Дисперсия случайной величины. Дисперсия, виды и свойства дисперсии

Урок передачи-усвоения новых знаний, умений и навыков.

Тема: Дисперсия. Её свойства.

Цели урока:

  • Познавательная: 1) передача учащимся определенной системы математических знаний, умений, навыков; 2) выработка у учащихся умения
    решать основные типы задач теории вероятности и применять теорию в конкретных различных ситуациях; 3) формирование представлений об идеях и методах высшей математики; 4) формирование у учащихся на материале учебного предмета высшей математики способов учебно-познавательной деятельности.
  • Развивающая: 1) развитие мышления; 2) развитие памяти; 3) развитие элементов творческой деятельности, как качеств мышления; 4) развитие речи, заключающееся в овладении математической терминологией, а также приемами построения определений, понятий и оперирование ними.
  • Воспитывающая: 1) воспитать у учеников любовь к выбранной профессии и данному предмету.

Задача: заключается в определении свойств дисперсии случайной величины и в выводе формулы для ее расчета.

Ход урока.

  1. Организационный момент.
  2. Повторение старого и изучение нового материала.
  3. Закрепление нового материала.
  4. Домашнее задание.

1. Проверка присутствующих учеников на уроке.

2. Математика – королева всех наук!
Без нее не летят корабли,
Без нее не поделишь ни акра земли,
Даже хлеба не купишь, рубля не сочтешь,
Что по не узнаешь, а узнав не поймешь!

Учитель : “Итак, математическое ожидание не полностью характеризует случайную величину”

Ученик 1: “О как же так выходит я совсем пустяк”.

Ученик 2: “Да, ты право, правду говоришь”.

Ученик 1: “Но кто заменит вдруг меня, ведь моя формула, то всем нужна”.

Ученик 2: “Да, ты сначала про себя все вспомни”.

Ученик 1: “Без проблем, вот эти формулы, они известны всем. И если множество значений бесконечно, то ожидание находится как ряд, точнее его сумма:

А, если величина вдруг непрерывна, то рассмотреть имеем право мы предельный случай, и вот в итоге что получим:

Ученик 2: “Но это все смешно ведь ожидание не существует. Нет его!”.

Ученик 1: “Нет, ожидание существует, когда является абсолютно сходящимся и интеграл и сумма”.

Ученик 2: “И все же я твержу одно, нам ожидание не нужно”.

Ученик 1: “Ах как же так? Да это просто ”.

Учитель: “Стоп, стоп, закончим спор. Возьмите ручку и тетрадь, и в путь мы будем с вами спор решать. Но прежде чем начать, давайте вспомним лишь одно, чему отклонение от математического ожидания равно”.

Ученик 3: “О, это могу вспомнить я”.

Учитель: “Пожалуйста, вот мел, доска”.

Ученик 4: “Разность X – М(Х) называется отклонением случайной величины X от ее математического ожидания М(Х). Отклонение является случайной величиной. Так как математическое ожидание случайной величины -величина постоянная и математическое ожидание постоянной равно этой

постоянной, то М(Х – М(Х)) = М(Х) – М(М(Х)) = М (X) – М(Х) = 0. т, е, М(Х – М(Х)) =0.”.

Учитель: “Да, все верно, но друзья за меру рассеяния отклонения случайной величины от ее математического это принять нельзя. И из этого последует, что рассматривают модули или квадраты отклонений. А вот теперь послушайте определение: X случайной величины – дисперсия или рассеяние – это математическое ожидание квадрата ее отклонения. Обозначается как D(X), а формула имеет вид: D(X) = М((Х – М(Х)) 2). (1) Теперь давайте, определим, какой же знак величине присвоим мы?”.

Ученик 5: “Из свойств и определения математического ожидания можем получить, лишь одно, что как величина дисперсия неотрицательна D(X) > 0” (2).

Учитель: “Учитывая равенство один получим формулу для нахождения дисперсии: D(X) = М(Х 2) – (М(Х)) 2 . Которую быть может кто – нибудь докажет”.

