автоматизированной системы контроля. Подобной информированности можно достичь разными способами, наиболее эффективный из которых - автоматическое оповещение. Предупреждающие сигналы в форме текстовых сообщений или электронной почты гарантируют, что информация сразу же дойдет до нужного человека.

После того как предупреждающий сигнал принят, ответственный сотрудник приступает к решению возникших проблем. Удаленный доступ через планшетный компьютер или смартфон позволяет практически мгновенно провести диагностику и начать действовать. При необходимости можно оповестить узких специалистов, которые смогут также дистанционно войти в систему и оказать помощь в диагностике проблемы. Благодаря автоматизированной системе оповещения возможно также периодическое формирование и рассылка отчетов. Эти отчеты могут включать в себя тенденции, отражающие изменение эксплуатационной готовности активов, по которым можно увидеть ухудшение работы и предотвратить приближающийся отказ.

Таким образом, автоматизированный мониторинг в сочетании с автоматически формируемыми сигналами предупреждения и возможностью дистанционного доступа представляет собой мощное средство контроля эксплуатационных характеристик технологических активов.

Критические производственные активы и дистанционный контроль в действии

Одной из площадок, где реализованы преимущества дистанционного контроля технологических активов, является университетский исследовательский городок Дж. Дж. Пикла Техасского университета в Остине (США). Здесь реализуется исследовательская программа Separations, в которой участвуют представители промышленности и ученые. В рамках программы проводятся фундаментальные исследования для химических, биотехнологических, нефте- и газоперерабатывающих, фармацевтических и пищевых компаний.

В настоящее время один из исследовательских проектов Separations - удаление углекислого газа из дымовых газов. Этот технологический процесс включает в себя абсорбционную и отпарную колонны и связанное с ними оборудование: насосы, вентиляторы и теплообменники. Технологический процесс не предполагает резервирования оборудования, поэтому важно наладить его надлежащее техническое обслуживание и поддержку рабочего состояния. Потеря одного элемента означает остановку всего технологического процесса до завершения ремонта.

Чтобы снизить риск внепланового простоя, были успешно внедрены стратегии контроля критических активов для насосов, теплообменников и вентиляторов. Теперь персонал получает информацию о работоспособности производственных активов в режиме реального времени и контролирует условия технологического процесса (рис. 4). Когда они становятся такими, что могут привести к ухудшению работоспособности оборудования, предпринимаются корректирующие действия, призванные не допустить повреждения или отказа в дальнейшем. Например, сигналы предупреждения об усиливающейся вибрации говорят о надвигающихся отказах и дают время на проведение обслуживания до того, как такие отказы произойдут.

Рис. 4. Беспроводной датчик вибрации, установленный на насосе, обеспечивает ценными данными автоматизированную систему контроля

Для обеспечения своевременной передачи сигналов предупреждения надлежащим сотрудникам ученые Техасского университета сделали еще один шаг вперед, создав инфраструктуру дистанционного контроля. Предупреждающие сигналы о таких событиях, как засорение теплообменника, обнаружение резонансной частоты вращения, утечки углеводородов и кавитации насоса, могут автоматически направляться персоналу на производственной площадке, а также удаленным экспертам (узкоспециализированным опытным специалистам), когда состояние, приводящее к отказу, еще только начинает проявлять себя.

Помимо мониторинга оборудования технологического процесса, система дистанционного контроля, известная как система интеллектуальных центров управления (Intelligent Operations Center, iOps), проверяет исправность системы управления и выдает такие сигналы предупреждения, как, например, сигнал о перегруженном ПК или отказавшем резервном контроллере. Эти предупреждающие сигналы автоматически могут быть отправлены текстовым сообщением или на электронную почту. Через удаленное соединение эксперты могут дистанционно оказывать помощь в диагностике проблем оборудования и помогать в проведении соответствующих корректирующих мероприятий. Входить в систему они могут, используя защищенный доступ к виртуальной частной сети. При доступе в систему с помощью планшетного компьютера или смартфона функции диагностики становятся доступны мгновенно.

