Как работает эффект доплера. Школьная энциклопедия. Смотреть что такое "Эффект Доплера" в других словарях

Корреляционным моментом случайных величин Х и У называют математическое ожидание произведения этих величин:

Для дискретных величин:

Для непрерывных:

Корреляционный момент характеризует наличие (отсутствие) связи между величинами X и У.

Свойства ковариации

Пусть X,Y - две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:

1)ковариация симметрична

cov(X,Y)=cov(Y,X)

2) В силу линейности математического ожидания, ковариация может быть записана как:

3) Ковариация случайной величины с собой равна дисперсии:

4) Если X,Y независимые случайные величины, то

Ковариационная матрица- это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.

Ковариационная матрица случайного вектора - квадратная симметрическая матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы - ковариациями между компонентами.

3.10 Коэффициент корреляции. Свойства. Линейная корреляционная зависимость.

Коэффициент корреляции-это мера линейной зависимости двух случайных величин.

Где K xy обозначает ковариацию, а D- дисперсию.

Свойства:

2) Коэффициент корреляции равен +- 1 тогда и только тогда, когда X и Y линейно зависимы:

3) Если X,Y независимые случайные величины, то q X,Y = 0. Обратное, вообще говоря, неверно.

Корреляционная зависимость между х и у называется линейной, если обе линии регрессии (по у и у по х) являются прямыми.

3.11 Двумерное нормальное распределение. Центр рассеивания. Формула вероятности

попадания в прямоугольник.

Двумерный случайный вектор имеет нормальное распределение, если его плотность равна

Средние значения (математические ожидания) М[x]=a M[Y]=b определяют точку (a,b) , называемую центром совместного распределения вероятностей или центром рассеивания.

Формула вероятности попадания…

3.12 Условное мат. Ожидание. Регрессия. Коэффициент линейной регрессии.

Условное мат.ожидание- это среднее значение случайной величины относительно условного распределения.

Функция g(Х) = α + βХ называется наилучшим приближением Y в смысле метода наименьших квадратов, если математическое ожидание М(Y - g(Х))2 принимает наименьшее возможное значение; функцию g(Х) называют среднеквадратической регрессией Y на Х.

Коэффициенты линейной регрессии показывают скорость изменения зависимой переменной по данному фактору, при фиксированных остальных факторах (в линейной модели эта скорость постоянна):

5.1 Неравенство Чебышёва

Пусть случайная величина

определена на вероятностном пространстве

а её математическое ожидание и дисперсия конечны. Тогда

Где а больше 0.

В частности, случайная величина с конечной дисперсией отклоняется от среднего больше, чем на 2 стандартных отклонения, с вероятностью меньше 25%. Она отклоняется от среднего на 3 стандартных отклонения с вероятностью меньше 11,2%.

Мы рассказали о сути преобразования девиации и его применении к матрице квадратов расстояний. Во второй немного напустили туману на спектры простых геометрических наборов.

В данной статье мы постараемся раскрыть смысл преобразования девиации, для чего обратимся к прикладным задачам, связанным с обработкой и анализом данных. Покажем, как связано преобразование девиации матрицы расстояний со статистикой - с дисперсией , корреляцией и ковариацией .

7. Центрирование и нормирование одномерных координат

Разминку проведем на простом и всем понятном - центрировании и нормировании данных. Пусть у нас есть ряд чисел . Тогда операция центрирования сводится к нахождению среднего (центроида набора)

И построению нового набора как разности между исходными числами и их центроидом (средним):

Центрирование - это первый шаг к собственной системе координат (ССК) исходного набора, поскольку сумма центрированных координат равна 0. Вторым шагом является нормирование суммы квадратов центрированных координат к 1. Для выполнения данной операции нам нужно вычислить эту сумму (точнее среднее):

Теперь мы можем построить ССК исходного набора как совокупность собственного числа S и нормированных чисел (координат):

Квадраты расстояний между точками исходного набора определяются как разности квадратов компонент собственного вектора, умноженные на собственное число. Обратим внимание на то, что собственное число S оказалось равно дисперсии исходного набора (7.3).

Итак, для любого набора чисел можно определить собственную систему координат, то есть выделить значение собственного числа (она же дисперсия) и рассчитать координаты собственного вектора путем центрирования и нормирования исходных чисел. Круто.