Ученик 6: “Давайте я попробую. D(X)=M((X – М(Х)) 2) = М(Х 2 - 2ХМ(Х)+(М(Х)) 2)=М(Х 2) – 2М(ХМ(Х)+М((М(Х)) 2)=М(Х 2) – 2М(Х)М(Х)+(М(Х)) 2 =М(Х 2) – (М(Х)) 2 ”. (3)

Учитель: “Рассмотрим свойства случайной величины:

1. Дисперсия С – как постоянной величины равна нулю: D(C) - 0 (С – const). (4)

2. Постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат: D(CX)=C 2 D(X). (5)

3. Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(X+Y) = D(X) + D(Y). (6)

4. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий: D(X – Y) = D(X) + D(Y). (7)

Докажем эти свойства принимая во внимание свойства ожидания:

D(C) = М((С – М(С)) 2) = М((С – С 2)) = М(0) = 0. Первое свойство доказано оно означает, что постоянная величина не имеет рассеяния так как принимает одно и тоже значение.

А теперь докажем второе свойство: D(CX) – М((СХ – М(СХ)) 2) = М((СХ

СМ(Х)) 2) = М(С 2 (Х – М(Х)) 2) = С 2 М((Х – М(Х)) 2) = C 2 D(X).

Для доказательства третьего свойства используем формулу три:

D(X+Y) = M((X+Y) 2) – (M(X+Y)) 2 = M(X 2 +2XY+Y 2) – (M(X)+M(Y)) 2 = M(X 2)+M(2XY)+M(Y 2) – ((M(X)) 2 +2M(X)M(Y)+(M(Y)) 2) = M(X 2)+2M(X)M(Y)+M(Y 2) – (M(X)) 2 – 2M(X)M(Y) – (M(Y)) 2 = M(X 2) - (M(X)) 2 +M(Y 2) – (M(Y)) 2 = D(X) – D(Y).

Третье свойство распространяется на любое число попарно-независимых случайных величин.

Доказательство четвертого свойства следует из формул (5) и (6).

D(X – Y) = D(X +(- Y)) – D(X) +D(– Y)=D(X)+(-l) 2 D(Y) = D(X)+D(Y).

Если случайная величина является X является дискретной и задан ее закон распределения Р(Х=х k) = p k (k= 1,2,3,n).

Таким образом случайная величина (X - М(Х)) 2 имеет следующий закон распределения: (к=1,2,3,n), =l.

Исходя из определения математического ожидания, получаем формулу

Дисперсия непрерывной случайной величины X, все возможные значения корой принадлежат отрезку [а,Ь] , определяется формулой:

D(X)=(x-M(X)) 2 p(x)dx (8)

где р(х) – плотность распределения этой величины. Дисперсию можно вычислять по формуле:

Для учеников, имеющих оценку “4” и “5” необходимо дома доказать формулу (9).

3. Закрепление нового материала в виде тестовой работы.

1) Тестовая работа по теме “Дисперсия и ее свойства”.

1. Продолжить определение: дисперсия – это.

2. Выберите правильную формулу для расчета дисперсии:

а) D(X)=D(X) 2 – (D(X)) 2 ;
б) D(X)=M(X – D(X 2));
в)D(X)=M((X-M(X)) 2);
г) D(X)=M(X) 2 – (M(X)) 2 ;


        1. Пусть событие А={1,2,3},а событие В={1,2,3,4,5,6}. Укажите верное высказывание.

        2. Дисперсия случайной величины Х равна 5. Чему равно значение дисперсии D (-2X)

        3. При обследовании отдельного региона фирмой , предоставляющей интернет-услуг, выявлено, что (в среднем) из каждых 100 семей, 80 имеют компьютер, подключенный к интернет. Оценить вероятность того , что из 400 семей данного микрорайона, от 300 до 360 семей имеют компьютер, поключенный к интернет.

        4. Рассматриваются две случайные величины X и Y. Их математическое ожидание и дисперсия соответственно равны: М (X) =3; D (X) =2; M (Y) =2; D (Y) =1. Укажите верные соотношения.
        5. Какая из следующих формул используется для вычисления числа размещения?


        6. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите по какой формуле вычисляется дисперсия D (X).

        7. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите по какой формуле вычисляется математическое ожидание M (X)
        8. Брошены две игральные кости. Какая из следующих совокупностей полученного числа образует полную группу событий?

          Монета бросается 2 раза, какова вероятность P выпадения подряд двух гербов?


        9. На рисунке представлены графики нормальных распределений N1, N2, N3.Расположите эти распределения в порядке возрастания их математического ожидания.

        10. На рисунке представлены графики нормальных распределений N1, N2, N3.Расположите эти распределения в порядке возрастания их дисперсии.

        11. Найти математическое ожидание дискретной случайной величины Х, заданной следующим законом распределения
        12. Различаются ли понятия «перестановки из трех элементов» и «размещения из трех элементов по три»?



        13. Установить последовательность ответов

        14. Математическое ожидание и дисперсия случайной величины X, соответственно,равны М (Х) =3; D (X) =2. Расположите следующие выражения в порядке возрастания их значений.

        15. Дисперсия случайной величины Х равна 5. Чему равно значение дисперсии D (X-1)

        16. Чему равно математическое ожидание M (X-Y) разности двух случайных величин X и Y,а если известны значения математических ожиданий каждой из них: M (X) =3; M (Y) =4?

        17. Укажите названия вероятностей, входящих в формулу Байеса.

        18. Пусть событие А={1,2.3.4,5}, а событие В={5,4,3,2,1}. Укажите верное высказывание.


        19. Что значат записанные ниже формулы.

        20. Дисперсия случайной величины Х равна 5. Чему равно значение дисперсии D (3X+6)
        21. Математическое ожидание случайной величины Х равна 5: M (X) =5. Чему равно значение математического ожидания М (Х-1) ?

          Математическое ожидание случайной величины Х равна 5: M (X) =5. Чему равно значение математического ожидания М (-2Х) ?


        22. В серии из n независимых испытаний, проводимых по схеме Бернулли , наблюдается наступление события А. Что означают указанные ниже компоненты формулы Бернулли? Pm,n=Cmnpmqn-m, где q=1-p. Что означают в этой формуле: 1) Pm,n 2) Cmn 3) p

        23. Пусть А –случайное событие, вероятность которого отлична от нуля и 1; ? –достоверное и O – невозможное событие. События B, C, и D определены как: B=A+A; C=A+ ?; D=A* O
        24. Чему равно значение среднего квадратического отклонения числа 4?

          Дисперсия случайной величины X равна 5: D (X) =5. Чему равно значение дисперсии D (-2X) ?

          Математическое ожидание случайной величины Х равна 5: M (X) =5. Чему равно значение математического ожидания М (3Х+6) ?

          Понятие факториала. Какое из следующих выражений неверно?

          Сравните два числа и укажите правильный ответ. Сравните два числа. Какое из них больше? Какое из чисел больше 10! или 1010?


        25. Сравните два числа и укажите правильный ответ.

        26. Охарактеризуйте событие: 2х2=5
        27. Чему равна сумма противоположных событий?

          Чему равно произведение противоположных событий?

          Брошены две игральные кости. Какая из следующих совокупностей полученного числа очков образует полную группу событий?


        28. События образуют полную группу если они:
        29. Чему равна сумма случайных событий, образующих полную группу?


        30. Пусть событие А=1, 2, 3, а событие B=1, 2, 3, 4, 5, 6. Укажите верное высказывание.

        31. Пусть событие А=1,2,3,4,5, а событие B=5,4,3,2,1. Укажите верное высказывание.
        32. Сколько элементов содержит множество элементарных событий, описывающих результат бросания игрального кубика?

          Какая из следующих формул используется для вычисления числа размещений?


        33. Размещения и перестановки. Пусть P – число возможных перестановок из n элементов, и А- число размещений из n элементов по m (n>m). Каково соотношение между величинами P и А? Укажите верный ответ:
        34. Различаются ли понятия "перестановки из трех элементов" и "размещения из трех элементов по три" ?


        35. Свойства сочетаний. Пусть C – число сочетаний из n элементов по m
        36. Монета бросается два раза. Какова вероятность P выпадения подряд двух гербов?

          Монета бросается три раза. Какова вероятность P выпадения подряд трех гербов?


        37. Пусть А и В - случайные события. Сравните величины P (A+B) и Р (А) +Р (В) и укажите правильный ответ.
        38. Чему равна вероятность суммы противоположных событий?

          Чему равна вероятность произведения противоположных событий?

          Пусть А - случайное событие, вероятность которого - Р (А) =0,3. Чему равна вероятность события Р (А+А) ?

          Пусть А - случайное событие, вероятность которого - Р (А) =0,3. Чему равна вероятность произведения событий Р (А*А) ?


        39. Вероятность произведения достоверного и случайного событий. Пусть

        40. Вероятность суммы невозможного и случайного событий. Пусть

        41. Вероятность произведения невозможного и случайного событий. Пусть
        42. Чему равна вероятность Р суммы событий , образующих полную группу?


        43. Вероятность суммы достоверного и случайного событий. Пусть

        44. Формула Бернулли. Формула Бернулли имеет вид:
        45. Каковы причины использования асимптотических приближений формулы Бернулли?


        46. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите, по какой формуле вычисляется дисперсия D (X):

        47. Дискретная случайная величина Х имеет биноминальный закон распределения с параметрами n и P. Укажите, по какой формуле вычисляется математическое ожидание M (X):
        48. Что означает в этой формуле P?


        49. Законом редких явлений называют:
        50. Что означает в этой формуле P?


        51. Укажите свойство функции Гаусса. (см. ниже):

        52. Укажите критерий использования интегральной теоремы (формулы) Муавра-Лапласа. Интегральная формула Муавра-Лапласа имеет вид:

        53. Свойства функции Лапласа (см. ниже):
        54. Какая характеристика случайной величины имеет смысл ее среднего значения?


        55. Чему равно математическое ожидание M (X+Y) суммы двух случайных величин X и Y, если известны значения математических ожиданий каждой из них: M (X) = 3 и M (Y) = 4 ?

        56. Чему равно математическое ожидание M (X-Y) разности двух случайных величин X и Y, если известны значения математических ожиданий каждой из них: M (X) = 3 и M (Y) = 4 ?
        57. Математическое ожидание случайной величины X равна 5: М (X) = 5. Чему равно значение математического ожидания М (X-1) ?

          Математическое ожидание случайной величины X равна 5: М (X) = 5. Чему равно значение математического ожидания М (-2X) ?

          Математическое ожидание случайной величины X равна 5: М (X) = 5. Чему равно значение математического ожидания М (3X+6) ?

          Какая характеристика случайной величины определяет степень ее рассеяния?


        58. Чему равна дисперсия суммы D (X+Y) двух независимых случайных величин X и Y, если известны значения дисперсий каждой из них: D (X) =3 и D (Y) =4?
        59. Дисперсия случайной величины X равна 5: D (X) = 5. Чему равно значение дисперсии D (X-1) ?

          Дисперсия случайной величины X равна 5: D (X) = 5. Чему равно значение дисперсии D (-2X) ?

          Дисперсия случайной величины X равна 5: D (X) = 5. Чему равно значение дисперсии D (3X+6) ?

          Чему равно значение дисперсии числа 5: D (5) = ?


        60. Среднее квадратическое отклонение равно:

        61. Охарактеризуйте множество значений дискретной случайной величины (укажите наиболее полный ответ):

        62. Задача: Случайная величина X принимает три возможных значения x=2; x=5; x=8. Известны вероятности первых двух возможных значений: p=0,4 и p=0,15. Найти вероятность значения x; p=?

        63. Множество значений непрерывной случайной величины является:
        64. Какое значение непрерывной случайной величины Х определяет ее медиана Ме (Х) ?


        65. Мода Mo (X) случайной величины Х характеризует (укажите верный ответ):
        66. Функция распределения. Вероятность какого события определяет функция распределения F (X) cлучайной величины X?


        67. Наименьшее значение функции распределения. Непрерывная случайная величина X определена на всей числовой оси. Чему равно предельное значение ее функции распределения F (x) при x->

        68. Наибольшее значение функции распределения. Непрерывная случайная величина X определена на всей числовой оси. Чему равно предельное значение ее функции распределения F (x) при x->-? (укажите верный ответ среди ниже перечисленных) ?
        69. Каким из перечисленных ниже свойств обладает функция распределения случайной величины?


        70. Какие значения может принимать биномиально распределенная случайная величина Х? P (X=m) =Cpq, где: 0

        71. Чему равно математическое ожидание M (X) случайной величины Х, распределенной по биномиальному закону: P (X=m) =Cpq, где: 0

        72. Чему равна дисперсия D (X) случайной величины Х, распределенной по биномиальному закону: P (X=m) =Cpq, где: 0
        73. Какие значения может принимать случайная величина Х, описываемая законом распределения Пуассона?


        74. Математическое ожидание случайной величины X, имеющей Пуассоновский закон распределения, равно 4: M (X) = 4. Чему равна дисперсия D (X) этой случайной величины?

        75. Геометрическое распределение дискретной случайной величины. Согласно распределению: случайная дискретная величина X, имеет геометрическое распределение с параметром p, принимает бесконечное (но счетное) множество значений 1,2, …, m, … с вероятностями: P (X=m) =pq, где 0

        76. Равномерное распределение. Охарактеризуйте плотность вероятности случайной величины, равномерно распределенной на отрезке :

        77. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в произвольный момент времени. Какова вероятность - P того, что ждать пассажиру придется не больше полминуты?

        78. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в произвольный момент времени. Определить математическое ожидание M (X) случайной величины X - времени ожидания поезда.

        79. Непрерывная случайная величина X имеет равномерный закон распределения на отрезке . Чему равно ее математическое ожидание M (X) ?

        80. Смысловое значение параметра "a" нормального закона распределения случайной величины (см. ниже) это:

        81. Смысловое значение параметра "сигма квадрат" нормального распределения (закона Гаусса).

        82. Влияние математического ожидания (параметра "a") на график плотности вероятности нормального закона (закона Гаусса) распределения случайной величины (см. ниже) характеризуется:

        83. Сравнение математических ожиданий. M (X) и М (Х) нормально распределенных случайных величин Х и Х (см. рисунок ниже).

        84. Уменьшение дисперсии (параметра "сигма квадрат") нормального закона (закона Гаусса) распределения случайной величины (см. ниже) приводит к следующему изменению графика кривой распределения:

        85. Сравнение дисперсий D (X) и D (X) нормально распределенных случайных величин X и X (см. рисунок ниже).

        86. Стандартным (нормированным) законом распределения N (0; 1) называется:

        87. Правило трех сигм.

        88. Значение закона больших чисел.

        89. Значение несобственного интеграла от плотности вероятности. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен:
        90. К чему стремится частость наблюдаемого события при неограниченном увеличении числа испытаний в схеме Бернулли?


        91. Из генеральной совокупности отобраны десять элементов по принципу: брался каждый восьмой по порядку элемент генеральной совокупности. Как называется такой способ отбора?
        92. Как называется варианта, характеризующая наибольшую частоту в выборке?

          Уровень значимости при проверке статистической гипотезы задан в 10%. Какова возможность ошибки первого рода?

          Какая из следующих числовых характеристик выборки является смещенной оценкой?

