Что такое многогранный угол. Многогранные углы. Выпуклые многогранники. Выпуклые многогранные углы

МАОУ «Лицей инновационных технологий»

Многогранные углы. Выпуклые многогранники

Подготовил ученик 10Б класса: Бурыкин Алексей

Проверил: Дубинская И.А.

Хабаровск


Многогранный угол

Многогранным углом называется фигура, образованная плоскими углами так, что выполняются условия:

1)никакие два угла не имеют общих точек, кроме их общей вершины или целой стороны;

2) у каждого из этих углов каждая его сторона является общей с одним и только одним другим таким углом;

3) от каждого угла к каждому можно перейти по углам, имеющим общую сторону;

4) никакие два угла с общей стороной не лежат в одной плоскости.


  • Углы ASB, BSC,... называются плоскими углами или гранями , стороны их SA, SB, ... называются рeбрами , а общая вершина S- вершиной многогранного угла.

Теорема1.

В трёхгранном угле каждый плоский угол меньше суммы двух других плоских углов.


Следствие

  • / ASC - / ASB / CSB; / ASC - / CSB / ASB.

В трёхгранном угле каждый плоский угол больше разности двух других углов .


Теорема2.

  • Сумма величин всех трех плоских углов трехгранного угла меньше 360° .

180°, откуда и следует, что α + β + γ " width="640"

Доказательство

Обозначим,

тогда из треугольников ASC, ASB, BSC имеем

Теперь неравенство принимает вид

180° - α + 180° - β + 180° - γ 180°,

откуда и следует, что

α + β + γ

Простейшие случаи равенства трёхгранных углов

  • 1) по равному двугранному углу, заключённому между двумя соответственно равными и одинаково расположенными плоскими углами , или 2) по равному плоскому углу, заключённому между двумя соответственно равными и одинаково расположенными двугранными углами .

Выпуклый многогранный угол

  • Многогранный угол называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней, неограниченно продолженной.

Многогранник.

Многогранник , в трехмерном пространстве- совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого, называемого смежным с первым.


Выпуклые многогранники

Многогранник называется выпуклым , если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы.

Выпуклый многогранник разрезает пространство на две части – внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранна, то соответствующий многогранник –выпуклый.


Теорема. Сумма всех плоских углов выпуклого многогранного угла меньше 360 градусов.


Свойство 1. В выпуклом многограннике все грани являются выпуклыми многоугольниками.

Свойство2. Всякий выпуклый многогранник может быть составлен из пирамид с общей вершиной, основание которых образует поверхность многогранника.


№1 Дата05.09.14

Предмет Геометрия

Класс 11

Тема урока: Понятие о многогранном угле. Трехгранный угол.

Цели урока:

    ввести понятия: “трехгранные углы”, “многогранные углы”, “многогранник”;

    ознакомить учащихся с элементами трехгранного и многогранного углов, многогранника, а также определениями выпуклого многогранного угла и свойствами плоских углов многогранного угла;

    продолжить работу по развитию пространственных представлений и пространственного воображения, а также логического мышления учащихся.

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Пусть даны три луча а, b и с с общим началом точкой О (рис. 1.1). Эти три луча не обязательно лежат в одной плоскости. На рисунке 1.2 лучи b и с лежат в плоскости р, а луч а не лежит в этой плоскости.

Лучи а, b и с попарно задают три выделенных дугами плоских угла (рис. 1.3).

Рассмотрим фигуру, состоящую из трех указанных выше углов и части пространства, ограниченной этими плоскими углами. Эту пространственную фигуру называют трехгранным углом (рис. 2).

Лучи а, b и с называются ребрами трехгранного угла, а углы: = AOC, = AOB,

= BOC , ограничивающие трехгранный угол, - его гранями. Эти углы-грани образуют поверхность трехгранного угла. Точка О называется вершиной трехгранного угла. Трехгранный угол можно обозначать так: OABC

Рассмотрев внимательно все многогранные углы, изображенные на рисунке 3, мы можем заключить, что у каждого из многогранных углов одинаковое число ребер и граней:

4 грани и одна вершина;

    у пятигранного угла - 5 ребер, 5 граней и одна вершина;


  • у шестигранного угла - 6 ребер, 6 граней и одна вершина и т. д.

Многогранные углы бывают выпуклыми и невыпуклыми.

Представьте себе, что мы взяли четыре луча с общим началом, как на рисунке 4. В этом случае мы получили невыпуклый многогранный угол.

Определение 1. Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждой его грани.

Другими словами, выпуклый многогранный угол всегда можно положить любой его гранью на некоторую плоскость. Вы видите, что в случае, изображенном на рисунке 4, так поступить не всегда удается. Четырехгранный угол, изображенный на рисунке 4, является невыпуклым.

Отметим, что в нашем учебнике, если мы говорим “многогранный угол”, то имеем в виду, что он выпуклый. Если рассматриваемый многогранный угол невыпуклый, об этом будет сказано отдельно.

    Свойства плоских углов многогранного угла

Теорема 1. Каждый плоский угол трехгранного угла меньше суммы двух других плоских углов.

Теорема 2. Сумма величин всех плоских углов выпуклого многогранного угла меньше 360°.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.

§1(1.1, 1.2) стр. 4, № 9.

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.

Задачи: Инициировать рефлексию учащихся на самооценку своей деятельности. Обеспечить усвоение учащимися принципов само регуляции и сотрудничества.

Беседа по вопросам:

Что тебе на уроке было интересно?

Что не понятно?

На что обратить внимание учителю на следующем уроке?

Как ты оценишь свою работу на уроке?

    Слайд 1

    Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом. Общая вершина S называется вершиной многогранного угла. Лучи SA1, …, SAn называются ребрами многогранного угла, а сами плоские углы A1SA2, A2SA3, …, An-1SAn, AnSA1 – гранями многогранного угла. Многогранный угол обозначается буквами SA1…An, указывающими вершину и точки на его ребрах. Поверхность, образованную конечным набором плоских углов A1SA2, A2SA3, …, An-1SAn, AnSA1 с общей вершиной S, в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины, будем называтьмногогранной поверхностью.

    Слайд 2

    В зависимости от числа граней многогранные углы бывают трехгранными, четырехгранными, пятигранными и т. д.

    Слайд 3

    ТРЕХГРАННЫЕ УГЛЫ

    Теорема. Всякий плоский угол трехгранного угла меньше суммы двух других его плоских углов. Доказательство.Рассмотрим трехгранный угол SABC. Пусть наибольший из его плоских углов есть угол ASC. Тогда выполняются неравенства ASB ASC

    Слайд 4

    Свойство. Сумма плоских углов трехгранного угла меньше 360°. Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС

    Слайд 5

    ВЫПУКЛЫЕ МНОГОГРАННЫЕ УГЛЫ

    Многогранный угол называетсявыпуклым, если он является выпуклой фигурой, т. е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок.На рисунке приведены примеры выпуклого и невыпуклого многогранных углов. Свойство.Сумма всех плоских углов выпуклого многогранного угла меньше 360°. Доказательство аналогично доказательству соответствующего свойства для трехгранного угла.

    Слайд 6

    Вертикальные многогранные углы

    На рисунках приведены примеры трехгранных, четырехгранных и пятигранных вертикальных углов Теорема. Вертикальные углы равны.

    Слайд 7

    Измерение многогранных углов

    Поскольку градусная величина развернутого двугранного угла измеряется градусной величиной соответствующего линейного угла и равна 180о, то будем считать, что градусная величина всего пространства, которое состоит из двух развернутых двугранных углов, равна 360о. Величина многогранного угла, выраженная в градусах, показывает какую часть пространства занимает данный многогранный угол. Например, трехгранный угол куба занимает одну восьмую часть пространства и, значит, его градусная величина равна 360о:8 = 45о. Трехгранный угол в правильной n-угольной призме равен половине двугранного угла при боковом ребре. Учитывая, что этот двугранный угол равен, получаем, что трехгранный угол призмы равен.

    Слайд 8

    Измерение трехгранных углов*

    Выведем формулу, выражающую величину трехгранного угла через его двугранные углы. Опишем около вершины Sтрехгранного угла единичную сферу и обозначим точки пересечения ребер трехгранного угла с этой сферой A, B, C. Плоскости граней трехгранного угла разбивают эту сферу на шесть попарно равных сферических двуугольников, соответствующих двугранным углам данного трехгранного угла. Сферический треугольник ABC и симметричный ему сферический треугольник A"B"C" являются пересечением трех двуугольников.Поэтому удвоенная сумма двугранных углов равна 360о плюс учетверенная величина трехгранного угла, или  SA +SB + SC = 180о + 2SABC.

    Слайд 9

    Измерение многогранных углов*

    Пусть SA1…An – выпуклый n-гранный угол. Разбивая его на трехгранные углы, проведением диагоналей A1A3, …, A1An-1 и применяя к ним полученную формулу, будем иметь:  SA1 + … + SAn = 180о(n – 2) + 2SA1…An. Многогранные углы можно измерять и числами. Действительно, тремстам шестидесяти градусам всего пространства соответствует число 2π. Переходя от градусов к числам в полученной формуле, будем иметь: SA1+ …+SAn = π(n – 2) + 2SA1…An.

    Слайд 10

    Упражнение 1

    Может ли быть трехгранный угол с плоскими углами: а) 30°, 60°, 20°; б) 45°, 45°, 90°; в) 30°, 45°, 60°? Ответ: а) Нет; б) нет; в) да.

    Слайд 11

    Упражнение 2

    Приведите примеры многогранников, у которых грани, пересекаясь в вершинах, образуют только: а) трехгранные углы; б) четырехгранные углы; в) пятигранные углы. Ответ: а) Тетраэдр, куб, додекаэдр; б) октаэдр; в) икосаэдр.

    Слайд 12

    Упражнение 3

    Два плоских угла трехгранного угла равны 70° и 80°. В каких границах находится третий плоский угол? Ответ: 10о

    Слайд 13

    Упражнение 4

    Плоские углы трехгранного угла равны 45°, 45° и 60°. Найдите величину угла между плоскостями плоских углов в 45°. Ответ: 90о.

    Слайд 14

    Упражнение 5

    В трехгранном угле два плоских угла равны по 45°; двугранный угол между ними прямой. Найдите третий плоский угол. Ответ: 60о.

    Слайд 15

    Упражнение 6

    Плоские углы трехгранного угла равны 60°, 60° и 90°. На его ребрах от вершины отложены равные отрезки OA, OB, OC. Найдите двугранный угол между плоскостью угла в 90° и плоскостью ABC. Ответ: 90о.

    Слайд 16

    Упражнение 7

    Каждый плоский угол трехгранного угла равен 60°. На одном из его ребер отложен от вершины отрезок, равный 3 см, и из его конца опущен перпендикуляр на противоположную грань. Найдите длину этого перпендикуляра. Ответ: см.

    Слайд 17

    Упражнение 8

    Найдите геометрическое место внутренних точек трехгранного угла, равноудаленных от его граней. Ответ: Луч, вершиной которого является вершина трехгранного угла, лежащий на линии пересечения плоскостей, делящих двугранные углы пополам.

    Слайд 18

    Упражнение 9

    Найдите геометрическое место внутренних точек трехгранного угла, равноудаленных от его ребер. Ответ: Луч, вершиной которого является вершина трехгранного угла, лежащий на линии пересечения плоскостей, проходящих через биссектрисы плоских углов и перпендикулярных плоскостям этих углов.

    Слайд 19

    Упражнение 10

    Для двугранных углов тетраэдра имеем: , откуда 70о30". Для трехгранных углов тетраэдра имеем: 15о45". Ответ: 15о45". Найдите приближенные значения трехгранных углов тетраэдра.

    Слайд 20

    Упражнение 11

    Найдите приближенные значения четырехгранных углов октаэдра. Для двугранных углов октаэдра имеем: , откуда 109о30". Для четырехгранных углов октаэдра имеем: 38о56". Ответ: 38о56".

    Слайд 21

    Упражнение 12

    Найдите приближенные значения пятигранных углов икосаэдра. Для двугранных углов икосаэдра имеем: , откуда 138о11". Для пятигранных углов икосаэдра имеем: 75о28". Ответ: 75о28".

    Слайд 22

    Упражнение 13

    Для двугранных углов додекаэдра имеем: , откуда 116о34". Для трехгранных углов додекаэдра имеем: 84о51". Ответ: 84о51". Найдите приближенные значения трехгранных углов додекаэдра.

    Слайд 23

    Упражнение 14

    В правильной четырехугольной пирамидеSABCD сторона основания равна 2 см, высота 1 см. Найдитечетырехгранный угол при вершине этой пирамиды. Решение:Указанные пирамиды разбивают куб на шесть равных пирамид с вершинами в центре куба. Следовательно, 4-х гранный угол при вершине пирамиды составляет одну шестую часть угла в 360о, т.е. равен 60о. Ответ: 60о.

    Слайд 24

    Упражнение 15

    В правильной треугольной пирамиде боковые ребра равны 1, углы при вершине 90о. Найдитетрехгранный угол при вершине этой пирамиды. Решение:Указанные пирамиды разбивают октаэдр на восемь равных пирамид с вершинами в центре O октаэдра. Следовательно, 3-х гранный угол при вершине пирамиды составляет одну восьмую часть угла в 360о, т.е. равен 45о. Ответ: 45о.

    Слайд 25

    Упражнение 16

    В правильной треугольной пирамиде боковые ребра равны 1, а высота Найдитетрехгранный угол при вершине этой пирамиды. Решение:Указанные пирамиды разбивают правильный тетраэдр на четыре равные пирамиды с вершинами в центре Oтетраэдра. Следовательно, 3-гранный угол при вершине пирамиды составляет одну четвертую часть угла в 360о, т.е. равен 90о. Ответ: 90о.

Посмотреть все слайды

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

В планиметрии одним из объектов изучения является угол.

Угол - это геометрическая фигура, состоящая из точки - вершины угла и двух лучей, исходящих из этой точки.

Два угла одна сторона, которых общая и две другие являются продолжением одна другой, в планиметрии называются смежными.

Циркуль можно рассматривать как модель плоского угла.

Вспомним понятие двухгранного угла.

Это фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

Крыша дома наглядно демонстрирует двухгранный угол.

Но крыша дома на рисунке два выполнена в виде фигуры образованной из шести плоских углов с общей вершиной так, что углы берутся в определенном порядке и каждая пара соседних углов, включая первый и последний, имеет общую сторону. Как называется такая форма крыши?

В геометрии фигура, составленная из углов

А углы из которых составлен этот угол называются плоскими углами. Стороны плоских углов называются ребрами многогранного угла. Точка О называется вершиной угла.

Примеры многогранных углов можно найти в тетраэдре и параллелепипеде.

Грани тетраэдра DBA, ABC, DBC образуют многогранный угол ВADC. Чаще он называется трёхгранным углом.

В параллелепипеде грани АА1D1D, ABCD, AA1B1B образую трехгранный угол AA1DB.

Ну а крыша дома выполнена в форме шестигранного угла. Она состоит из шести плоских углов.

Для многогранного угла справедлив ряд свойств. Сформулируем их и докажем. Здесь говорится, что утверждение

Во-первых, для любого выпуклого многогранного угла существует плоскость, пересекающая все его рёбра.

Рассмотри для доказательства многогранный угол ОА1А2 А3…Аn.

По условию он выпуклый. Угол называется выпуклым, если он лежит по одну сторону от плоскости каждого из своих плоских углов.