Упражнение для тех, кто любит «щупать руками». Построить ССК для набора {1, 2, 3, 4}.

Ответ.

Собственное число (дисперсия): 1.25.
Собственный вектор: {-1.342, -0.447, 0.447, 1.342}.

8. Центрирование и ортонормирование многомерных координат

Что, если вместо набора чисел нам задан набор векторов - пар, троек и прочих размерностей чисел. То есть точка (узел) задается не одной координатой, а несколькими. Как в этом случае построить ССК?

Да, можно построить матрицу квадратов расстояний, потом определить матрицу девиации и рассчитать для нее спектр. Но об этом мы узнали не так давно . Обычно поступали (и поступают) по другому.

Введем обозначение компонент набора. Нам заданы точки (узлы, переменные, векторы, кортежи) и каждая точка характеризуется числовыми компонентами . Обращаем внимание, что второй индекс - это номер компоненты (столбцы матрицы), а первый индекс - номер точки (узла) набора (строки матрицы).

Мы получили матрицу центрированных данных (МЦД) .
Следующим шагом нам как будто бы надо вычислить дисперсию для каждой компоненты и их нормировать. Но мы этого делать не будем. Потому что хотя таким образом мы действительно получим нормированные векторы, но нам-то нужно, чтобы эти векторы были независимыми, то есть ортонормированными . Операция нормирования не поворачивает вектора (а лишь меняет их длину), а нам нужно развернуть векторы перпендикулярно друг другу. Как это сделать?

Правильный (но пока бесполезный) ответ - рассчитать собственные вектора и числа (спектр). Бесполезный потому, что мы не построили матрицу, для которой можно считать спектр. Наша матрица центрированных данных (МЦД) не является квадратной - для нее собственные числа не рассчитаешь. Соответственно, нам надо на основе МЦД построить некую квадратную матрицу. Это можно сделать умножением МЦД на саму себя (возвести в квадрат).

Но тут - внимание! Неквадратную матрицу можно возвести в квадрат двумя способами - умножением исходной на транспонированную . И наоборот - умножением транспонированной на исходную. Размерность и смысл двух полученных матриц - разный.

Умножая МЦД на транспонированную, мы получаем матрицу корреляции:

Из данного определения (есть и другие) следует, что элементы матрицы корреляции являются скалярными произведениями центрированных векторов. Соответственно, элементы главной диагонали отражают квадрат длины данных векторов.
Значения матрицы - не нормированы (обычно их нормируют, но для наших целей этого не нужно). Размерность матрицы корреляции совпадает с количеством исходных точек (векторов).

Теперь переставим перемножаемые в (8.1) матрицы местами и получим матрицу ковариации (опять же опускаем множитель 1/(1-n) , которым обычно нормируют значения ковариации):

Здесь перемножаются компоненты (а не векторы). Соответственно, размерность матрицы ковариации равна количеству исходных компонент. Для пар чисел матрица ковариации имеет размерность 2x2, для троек - 3x3 и т.д.

Почему важна размерность матриц корреляции и ковариации? Фишка в том, что поскольку матрицы корреляции и ковариации происходят из произведения одного и того же вектора, то они имеют один и тот же набор собственных чисел, один и тот же ранг (количество независимых размерностей) матрицы. Как правило, количество векторов (точек) намного превышает количество компонент. Поэтому о ранге матриц судят по размерности матрицы ковариации.

Диагональные элементы ковариации отражают дисперсию компонент. Как мы видели выше, дисперсия и собственные числа тесно связаны. Поэтому можно сказать, что в первом приближении собственные числа матрицы ковариации (а значит, и корреляции) равны диагональным элементам (а если межкомпонентная дисперсия отсутствует, то равны в любом приближении).

Если стоит задача найти просто спектр матриц (собственные числа), то удобнее ее решать для матрицы ковариации, поскольку, как правило, их размерность небольшая. Но если нам необходимо найти еще и собственные вектора (определить собственную систему координат) для исходного набора, то необходимо работать с матрицей корреляции, поскольку именно она отражает перемножение векторов. Возможно, что оптимальным алгоритмом является сочетание диагонализаций двух матриц - сначала нашли собственные числа для ковариации и потом на их основе определили собственные вектора матрицы корреляции.