          К каким соединениям относится свойство симметрии?


        93. Укажите, какое из перечисленных ниже свойств числовых характеристик случайной величины записано неправильно (предполагая, что X и Y - независимые случайные величины) ?
        94. Чему равно значение математического ожидания числа 5: M (5) = ?


        95. Найти математическое ожидание дискретной случайной величины X, заданной следующим законом распределения:

        96. Чему равна дисперсия разности D (X-Y) двух независимых случайных величин X и Y, если известны значения дисперсий каждой из них: D (X) =3 и D (Y) =4?

        97. Распределение Пуассона. Математическое ожидание. Чему равно математическое ожидание M (X) случайной величины X

        98. распределенной по закону Пуассона:

        99. Распределение Пуассона. Дисперсия. Чему равно D (X) случайной величины X распределенной по закону Пуассона:

        100. Укажите какова смысловая интерпретация такой случайной величины Х:

        101. Найти моду для генеральной совокупности заданной вариационным рядом:

        102. Найти генеральную среднюю генеральной совокупности , заданной следующим вариационным рядом:

        103. Найти медиану для генеральной совокупности заданной вариационным рядом:

        104. Определить выборочную среднюю для следующей выборки:

        105. Найти выборочную среднюю следующей выборки из генеральной совокупности:

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Дисперсия случайной величины является мерой разброса значений этой величины. Малая дисперсия означает, что значения сгруппированы близко друг к другу. Большая дисперсия свидетельствует о сильном разбросе значений. Понятие дисперсии случайной величины применяется в статистике. Например, если сравнить дисперсию значений двух величин (таких как результаты наблюдений за пациентами мужского и женского пола), можно проверить значимость некоторой переменной. Также дисперсия используется при построении статистических моделей, так как малая дисперсия может быть признаком того, что вы чрезмерно подгоняете значения.

Шаги

Вычисление дисперсии выборки

  1. Запишите значения выборки. В большинстве случаев статистикам доступны только выборки определенных генеральных совокупностей. Например, как правило, статистики не анализируют расходы на содержание совокупности всех автомобилей в России – они анализируют случайную выборку из нескольких тысяч автомобилей. Такая выборка поможет определить средние расходы на автомобиль, но, скорее всего, полученное значение будет далеко от реального.

    • Например, проанализируем количество булочек, проданных в кафе за 6 дней, взятых в случайном порядке. Выборка имеет следующий вид: 17, 15, 23, 7, 9, 13. Это выборка, а не совокупность, потому что у нас нет данных о проданных булочках за каждый день работы кафе.
    • Если вам дана совокупность, а не выборка значений, перейдите к следующему разделу.
  2. Запишите формулу для вычисления дисперсии выборки. Дисперсия является мерой разброса значений некоторой величины. Чем ближе значение дисперсии к нулю, тем ближе значения сгруппированы друг к другу. Работая с выборкой значений, используйте следующую формулу для вычисления дисперсии:

    • s 2 {\displaystyle s^{2}} = ∑[( x i {\displaystyle x_{i}} - x̅) 2 {\displaystyle ^{2}} ] / (n - 1)
    • s 2 {\displaystyle s^{2}} – это дисперсия. Дисперсия измеряется в квадратных единицах измерения.
    • x i {\displaystyle x_{i}} – каждое значение в выборке.
    • x i {\displaystyle x_{i}} нужно вычесть x̅, возвести в квадрат, а затем сложить полученные результаты.
    • x̅ – выборочное среднее (среднее значение выборки).
    • n – количество значений в выборке.
  3. Вычислите среднее значение выборки. Оно обозначается как x̅. Среднее значение выборки вычисляется как обычное среднее арифметическое: сложите все значения в выборке, а затем полученный результат разделите на количество значений в выборке.

    • В нашем примере сложите значения в выборке: 15 + 17 + 23 + 7 + 9 + 13 = 84
      Теперь результат разделите на количество значений в выборке (в нашем примере их 6): 84 ÷ 6 = 14.
      Выборочное среднее x̅ = 14.
    • Выборочное среднее – это центральное значение, вокруг которого распределены значения в выборке. Если значения в выборке группируются вокруг выборочного среднего, то дисперсия мала; в противном случае дисперсия велика.
  4. Вычтите выборочное среднее из каждого значения в выборке. Теперь вычислите разность x i {\displaystyle x_{i}} - x̅, где x i {\displaystyle x_{i}} – каждое значение в выборке. Каждый полученный результат свидетельствует о мере отклонения конкретного значения от выборочного среднего, то есть как далеко это значение находится от среднего значения выборки.

    • В нашем примере:
      x 1 {\displaystyle x_{1}} - x̅ = 17 - 14 = 3
      x 2 {\displaystyle x_{2}} - x̅ = 15 - 14 = 1
      x 3 {\displaystyle x_{3}} - x̅ = 23 - 14 = 9
      x 4 {\displaystyle x_{4}} - x̅ = 7 - 14 = -7
      x 5 {\displaystyle x_{5}} - x̅ = 9 - 14 = -5
      x 6 {\displaystyle x_{6}} - x̅ = 13 - 14 = -1
    • Правильность полученных результатов легко проверить, так как их сумма должна равняться нулю. Это связано с определением среднего значения, так как отрицательные значения (расстояния от среднего значения до меньших значений) полностью компенсируются положительными значениями (расстояниями от среднего значения до больших значений).
  5. Как отмечалось выше, сумма разностей x i {\displaystyle x_{i}} - x̅ должна быть равна нулю. Это означает, что средняя дисперсия всегда равна нулю, что не дает никакого представления о разбросе значений некоторой величины. Для решения этой проблемы возведите в квадрат каждую разность x i {\displaystyle x_{i}} - x̅. Это приведет к тому, что вы получите только положительные числа, которые при сложении никогда не дадут 0.

    • В нашем примере:
      ( x 1 {\displaystyle x_{1}} - x̅) 2 = 3 2 = 9 {\displaystyle ^{2}=3^{2}=9}
      (x 2 {\displaystyle (x_{2}} - x̅) 2 = 1 2 = 1 {\displaystyle ^{2}=1^{2}=1}
      9 2 = 81
      (-7) 2 = 49
      (-5) 2 = 25
      (-1) 2 = 1
    • Вы нашли квадрат разности - x̅) 2 {\displaystyle ^{2}} для каждого значения в выборке.
  6. Вычислите сумму квадратов разностей. То есть найдите ту часть формулы, которая записывается так: ∑[( x i {\displaystyle x_{i}} - x̅) 2 {\displaystyle ^{2}} ]. Здесь знак Σ означает сумму квадратов разностей для каждого значения x i {\displaystyle x_{i}} в выборке. Вы уже нашли квадраты разностей (x i {\displaystyle (x_{i}} - x̅) 2 {\displaystyle ^{2}} для каждого значения x i {\displaystyle x_{i}} в выборке; теперь просто сложите эти квадраты.

    • В нашем примере: 9 + 1 + 81 + 49 + 25 + 1 = 166 .
  7. Полученный результат разделите на n - 1, где n – количество значений в выборке. Некоторое время назад для вычисления дисперсии выборки статистики делили результат просто на n; в этом случае вы получите среднее значение квадрата дисперсии, которое идеально подходит для описания дисперсии данной выборки. Но помните, что любая выборка – это лишь небольшая часть генеральной совокупности значений. Если взять другую выборку и выполнить такие же вычисления, вы получите другой результат. Как выяснилось, деление на n - 1 (а не просто на n) дает более точную оценку дисперсии генеральной совокупности, в чем вы и заинтересованы. Деление на n – 1 стало общепринятым, поэтому оно включено в формулу для вычисления дисперсии выборки.