Используя инфраструктуру дистанционного контроля, можно периодически формировать отчеты в соответствии с потребностями заказчика и автоматически рассылать их. Эти отчеты содержат тенденции изменения работоспособности технологических активов и систем и ясно указывают на то, какое оборудование или системы требуют внимания. В Техасском университете удаленные эксперты снабжены информацией и готовы принять меры при возникновении неблагоприятных условий, будь то кавитация в насосе или перегрузка ПК. Это и можно назвать автоматизированным дистанционным контролем.

На рис. 5 показан процесс дистанционного контроля, реализованный в Техасском университете. В центре рисунка - производственная установка и диспетчерская с операторами. Стратегии контроля реализованы для насосов, теплообменников и вентиляторов, и эти решения используют данные от работающего оборудования, чтобы формировать предупреждающие сигналы и передавать их в диспетчерскую. Но что происходит, если оператор не в диспетчерской или он отвлекся от экрана? Даже если оператора нет на месте, центр iOps способен круглосуточно контролировать любые предупреждающие сигналы посредством установленных средств дистанционного контроля.

Рис. 5. Процесс автоматизированного дистанционного контроля, реализованный в Техасском университете

Если имеется проблема с насосом, например кавитация, система контроля ключевых технологических активов обнаружит ее, собрав, объединив и проанализировав данные об оборудовании и технологическом процессе. Предупреждающий сигнал и информация о работоспособности оборудования в процентном значении будут направлены в устройство дистанционного контроля, а затем в центр iOps, после чего центр связывается с местной службой на объекте, а при необходимости и с удаленным экспертом. Эксперт входит в систему, диагностирует проблему и предлагает меры по исправлению ситуации. Совместно с местной службой они определяют необходимые действия, а затем оператор в Остине выполняет корректирующие мероприятия и устраняет неисправность, прежде чем она превратится в отказ. Такой способ гарантирует, что неисправность не останется незамеченной и проблемы будут решаться быстро и эффективно.

* * *
При использовании новейших достижений в области беспроводных систем и технологий связи эра дистанционного онлайнового контроля производственного оборудования становится реальностью. Беспроводные технологии позволяют легко и экономично добавлять недостающие каналы измерения для ключевых технологических активов. Системы контроля работают по типу Plug&Play и обеспечивают простой сбор и анализ данных. Дистанционный контроль и автоматизированные предупреждающие сигналы гарантируют, что сигналы, сформированные системами контроля, не пропадут и корректирующие мероприятия будут проведены до возникновения незапланированного простоя из-за отказа оборудования.

Более подробная информация об управлении технологическими активами предприятия и системе управления размещена на сайте www.emersonprocess.com/ru/DeltaV .

Emerson Process Management, одно из подразделений Emerson, работает в области автоматизации технологических процессов производства для различных отраслей промышленности. Компания разрабатывает и производит инновационные продукты и технологии, консультирует, проектирует, осуществляет управление проектами и сервисное обслуживание для максимально эффективной работы предприятия.

Освещение в доме - это один из основных моментов, которые формируют комфортные условия проживания. Автоматизируя, упрощая управление осветительными приборами и расширяя возможности по их настройке, владельцы жилья облегчают и улучшают уют и обустроенность быта.

Дистанционное управление - это один из способов добиться от системы максимального удобства и эффективности при его эксплуатации и сделать свой дом максимально удобным. Ведь так удобно подъехать к гаражным воротам, где автоматически включатся фонари, и при этом не выходить из салона. Или выключить свет, не поднимаясь с дивана, изменить его яркость или даже направление освещения.

Для организации подобной схемы управления светом в доме следует ознакомиться с характеристиками, типами используемых устройств и принципами их работы, оценить положительные и отрицательные свойства данных систем. Владея информацией, хозяину жилья не составит особого труда произвести все работы своими руками, а приведенный ниже материал окажет в этом помощь.

Пожалуй, единственным «минусом» использования такой системы можно назвать более сложную по сравнению со стандартной схему устройства осветительной сети и дополнительные материальные вложения в оборудование. Однако положительные свойства, получаемые взамен, намного превосходят все затраты труда и денежных средств:

  • Повышение удобства и комфортность эксплуатации;
  • Дополнительный уровень пассивной безопасности.