Ну и раз уж мы так далеко зашли, то упомянем, что пресловутый метод главных компонент как раз и состоит в расчете спектра матрицы ковариации/корреляции для заданного набора векторных данных. Найденные компоненты спектра располагаются вдоль главных осей эллипсоида данных. Из нашего рассмотрения это вытекает потому, что главные оси - это и есть те оси, дисперсия (разброс) данных по которым максимален, а значит, и максимально значение спектра.

Правда, могут быть и отрицательные дисперсии, и тогда аналогия с эллипсоидом (псевдоэллипсоидом?) уже не очевидна.

9. Матрица девиации расстояний - это матрица корреляции векторов

Все это прекрасно, но причем здесь преобразование девиации?

Рассмотрим ситуацию, когда нам известен не набор чисел (векторов), характеризующих некоторые точки (узлы), а набор расстояний между точками (причем между всеми). Достаточно ли данной информации для определения ССК (собственной системы координат) набора?

Ответ мы дали в первой части - да, вполне. Здесь же мы покажем, что построенная по формуле (1.3") матрица девиации квадратов расстояний и определенная нами выше матрица корреляции центрированных векторов (8.1) - это одна и та же матрица .

Как такое получилось? Сами в шоке. Чтобы в этом убедиться, надо подставить выражение для элемента матрицы квадратов расстояний

В формулу преобразования девиации:

Отметим, что среднее значение матрицы квадратов расстояний отражает дисперсию исходного набора (при условии, что расстояния в наборе - это сумма квадратов компонент):

Подставляя (9.1) и (9.3) в (9.2), после несложных сокращений приходим к выражению для матрицы корреляции (8.1):

Итак, мы убедились, что применяя операцию девиации к матрице евклидовых расстояний, мы получаем известную матрицу корреляции. Ранг матрицы корреляции совпадает с рангом матрицы ковариации (количеством компонент евклидового пространства). Именно это обстоятельство позволяет нам строить спектр и собственную систему координат для исходных точек на основе матрицы расстояний.

Для произвольной матрицы расстояний (необязательно евклидовой) потенциальный ранг (количество измерений) на единицу меньше количества исходных векторов. Расчет спектра (собственной системы координат) позволяет определить основные (главные) компоненты, влияющие на расстояния между точками (векторами).

Матрица расстояний между городами, например, заведомо неевклидова, - никаких компонент (характеристик городов) не задано. Преобразование девиации тем не менее позволяет определить спектр такой матрицы и собственные координаты городов.

Но уже не в этой статье. Здесь пока все, спасибо за уделенное время.

Воспринимаемая частота волны зависит от относительной скорости ее источника.

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817-1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Christian Johann Doppler, 1803-53

Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета.

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа - ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Эффе́кт До́плера - изменение частоты и длины волн , регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

,

где - частота, с которой источник испускает волны, - скорость распространения волн в среде, - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

где - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

где - скорость света , - скорость источника относительно приёмника (наблюдателя), - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается - .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Как наблюдать эффект Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

  • Доплеровский радар - радар , который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений , а также других объектов.
  • Астрономия
    • По смещению линий спектра определяют лучевую скорость движения звёзд , галактик и других небесных тел. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость . Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости - к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300 000 км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра определяют температуру звёзд
  • Неинвазивное измерение скорости потока. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси , каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).
  • Охранные сигнализации. Для обнаружения движущихся объектов
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.

Искусство и культура

  • В 6-ой серии 1-го сезона американского комедийного телесериала «The Big Bang Theory » доктор Шелдон Купер идёт на Хэллоуин , для которого надел костюм, символизирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он - зебра .

Примечания

См. также

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Доплера" в других словарях:

    эффект Доплера - доплеровский эффект Изменение частоты, возникающее при перемещении передатчика относительно приемника или наоборот. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва … Справочник технического переводчика

    эффект Доплера - Doplerio reiškinys statusas T sritis fizika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. эффект Доплера, m; явление Доплера, n pranc. effet Doppler, m … Fizikos terminų žodynas

    эффект Доплера - Doppler io efektas statusas T sritis automatika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. доплеровский эффект, m; эффект Доплера, m pranc. effet Doppler, m ryšiai: sinonimas – Doplerio efektas … Automatikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamosios spinduliuotės dažnio pokytis, atsirandantis dėl reliatyviojo judesio tarp pirminio ar antrinio šaltinio ir stebėtojo. atitikmenys: angl. Doppler effect vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas