Обратимость хода светового луча означает то что. Основы геометрической оптики для "чайников"

Некоторые оптические законы были уже известны до установления природы света. Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно. Этот закон является приближенным, так как при прохождении света через очень малые отверстия наблюдаются отклонения от прямолинейности, тем большие, чем меньше отверстие.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Пересечения лучей не мешают каждому из них распространяться независимо друг от друга. Разбивая световой пучок на отдельные световые пучки, можно показать, что действие выделенных световых пучков независимо. Этот закон справедлив лишь при не слишком больших интенсивностях света. При интенсивностях, достигаемых с помощью лазеров, независимость световых лучей перестает соблюдаться.

Закон отражения: отраженный от границы раздела двух сред луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела в точке падения; угол отражения равен углу падения.

Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред

sini 1 /sini 2 = n 12 = n 2 / n 1 , очевидно sini 1 /sini 2 = V 1 / V 2 , (1)

где n 12 – относительный показатель преломления второй среды относительно первой. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления n 12 = n 2 / n 1 .

Абсолютным показателем преломления среды наз. величина n, равная отношению скорости С электромагнитных волн в вакууме к их фазовой скорости V в среде:

Среда с большим оптическим показателем преломления наз. оптически более плотной.

Из симметрии выражения (1) вытекает обратимость световых лучей , сущность которой состоит в том, что если направить световой луч из второй среды в первую под углом i 2 , то преломленный луч в первой среде выйдет под углом i 1 . При переходе света из оптически менее плотной среды в более плотную получается, что sini 1 > sini 2 , т.е. угол преломления меньше угла падения света, и наоборот. В последнем случае при увеличении угла падения угол преломления увеличивается в большей мере, так что при некотором предельном угле падения i пр угол преломления становится равным π/2. С помощью закона преломления можно рассчитать значение предельного угла падения:

sin i пр /sin(π/2) = n 2 /n 1 , откуда i пр = arcsin n 2 /n 1 . (2)

В этом предельном случае преломленный луч скользит по границе раздела сред. При углах падения i > i пр свет не проникает в глубь оптически менее плотной среды, имеет место явление полного внутреннего отражения. Угол i пр называется предельным углом полного внутреннего отражения.

Явление полного внутреннего отражения используется в призмах полного отражения, которые применяются в оптических приборах: биноклях, перископах, рефрактометрах (приборах, позволяющих определять оптические показатели преломления), в световодах, представляющих собой тонкие, гнущиеся нити (волокна) из оптически прозрачного материала. Свет, падающий на торец световода под углами, большими предельного, претерпевает на границе раздела сердцевины и оболочки полное внутреннее отражение и распространяется только по световедущей жиле. С помощью световодов можно как угодно искривлять путь светового пучка. Для передачи изображений используются многожильные световоды. Рассказать о применении световодов.

Для объяснения закона преломления и искривления лучей при прохождении их через оптически неоднородные среды вводится понятие оптической длины пути луча

L = nS или L = ∫ndS,

соответственно для однородной и неоднородной сред.

В 1660 году французский математик и физик П. Ферма установил принцип экстремальности (принцип Ферма) для оптической длины пути луча, распространяющегося в неоднородных прозрачных средах: оптическая длина пути луча в среде между двумя заданными точками минимальна, или другими словами, свет распространяется по такому пути, оптическая длина которого минимальна.

Фотометрические величины и их единицы. Фотометрия – раздел физики, занимающийся вопросами измерения интенсивности света и его источников. 1.Энергетические величины :

Поток излучения Ф е – величина, численно равная отношению энергии W излучения ко времени t, за которое излучение произошло:

Ф е = W / t, ватт (Вт).

Энергетическая светимость (излучательность) R е – величина, равная отношению потока излучения Ф е, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:

R е = Ф е / S, (Вт/м 2)

т.е. представляет собой поверхностную плотность потока излучения.

Энергетическая сила света (сила излучения) I e определяется с помощью понятия о точечном источнике света – источнике, размерами которого по сравнению с расстоянием до места наблюдения можно пренебречь. Энергетическая сила света I e величина, равная отношению потока излучения Ф е источника к телесному углу ω, в пределах которого это излучение распространяется:

I e = Ф е /ω, (Вт/ср)- ватт на стерадиан.

Сила света часто зависит от направления излучения. Если она не зависит от направления излучения, то такой источник называется изотропным . Для изотропного источника сила света равна

I e = Ф е /4π.

В случае протяженного источника можно говорить о силе света элемента его поверхности dS.

Энергетическая яркость (лучистость) В е – величина, равная отношению энергетической силы света ΔI e элемента излучающей поверхности к площади ΔS проекции этого элемента на плоскость, перпендикулярную направлению наблюдения:

В е = ΔI e / ΔS. (Вт/ср.м 2)

Энергетическая освещенность (облученность) Е е характеризует степень освещенности поверхности и равна величине потока излучения, падающего на единицу освещаемой поверхности. (Вт/м 2 .

2.Световые величины . При оптических измерениях пользуются различными приемниками излучения, спектральные характеристики чувствительности которых к свету различных длин волн различны. Относительная спектральная чувствительность человеческого глаза V(λ) приведена на рис. V(λ)

400 555 700 λ, нм

Поэтому световые измерения, являясь субъективными, отличаются от объективных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является сила света – кандела (кд), которая равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Определение световых единиц аналогично энергетическим. Для измерения световых величин используют специальные приборы – фотометры.

Световой поток . Единицей светового потока является люмен (лм). Он равен световому потоку, излучаемому изотропным источником света с силой в 1 кд в пределах телесного угла в один стерадиан (при равномерности поля излучения внутри телесного угла):

1 лм = 1 кд·1ср.

Опытным путем установлено, что световому потоку в 1 лм, образованному излучением с длиной волны λ = 555 нм соответствует поток энергии в 0,00146 Вт. Световому потоку в 1 лм, образованному излучением с другой λ, соответствует поток энергии

Ф е = 0,00146/V(λ), Вт.

1 лм = 0,00146 Вт.

Освещенность Е - величина, раная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:

Е = Ф/S, люкс (лк).

1 лк – освещенность поверхности, на 1 м 2 которой падает световой поток в 1 лм (1лк = 1 лм/м 2).

Яркость R C (светимость) светящейся поверхности в некотором направлении φ есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:

R C = I/(Scosφ). (кд/м 2).

1.8. ПРИНЦИП ОБРАТИМОСТИ ХОДА ЛУЧЕЙ СВЕТА (ЗАКОН ВЗАИМНОСТИ)

Этот принцип - одно из важных положений геометрической оптики. При преломлении на границе двух сред лучи остаются взаимными, т.е. при изменении направления световых лучей на обратное их взаимное расположение не меняется. Аналогичное положение справедливо и при отражении света. Принцип обратимости хода световых лучей выполняется при любом числе отражений или преломлений, так как он соблюдается при каждом из них.

Законы геометрической оптики имеют большое значение. Во-первых, они устанавливают, что лучи при прохождении через оптическую систему всегда лежат в плоскости падения (образованной падающим лучом и нормалью). Во-вторых, они устанавливают численные зависимости координат лучей при переходе от одной поверхности к другой, т.е. позволяют рассчитать ход луча через сложную оптическую систему. В-третьих, они указывают на возможность анализа оптических систем в обратном ходе лучей.

Геометрическая оптика является теоретическим фундаментом оптических приборов. Технологические основы сборки и юстировки оптических приборов в основном базируются на положениях геометрической оптики. Законы геометрической оптики используются при измерении постоянных оптических систем и деталей, при исследовании оптических свойств приборов и изучении их погрешностей.

Природа вооружила человека прекрасным оптическим инструментом - глазом, но его возможности ограничены. Оптические приборы, созданные человеком, существенно расширили возможности зрения. Например, невооруженный глаз различает предметы величиной порядка 0,1 мм; применение лупы повысило эту возможность до 0,01 мм, а с помощью микроскопа стало возможным различать объекты величиной до 0,15 мкм и т. д.

Оптические приборы в настоящее время получили настолько широкое распространение и развитие, что появилась необходимость выделить отдельные группы приборов, объединенных общими оптическими свойствами и специализированных на решении однородных задач.

Можно выделить пять главных видов оптических приборов:

  • телескопические системы (зрительные трубы);
  • микроскопы;
  • фотографические оптические системы;
  • проекционные приборы;
  • осветительные устройства.

Классификация оптических приборов может быть первоначально основана на двух классах - изображающие и неизображающие. Первые можно делить по значению увеличения, вторые - по энергетике и принципу формирования освещенной площадки. Отметим, что в современных оптических приборах одновременно могут сочетаться признаки двух и более видов приборов. Например, металлографический микроскоп может служить как обычный микроскоп, так же как и фотографический прибор и т.д. Кроме того, есть зеркальные, линзовые и зеркально-линзовые системы. Зеркально-линзовые системы содержат зеркальные и линзовые оптические элементы. Они реализованы в прожекторах, фарах, телескопах, микроскопах, телеобъективах. Линзовые содержат только линзы сферической или асферической формы. Примеры их использования конденсоры - осветительные системы. Оптические телескопы (рефлекторы), которые в качестве светособирающего элемента используют вогнутые зеркала как сферической, так и асферической формы относятся к зеркальным приборам. В качестве элементов оптических систем могут использоваться растровые системы, оптические детали со ступенчатой поверхностью сложного профиля (например, линзы Френеля), световоды и оптическое волокно.

Рассматривая в предыдущем параграфе явления, происходящие при падении света на границу раздела двух сред, мы считали, что свет распространяется в определенном направлении, указанном па рис. 180, 181 стрелками. Поставим теперь вопрос: что произойдет, если свет будет распространяться в обратном направлении? Для случая отражения света это означает, что падающий луч будет направлен не слева вниз, как на рис. 182, а, а справа вниз, как на рис. 182, б; для случая преломления мы будем рассматривать прохождение света не из первой среды во вторую, как на рис. 182, в, а из второй среды в первую, как на рис. 182, г,

Точные измерения показывают, что и в случае отражения и в случае преломления углы между лучами и перпендикуляром к поверхности раздела остаются неизменными, меняется только направление стрелок. Таким образом, если световой луч будет падать по направлению (рис. 182, б), то луч отраженный пойдет по направлению , т. е. окажется, что по сравнению с первым случаем падающий и отраженный пула поменялись местами. То же наблюдается и при преломлении светового луча. Пусть - падающий луч, - преломленный луч (рис. 182, в). Если свет падает по направлению (рис. 182, г), то преломленный луч идет по направлению , т. е. падающий и преломленный луни обмениваются местами.

Рис. 182. Обратимость световых лучей при отражении (а, б) и при преломлении (в, г). Если , то

Таким образом, как при отражении, так и при преломлении свет может проходить один и тот же путь в обоих противоположных друг другу направлениях (рис. 183). Это свойство света носит название обратимости световых лучей.

Обратимость световых лучей означает, что если показатель преломления при переходе из первой среды во вторую равняется , то при переходе из второй среды в первую он равен . Действительно, пусть свет падает под углом и преломляется под углом , так что . Если при обратном ходе лучей свет падает под углом , то он должен преломляться под углом (обратимость). В таком случае показатель преломления , следовательно, . Например, при переходе луча из воздуха в стекло , а при переходе из стекла в воздух . Свойство обратимости световых лучей сохраняется и при многократных отражениях и преломлениях, которые могут происходить в любой последовательности. Это следует из того, что при каждом отражении или преломлении направление светового луча может быть изменено на обратное.

Рис. 183. К обратимости световых лучей при преломлении

Таким образом, если при выходе светового луна из любой системы преломляющих и отражающих сред заставить световой луч па последнем этапе отразиться точно назад, то он пройдет всю систему в обратном направлении и вернется к своему источнику.

Обратимость направления световых лучей можно теоретически доказать, используя законы преломления и отражения и не прибегая к новым опытам. Для случая отражения света доказательство проводится весьма просто (см. упражнение 22 в конце этой главы). Более сложное доказательство для случая преломления света можно найти в учебниках оптики.

«Дифракция света» - - нарушение закона прямолинейного распространения волн. Волновая оптика Дифракция света. Таким образом, волна после прохождения через щель и расширяется и деформируется. Дифракция на круглом отверстии. Спасибо за внимание! Дифракционные решетки используются для разложения электромагнитного излучения в спектр.

«Дисперсия света» - Описанный опыт является, по сути дела, древним. Если встать лицом к радуге, то Солнце окажется сзади. Радуга. Разноцветная полоска есть солнечный спектр. Открытие явления дисперсии. Представления о при­чинах возникновения цветов до Ньютона. Рассмотрим преломление луча в приз­ме. Дисперсия света. Радуга глазами внимательного наблюдателя.

«Законы света» - Задачи: Зеркало. Световые законы: Свет - видимое излучение. Цель: Презентацию подготовила Гильденбрандт Лилия Викторовна. Искусственное. Преломление света. Закон отражения света. "Информационные технологии в. Работа выполнена в рамках проекта.