Так как по условию этот угол выпуклый, то точки О, А1, А2 ,А3, Аn лежат по одну сторону от плоскости ОА1А2

Проведем среднюю линию KM треугольника ОА1А2 и выберем из ребер ОА3, ОА4, ОАn то ребро которое образует с плоскостью ОКМ, наименьший двугранный угол. Пусть это будет ребро ОАi.(оа итое)

Рассмотрим полуплоскость α с границей КМ, делящую двугранный угол ОКМАi на два двухгранных угла. Все вершины от А до Аn лежат по одну сторону от плоскости α, а точка О по другую сторону. Следовательно, плоскость α пересекает все ребра многогранного угла. Утверждение доказано.

Выпуклые многогранные углы обладают ещё одним важным свойством.

Сумма плоских углов выпуклого многогранного угла меньше 360°.

Рассмотрим выпуклый многогранный угол с вершиной в точке О. В силу доказанного утверждения существует плоскость, которая пересекает все его ребра.

Проведем такую плоскость α, пусть она пересекает рёбра угла в точках А1, А2, А3 и так далее Аn.

Плоскость α от внешней области плоского угла будет отсекать треугольник. Сумма углов которого 180°. Получим, что сумма всех плоских углов от А1ОА2 до АnОА1 равна выражению преобразуем, данное выражение перегруппируем слагаемые, получим

В данном выражении суммы указанные в скобках, являются суммами плоских углов трехгранного угла, а как известно они больше третьего плоского угла.

Данное неравенство можно записать для всех трёхгранных углов образующих данный многогранный угол.

Следовательно, получим следующее продолжение равенства

Полученный ответ доказывает, что сумма плоских углов выпуклого многогранного угла меньше 360 градусов.

Многогранный угол

часть пространства, ограниченная одной полостью многогранной конической поверхности, направляющая которой - плоский многоугольник без самопересечений. Грани этой поверхности называются гранями М. у., вершину - вершиной М. у. М. у. называют правильным, если равны все его линейные углы и все его двугранные углы. Мерой М. у. является площадь, ограниченная сферическим многоугольником полученным пересечением граней М. у., сферой с радиусом, равным единице, и с центром в вершине М. у. См. также Телесный угол .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Многогранный угол" в других словарях:

    См. Телесный угол … Большой Энциклопедический словарь

    См. Телесный угол. * * * МНОГОГРАННЫЙ УГОЛ МНОГОГРАННЫЙ УГОЛ, см. Телесный угол (см. ТЕЛЕСНЫЙ УГОЛ) … Энциклопедический словарь

    Часть пространства, ограниченная одной полостью многогранной конич. поверхности, направляющая к рой плоский многоугольник без самопересечений. Грани этой поверхности наз. гранями М. у., вершина верши н о й М. у. Многогранный угол наз. правильным … Математическая энциклопедия

    См Телесный угол … Естествознание. Энциклопедический словарь

    многогранный угол - матем. Часть пространства, ограниченная несколькими плоскостями, проходящими через одну точку (вершину угла) … Словарь многих выражений

    МНОГОГРАННЫЙ, многогранная, многогранное (книжн.). 1. Имеющий несколько граней или сторон. Многогранный камень. Многогранный угол (часть пространства, ограниченная несколькими плоскостями, пересекающимися в одной точке; мат.). 2. перен.… … Толковый словарь Ушакова

    - (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β 1 Ο 1 Α 1. Наложим их так, чтобы… …

    - (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β1Ο1Α1. Наложим их так, чтобы вершины О … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Угол (значения). Угол ∠ Размерность ° Единицы измерения СИ Радиан … Википедия

    Плоский, геометрическая фигура, образованная двумя лучами (сторонами У.), выходящими из одной точки (вершины У.). Всякий У., имеющий вершину в центре О некоторой окружности (центральный У.), определяет на окружности дугу AB, ограниченную… … Большая советская энциклопедия