Важно! Используя возможности управления светом через сеть интернет (с удаленного компьютера или через смартфон), можно создавать эффективную против воров и грабителей имитацию присутствия людей в доме. Управляемый удаленно комплекс со стороны выглядит как действия находящихся в доме жильцов.

  • Для беспроводных систем не требуется использование кабеля, что значительно снижает расходы;
  • Возможность управления многими точками света с одного места без беготни по всей территории, что особо важно при значительных размерах участка и большом количестве помещений.

Общие принципы управления освещением

Организация управления светом может быть самой разной, с использованием различных методов контроля. Самые распространенные - это единый центральный контроллер и пульт дистанционного управления. Схемы могут быть как отдельными для каждого помещения (при этом каждое из них будет иметь свой пульт), так и объединяющими в единую сеть управления все помещения сразу.

Самой сложной на сегодняшний день, но и дающей наибольшее количество возможностей, является система управления под названием «умный дом», в которой все осветительные устройства не только связаны в одну сеть, но и дополнительно могут программироваться на определенные действия. Для обеспечения реакции устройств на определенные воздействия в таких схемах используются дополнительные устройства вроде таймеров, датчиков освещения и движения и прочих.

Производственные и крупные офисные постройки зачастую оборудуют управлением осветительной системой с центрального щита. При этом непосредственно включаться и выключаться свет может с контроллеров, установленных отдельно.

Дистанционное управление

Стоит особо отметить такую разновидность централизованного контроля как дистанционные системы - к ним, в первую очередь, относится удаленное управление посредством компьютера или мобильного гаджета через сеть интернет.

В жилых помещениях использовать центральное управление с единого пульта тоже достаточно оправданно - возможность включения или выключения света во всех нужных помещениях прямо у входной двери может быть очень удобной.

По вполне понятным причинам наиболее востребованным видом управления светом является именно дистанционное. Особенно в условиях частных загородных домов со значительными придомовыми участками - если задействованы многие , то дистанционное управление позволит легко включить и выключить подсветку фонтана, бассейна, газона или дорожек, управлять светом в подсобных помещениях и гараже. В такой ситуации самый оптимальный метод контроллера - пульт ДУ.

В то же время, переносной пульт дистанционного управления может быть не очень эффективным в условиях небольшой квартирки. Забытый в другой комнате пульт, попытка нескольких обитателей квартиры одновременно управлять светом и прочие нюансы ограниченного по площади помещения приводят к различным неудобствам и недоразумениям.

Применение в оформлении помещений нескольких разнесенных по вертикали уровней освещения (потолочные светильники, освещение по периметру, настенные бра, нижняя подсветка, подсветка отдельных зон и подобных) становится значительно более полным и удобным, если применить беспроводное управление с пульта ДУ.

Разновидности управляющих сигналов

Все беспроводные системы дистанционного управления освещением выполняются при задействовании устройств, которые «общаются» между собой посредством одного из двух видов передаваемых и принимаемых сигналов:

  1. Инфракрасный тип - устройства действуют по тому же принципу, что и пульты ДУ телевизоров, кондиционеров, музыкальных центров и тому подобных. Самый недорогой и распространенный вариант. Чаще всего применяется для управления светом в наружном освещении, в «проходных» местах (коридоры, тамбуры, лестницы). Самыми большими минусами такой разновидности приспособлений является их работа только в зоне прямой видимости и малый радиус сигнала (обычно не превышает 10-12 метров, после чего безвозвратно рассеивается).

Важно! Сейчас на рынке появились специальные усилители сигналов, которые позволяют минимизировать ограничения, накладываемые использованием ИК-пультов. В таком усилителе принимается инфракрасный сигнал от пульта управления и выдается соответствующий ему радиосигнал.

  1. Радиоволна. Как понятно из названия, управляющие сигналы от пульта передаются посредством радиоволн, что обеспечивает беспрепятственное управление вне зоны прямой видимости на значительных удалениях. Основным минусом является достаточно высокая стоимость приборов данного типа.

Классификация устройств управления

Непосредственно для контроля могут использоваться различные устройства и приспособления. Некоторые сами являются управляющими элементами, в то время как другие лишь выступают «помощниками».

Для оптимальной организации управления светом необходимо знать об их назначении и функционале.

Приспособление подобного типа представляет собой сведенное в один корпус управление включением и отключением, иногда интенсивностью и яркостью освещения отдельных источников света или их групп. Сам контроль осуществляется посредством кнопок на панели.

В производимых моделях довольно часто предусмотрена возможность получения управляющих сигналов извне с пультов ДУ (иногда даже от обычного телевизора, бытовых устройств). Кроме того, довольно часто кнопки блока самостоятельно программируются на определенные действия.

Контроллер системы

Конструктивно - самый простой из используемых элементов удаленного управления. Обычно производится в настенном варианте и чаще всего устанавливается возле входа в помещение. Контроллер удаленно включает или выключает световые устройства согласно заложенной программе.

Алгоритм действий заложен в стандартной программе от изготовителя, либо же контроллер может быть запрограммирован с помощью подключаемой клавиатуры и ЖК-дисплея. Действие программы запускается при получении сигнала с пульта ДУ, с установленных датчиков, таймеров или вручную кнопками на самом контроллере.

Различные датчики

В качестве вспомогательных элементов довольно часто применяют различные датчики:


Достаточно простой по своему действию прибор, включающий в себя два устройства: релейный выключатель и приемник сигнала (чаще всего инфракрасного). Принцип действия предельно прост - с пульта подается сигнал непосредственно на такой выключатель и он срабатывает, включая или выключая свет.

Выключатели удаленного типа с приемником радиоволн значительно дороже, чем инфракрасные, но могут задействоваться с пультов на расстоянии более ста метров и вне зоны прямой видимости.

Инфракрасный пульт ДУ (дистанционного управления)

Устройство подобного типа является, видимо, наиболее востребованным, когда владелец хочет сделать беспроводным управление освещением своего дома.

Визуально такой пульт мало отличается от стандартных телевизионных и других бытовых приборов. Более того, довольно часто можно перепрограммировать пульт TV на управление дистанционной системой контроля светом.

Важно! При оборудовании жилья интеллектуальной компьютеризированной системой «умный дом» каждый пульт управления может контролировать работу не только освещения, но и электроники в доме: от света в саду до кофеварки и стиральной машины.

Стандартные пульты обычно имеют 5-7 кнопок. Каждая кнопка пульта может быть запрограммирована на определенное действие, но количество устройств, для которых это действие выполняется, практически не ограничено и может быть несколькими сотнями (например, «включить свет» одинаково сработает для лампы на крыльце или в спальне).

Радиоволновой пульт ДУ

Семи-десятикнопочные стандартные пульты с радиопередатчиком более функциональны, чем инфракрасные, поскольку действуют вне зоны открытого обзора.

С радиопульта управление производится заранее сконфигурированными группами осветительных (и прочих) приборов. Например, можно одним нажатием одновременно осветить пригаражную площадку и открыть въездные ворота.

Многие производители дополнительно комплектуют такие пульты одним или несколькими радиобрелками, запрограммированными на управление одной конкретной группой, - удобно, к примеру, повесить такой на ключи от машины, вместо того чтобы носить с собой пульт (который можно и забыть).

Как видно из вышеописанного, оборудование своего жилища комплексом удаленного контроля и управления освещением способно сделать его значительно более современным и комфортным. При этом разнообразие возможностей позволяет воплотить в жизнь самые взыскательные запросы хозяина и реализовать их без особого труда.

Система централизованного авто­матического контроля типа КМ-1 фирмы «Аутроника» (Норвегия) работает по принципу совместного использования датчиков в устройствах сигнализации, индикации, регистрации и является системой не­прерывного контроля параметров (рис. 4.32) . Она включает в себя индивидуальную и обобщенную АПС параметров, цифровую и шкальную индикацию, регистрацию отклонений параметров за допустимые параметры, а также исполнительную сигнализацию о работе механизмов.

Конструктивно система состоит из расположенных на горизон­тальной панели пульта контроля 14 кассет, содержащих отдель­ные модули, которые включают сигнальные лампы, кнопки вы­зова параметров на индикацию и кнопки квитирования сигналов. На верхней панели пульта в центральном пульте управления находится мнемосхема энергетических установок, на которой имеются лампы сигнальной и исполнительной сигнали­зации, а также табло цифровой индикации. Система централизованного авто­матического контроля охва­тывает 271 точку контроля и сигнализации главного двигателя и основных ВМ, а также осуществляет контроль 20 параметров (температуры и давления) по дистанционным приборам.

Система централизованного авто­матического контроля должна быть постоянно включена и подавать оп­тические и акустические предупредительные сигналы при возни­кновении следующих неполадок:

Неисправности системы безопасности (общий предупреди­тельный сигнал уменьшения частоты вращения, остановки), системы дистанционного управления (общий предупредительный сигнал), датчика темпера­туры рамового подшипника, детектора масляного тумана;

Большого перепада давления масла и топлива на фильт­рах;

Недостаточного давления масла и охлаждающей воды перед дизелем, топлива, морской воды, пускового воздуха, управляю­щего воздуха (устройство аварийного выключения);

Повышенной температуры смазочного масла и охлаждающей воды перед дизелем, охлаждающей воды после цилиндров, охлаж­дающей воды форсунок, наддувочного воздуха, рамового под­шипника;

Пониженной температуры смазочного масла перед дизелем, а также наддувочного воздуха;

Высокой концентрации масляного тумана (по показаниям детектора масляного тумана), недостатка охлаждающей воды форсунок, закрытия выходного запорного клапана охлаждающей воды, слишком высокой (слишком низкой) вязкости топлива, боль­шого отклонения среднего значения температуры выпускных га­зов.

Сигнал по пониженной температуре наддувочного воздуха сра­батывает с задержкой времени до 30 мин, в диапазоне низких ча­стот вращения он отключается (при наполнении топливом ниже 50 %). Сигнал тревоги «Отклонение среднего значения отработав­ших газов» также отключается при температуре ниже 200 °С.

На ПУ установлены указатели: давления смазочного масла и охлаждающей пресной воды перед дизелем, масла перед коро­мыслами клапанов и ТК, охлаждающей воды форсунок перед ди­зелем, топлива, морской охлаждающей воды, наддувочного воз­духа, пускового и управляющего воздуха; температуры смазочного масла перед дизелем, охлаждающей воды после дизеля, надду­вочного воздуха после ВО.

В состав системы аварийной безопасности энергетических установок с двумя среднеоборотным дизелем, работающими на один винта регулируемого шага, входят ручное аварийное выключе­ние для каждого дизеля и автоматическое выключение муфт сцеп­ления с пультом управления и с мостика по четырем критериям остановки с авто­матическим выключением муфт сцепления на каждый дизель, по двум критериям уменьшения нагрузки на каждый дизель и по одному критерию остановки с автоматическим выключением муфты сцепления на обоих дизелях.

После выключения обоих дизелей шаг ГВ должен автоматиче­ски перейти в нулевое положение, а также должны включиться блокировка дистанционного пуска и блокировка сцепления на каждый дизель.

Остановка главного двигателя с последующим выключением муфт сцепления (выход общего сигнала остановки) происходит из-за превышений номинальной частоты вращения или допускаемой температуры рамового подшипника (без временной задержки), недостаточного давления смазочного масла перед дизелем (с задержкой 4 с), перед ТК (с задержкой 4 с) и в редукторе (с задержкой 15 с).

Выключение муфт сцепления главного двигателя происходит из-за неисправ­ности системы распределения нагрузки между дизелями (с задерж­кой 30 с), повышенной концентрации масляных паров в картере (без временной задержки с последующим уменьшением частоты вращения), недостаточного давления масла в редукторе (с задерж­кой времени 15 с с последующим уменьшением частоты вращения). Уменьшение нагрузки главного двигателя путем автоматического снижения шага ГВ (с выходом общего сигнала уменьшения) происходит в случае недостаточного давления охлаждающей воды перед дизелем (с за­держкой 4 с) и превышения температуры охлаждающей воды по­сле цилиндра (без временной задержки). Общий сигнал тревоги «Неисправность в системе безопасности» включается при отказе датчика частоты вращения коленчатого вала, а также при обрыве провода.

Сигнализационно-контрольное устройство типа КМ-1 фирмы «Аутроника» (см. табл. 4.9) включает в себя контактные датчики (с разомкнутыми контактами), платиновые термосопротивления типа Pt-100 для измерения температуры, термисторные датчики типа Т-802 для измерения температуры, термопары типа NiCr-Ni вместе с усилителями типа GA-3 для измерения температуры, манометрические датчики типа GT-1, датчики разницы давлений типа GT-2. Устройство КМ-1 снабжено магнитоэлектрическим из­мерителем аналоговых величин или цифровым измерителем с дат­чиками разных типов в любой необходимой комбинации. Устрой­ство КМ-1 содержит одну или более кассет, каждая из которых включает определенное количество контактных элементов, каналовый модуль и прочие элементы. Питание модулей - посто­янный ток 8-40 мА напряжением 24 В, измеряемые датчиками температуры 0-100, 0-160, 0-300, 0-600 °С, давления 0-0,1; 0-0,25; 0-0,4; 0-0,6; 0-1; 0-16; 0-4; 0-6 МПа, разности давлений 0-0,1; 0-0,6 МПа.

Отсчет показаний производится во всем рабочем интервале из­мерительных приборов. Точность измерения и точность сигнали­зации тревоги составляют ±2 % полного интервала, гистерезис каналового пакета - около 0,5 %, задержка сигнализации тре­воги: аналоговые каналовые модули в стандартном исполнении - около 0,5 с; каналовые модули с контактным датчиком в стандарт­ном исполнении - около 2 с. В каждой кассете, входящей в со­став устройства КМ-1, имеются обычный плавкий предохранитель и стабилизатор напряжения 24/16 В постоянного тока. Стабили­затор напряжения является типичным стабилизатором с ограни­чителем тока, он предусмотрен для питания постоянным током напряжением 24 В от аккумулятора или выпрямителя. На выходе получается стабилизированное напряжение 16 В.

Измерительный прибор КВМ-1 предназначен для измерения величины сигналов, подаваемых от аналоговых датчиков, под­ключенных к устройству КМ-1.

Модуль сигнализации помех КМЕ-1 служит для обнаружения разрывов и коротких замыканий в кабелях аналоговых датчиков, а также перебоя в питании устройства. Каналовые модули типов КМС-2, КМС-16 и КМС-17 используют при совместной работе с аналоговым датчиком в случае, когда требуется отдельная уста­новка предельных значений тревоги. Модули отсчета для сигнали­зации отклонения от среднего значения и тревоги при высокой тем­пературе типа KMR-1/т предназначены для температур 0-600 °С, измеряемых при помощи термоэлементов и усилителя GA-3, при­меняются вместе с каналовыми модулями типа КМС 2/т2, выраба­тывающими для них предельные значения тревоги.

Каналовый модуль типа КМС-3 применяют для контактных датчиков, имеющих в нормальном состоянии сомкнутые контакты без напряжения (например, датчики давления или уровня). Модуль типа КМХ-1 предназначен для коммутации входного аналогового сигнала в каналовые модули типов КМС-1 и КМС-2, чтобы контролировать вызов тревоги при установленных предель­ных значениях сигнала.

Все устройства КМ-1 приспособлены для группирования тревог. Поэтому вверху каждой кассеты находится специальная группи­рующая плата, которую можно подключить к 20 каналовым па­кетам. Все сирены и зуммеры выключаются при отключении из центральном пульте управления. При отключении из каюты старшего механика или вах­тенного механика все зуммеры утихают, за исключением сирены в машинном отделении зуммера в центральном пульте управления. При помощи других отключений зати­хают только зуммеры соответствующей панели.

Детектор масляного тумана (конт­рольная система картера) «Визатрон ВН-115» позволяет определять концентрацию масляных паров в картере дизеля, повышающуюся, например в результате нагрева подшипников коленча­того вала, и тем самым предупредить отказ главного двигателя его свое­временной аварийной остановкой.

Рассмотрим принцип действия детектора. Если циркуляцион­ное масло, применяемое для смазки подшипников дизеля, перегре­ется, то образуется избыточное количество смеси масляных паров и масляного дыма (масляного тумана). Некоторая часть масляного тумана поглощается разбрызгиваемым маслом, а остальная часть повышает концентрацию масляного тумана в атмосфере картера. Масляный туман поглощает свет. В зависимости от концентрации степень поглощения различна (световая абсорбция пропорциональна степени концентрации масляного тумана, что и используется для контроля). Образующийся в картере масляный туман всасывается специальным устройством. Поток масляного тумана проходит камеру, в которой создается световой пучок. С помощью полупро­водника и фотодиода измеряется плотность света, прошедшего через пробу масляного тумана. Степень изменения его плотности имеет свое предельное значение, при достижении которого пода­ется сигнал тревоги в системе предупредительной сигнализации дизеля. Непрозрачность (величина абсорбции) масляных паров незначительно зависит от температуры и с увеличением концен­трации масляных паров стремится к точке насыщения по экспо­ненте. При уменьшении концентрации на 1/2 непрозрачность па­дает на 1/4 (рис. 4.33).

Пробы масляного тумана отбираются от отдельных картерных секций и направляются в общую собирательную трубу, где они перемешиваются. Установка не имеет никаких подвижных меха­нических частей. Разрежение (100-150 Па, но не более 250 Па), создаваемое воздушным эжекторным насосом, вызывает отсос паров масла из картера. Пары из картера по собирательным труб­кам (рис. 4.34) попадают в общую камеру прибора, затем проходят сепаратор, в котором под влиянием центробежной силы отделя­ются крупные частицы масла.

Отсепарированное масло поступает по каналам непосредствен­но в воздушный насос (эжектор) и выводится из прибора, что пре­дохраняет его от загрязнения маслом. Из сепаратора контроль­ный масляный туман направляется по каналу в оптическую из­мерительную щель. Загрязнения, образующиеся на окошечке, могут ухудшить точность подачи сигнала тревоги, в связи с чем яркость источника света имеет систему регулировки.

Технические характеристики прибора следующие: питание постоянным током напряжением 18-30 В (блок электропитания держит эксплуатационное напряжение стабильным); максимальное потребление тока 0,25 А, допустимая остаточная неравномерность выпрямленного тока 1 В; защита от перенапряжения: до 60 В за 1 с, до 250 В за 5 мс; защита от неправильной полярности через диод до 400 В; давление рабочего воздуха около 0,06 МПа, по­требление воздуха 0,5 м 3 /ч (при? = 0,08 МПа); чувствительность прибора регулируется по величине абсорбции от 5 до 30 %, что соответствует концентрации масляного тумана от 0,453 до 3 мг/л (нижняя граница для взрывоопасной смеси - около 50 мг масла на 1 л воздуха); масса прибора около 7 кг; габариты 175?435?122 мм; испытан при вибрации частотой 6 Гц; отно­сительная влажность воздуха до 90 % при t = 70 °С; допустимая эксплуатационная температура от 0 до 75 °С. Демпферная плат­форма выполнена из стали, кожух измерительной приставки - из легкого металла.

Cтраница 1


Система дистанционного контроля и управления производством в механическом цехе позволяет одному диспетчеру с помощью средств связи и сигнализации осуществлять контроль за всем производственным процессом. Подобная же система централизованного контроля в кузнечно-прессовом цехе позволяет диспетчеру контролировать использование прессов, наблюдать весь цикл работы термических печей, а телевизионная установ - / ка позволяет диспетчеру наблюдать за работой цехового транспорта.  

Системы дистанционного контроля на нефгеперерабатывающих п нефтехимических заводах имеют самое широкое применение. Расстояния передачи показаний при этом не превышает обычно 300 м, чго оказывается вполне достаточным. Для передачи результатов измерения на расстояние нескольких десятков километров (а иногда и сотен) применяются системы телеизмерения. В таких системах результат измерения с помощью преобразователя (датчика) преобразуется в кодированные, обычно дискретные сигналы, передавае-мые по соответствующему каналу связи. Во вторичном приборе, установленном на другом конце канала связи, эти сигналы преобразуются и фиксируются в цифровой или аналоговой форме.  