«Отражение света» - Первый закон геометрической оптики гласит, что свет в однородной среде распространяется прямолинейно. Так с помощью световых лучей можно изобразить направление распространения световой энергии. Отражение света. 5.Законы отражения. Второй закон геометрической оптики гласит: угол падения равен углу отражения, т.е. ?? = ??.

«Дифракция и интерференция света» - От разности хода: ?мах = 2k . ?/2 – интерференционный максимум?мin = (2k+1) . ?/2 –интерференционный минимум. Сложение волн волн на поверхности жидкости. ?мin = (2k+1) . ?/2. ?мах = 2k . ?/2. Когерентные волны. Наблюдение интерференции в тонких плёнках. Результат сложения волн зависит. Интерференция света.

«Распространение света» - D - расстояние от предмета до линзы. Величины. Преломление света. Использовать при решении задач. Прямолинейное распространение света. Тестовые задания. Астрономический метод. Оптические приборы. Полное отражение. Фотоаппарат (1837) Проекционный аппарат Микроскоп Телескоп. Фотоаппарат. Дальше. Собирающей линзе (а) Рассеивающей линзе (б).

Геометрическая оптика – предельно простой случай оптики. По сути, это упрощенная версия волновой оптики, которая не рассматривает и просто не предполагает таких явлений, как интерференция и дифракция. Тут все упрощено до предела. И это хорошо.

Основные понятия

Геометрическая оптика – раздел оптики, в котором рассматриваются законы распространения света в прозрачных средах, законы отражения света от зеркальных поверхностей, принципы построения изображений при прохождении света через оптические системы.

Важно! Все эти процессы рассматриваются без учета волновых свойств света!

В жизни геометрическая оптика, являясь крайне упрощенной моделью, тем не менее, находит широкое применение. Это как классическая механика и теория относительности. Произвести нужный расчет чаще всего гораздо легче в рамках классической механики.

Основное понятие геометрической оптики – световой луч .

Отметим, что реальный световой пучок не распространяется вдоль линии, а имеет конечное угловое распределение, которое зависит от поперечного размера пучка. Геометрическая оптика пренебрегает поперечными размерами пучка.

Закон прямолинейного распространения света

Этот закон говорит нам о том, что в однородной среде свет распространяется прямолинейно. Иными словами, из точки А в точку Б свет движется по тому пути, который требует минимального времени на преодоление.

Закон независимости световых лучей

Распространение световых лучей происходит независимо друг от друга. Что это значит? Это значит, что геометрическая оптика предполагает, что лучи не влияют друг на друга. И распространяются так, будто других лучей и вовсе нет.

Закон отражения света

Когда свет встречается с зеркальной (отражающей) поверхностью, происходит отражение, то есть изменение направления распространения светового луча. Так вот, закон отражения гласит, что падающий и отраженный луч лежат в одной плоскости вместе с проведенной к точке падения нормалью. Причем угол падения равен углу отражения, т.е. нормаль делит угол между лучами на две равные части.

Закон преломления (Снеллиуса)

На границе раздела сред наряду с отражением происходит и преломление, т.е. луч разделяется на отраженный и преломленный.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .


Отношение синусов углов падения и преломления является постоянной величиной и равняется отношению показателей преломления этих сред. Еще эта величина называется показателем преломления второй среды относительно первой.

Здесь стоит отдельно рассмотреть случай полного внутреннего отражения. При распространении света из оптически более плотной среды в менее плотную угол преломления по величине больше угла падения. Соответственно, при увеличении угла падения будет увеличиваться и угол преломления. При некотором предельном угле падения угол преломления станет равным 90 градусов. При дальнейшем увеличении угла падения свет не будет преломляться во вторую среду, а интенсивность падающего и отраженного лучей будут равны. Это называется полным внутренним отражением.

Закон обратимости световых лучей

Представим, что луч, распространяясь в каком-то направлении, претерпел ряд изменений и преломлений. Закон обратимости световых лучей гласит, что если пустить навстречу этому лучу другой луч, то он пойдет по тому же пути, что и первый, но в обратном направлении.

Мы продолжим изучать основы геометрической оптики, а в будущем мы обязательно рассмотрим примеры решения задач на применение различных законов. Ну а если сейчас у вас имеются какие-либо вопросы, добро пожаловать за верными ответами к специалистам студенческого сервиса . Мы поможем решить любую задачу!