Системы дистанционного контроля технологических параметров позволяют централизовать управление технологическими процессами. При размещении в одном месте вторичных приборов систем дистанционного контроля какого-либо производственного процесса дежурный персонал (операторы) избавляется от необходимости находиться в постоянном движении по территории производства или установки для снятия показаний с приборов и внесения корректив в ход процесса.  


Более распространены системы дистанционного контроля, в которых измеряемый параметр преобразуется в физическую величину, более удобную для передачи на расстояние. При таком методе расстояние между измерительным устройством и исполнительным элементом может достигать 3 км, а сигналы передаются по линиям связи.  

Существует несколько систем местного и дистанционного контроля. Местная система получается при установке приборов непосредственно на агрегатах объекта или рядом с ними, а дистанционная - при применении приборов с устройствами передачи показаний на расстояние. Если информация поступает на центральный щит, где сконцентрированы отсчетные приспособления всех контролируемых параметров, то систему называют централизованной. Эти системы обычно работают автоматически, без непосредственного и непрерывного воздействия на них обслуживающего персонала.  

Трубопроводные компании применяют системы дистанционного контроля и управления в различных сочетаниях и с разной степенью автоматизации.  

При поступлении бурового раствора в манифольд дросселя система дистанционного контроля давления начинает действовать на пульте управления, расположенном на полу буровой установки. Буровой дроссель работает при следующих положениях: полностью открыт - поток раствора свободно самоизливается; не полностью открыт - поток раствора регулируемый; полностью закрыта насадка - перекрыто движение потока. Как только поток бурового раствора поступает в дроссель, он дросселируется через кольцевое проходное сечение между наконечником и седлом насадки.  

Поэтому представляется более правильным использовать термисторы в системах дистанционного контроля температур не в качестве датчиков температуры, а в качестве датчиков-сигнализаторов определенных пределов (допустимых для контролируемой среды) температуры. Поэтому при порче или износе термисторов в установке требуется переналадка аппаратуры и переградуировка приемных приборов. Понятно, что эту операцию легче произвести для двух точек, чем для всей шкалы в целом.  

Одной из основных частей эксплутационной диагностики трубопровода является система дистанционного контроля. В основу принципа построения дистанционного контроля положен многофакторный анализ результатов централизованного сбора и обработки информации на ЭВМ: основных характеристик металла и его сплошности как во времени, так и в зависимости от периодически включаемых или непрерывно действующих датчиков разветвленной сети контроля. Корреляционный анализ данных о динамике свойств и сплошности металла с учетом экстраполяции тенденций позволяет предсказать надежную работу элементов трубопровода на ближайшую и длительную перспективу. Методы и средства периодического контроля выбираются с учетом диагностирования определенных элементов нефтепровода, а также на основании критериев, обеспечивающих требования надежности и экономичности.  

Структурная схема системы дистанционного контроля. ПП - первичный преобразователь. ВП - вторичный прибор (остальные обозначения в подписи к.  

Схема системы дистанционного контроля приведена на рис. 1.5. Системы дистанционного контроля с передачей сигналов в виде давления сжатого воздуха нашли широкое применение на предприятиях химической, нефтехимической и промышленности по производству минеральных удобрений. При этом расстояние между первичным и вторичным приборами достигает 300 м, что вполне достаточно для централизации контроля объектов в пределах одного производства или одной технологической установки. Дистанционные системы позволяют осуществлять контроль работы оборудования и хода производственного процесса из одного места - помещения оператора. Обычно в этом помещении устанавливают щит управления, на котором размещают вторичные приборы.  

Компрессорные станции с тремя машинами и более необходимо оборудовать системой дистанционного контроля и сигнализации работы установок со следующими контрольно-измерительными приборами, устанавливаемыми на каждом компрессоре: приборами дистанционного контроля температуры и давления воздуха, воды и масла, а также приборами, сигнализирующими отклонение работы компрессора от нормального режима по этим параметрам; приборами, автоматически выключающими компрессор при повышении давления и температуры сжатого воздуха, а также при прекращении подачи охлаждающей воды.  

Для определения режима работы скважин на промыслах должны быть предусмотрены системы автоматизированного дистанционного контроля.