    • В нашем примере выборка включает 6 значений, то есть n = 6.
      Дисперсия выборки = s 2 = 166 6 − 1 = {\displaystyle s^{2}={\frac {166}{6-1}}=} 33,2
  8. Отличие дисперсии от стандартного отклонения. Заметьте, что в формуле присутствует показатель степени, поэтому дисперсия измеряется в квадратных единицах измерения анализируемой величины. Иногда такой величиной довольно сложно оперировать; в таких случаях пользуются стандартным отклонением, которое равно квадратному корню из дисперсии. Именно поэтому дисперсия выборки обозначается как s 2 {\displaystyle s^{2}} , а стандартное отклонение выборки – как s {\displaystyle s} .

    • В нашем примере стандартное отклонение выборки: s = √33,2 = 5,76.

    Вычисление дисперсии совокупности

    1. Проанализируйте некоторую совокупность значений. Совокупность включает в себя все значения рассматриваемой величины. Например, если вы изучаете возраст жителей Ленинградской области, то совокупность включает возраст всех жителей этой области. В случае работы с совокупностью рекомендуется создать таблицу и внести в нее значения совокупности. Рассмотрим следующий пример:

      • В некоторой комнате находятся 6 аквариумов. В каждом аквариуме обитает следующее количество рыб:
        x 1 = 5 {\displaystyle x_{1}=5}
        x 2 = 5 {\displaystyle x_{2}=5}
        x 3 = 8 {\displaystyle x_{3}=8}
        x 4 = 12 {\displaystyle x_{4}=12}
        x 5 = 15 {\displaystyle x_{5}=15}
        x 6 = 18 {\displaystyle x_{6}=18}
    2. Запишите формулу для вычисления дисперсии генеральной совокупности. Так как в совокупность входят все значения некоторой величины, то приведенная ниже формула позволяет получить точное значение дисперсии совокупности. Для того чтобы отличить дисперсию совокупности от дисперсии выборки (значение которой является лишь оценочным), статистики используют различные переменные:

      • σ 2 {\displaystyle ^{2}} = (∑( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} ) / n
      • σ 2 {\displaystyle ^{2}} – дисперсия совокупности (читается как «сигма в квадрате»). Дисперсия измеряется в квадратных единицах измерения.
      • x i {\displaystyle x_{i}} – каждое значение в совокупности.
      • Σ – знак суммы. То есть из каждого значения x i {\displaystyle x_{i}} нужно вычесть μ, возвести в квадрат, а затем сложить полученные результаты.
      • μ – среднее значение совокупности.
      • n – количество значений в генеральной совокупности.
    3. Вычислите среднее значение совокупности. При работе с генеральной совокупностью ее среднее значение обозначается как μ (мю). Среднее значение совокупности вычисляется как обычное среднее арифметическое: сложите все значения в генеральной совокупности, а затем полученный результат разделите на количество значений в генеральной совокупности.

      • Имейте в виду, что средние величины не всегда вычисляются как среднее арифметическое.
      • В нашем примере среднее значение совокупности: μ = 5 + 5 + 8 + 12 + 15 + 18 6 {\displaystyle {\frac {5+5+8+12+15+18}{6}}} = 10,5
    4. Вычтите среднее значение совокупности из каждого значения в генеральной совокупности. Чем ближе значение разности к нулю, тем ближе конкретное значение к среднему значению совокупности. Найдите разность между каждым значением в совокупности и ее средним значением, и вы получите первое представление о распределении значений.

      • В нашем примере:
        x 1 {\displaystyle x_{1}} - μ = 5 - 10,5 = -5,5
        x 2 {\displaystyle x_{2}} - μ = 5 - 10,5 = -5,5
        x 3 {\displaystyle x_{3}} - μ = 8 - 10,5 = -2,5
        x 4 {\displaystyle x_{4}} - μ = 12 - 10,5 = 1,5
        x 5 {\displaystyle x_{5}} - μ = 15 - 10,5 = 4,5
        x 6 {\displaystyle x_{6}} - μ = 18 - 10,5 = 7,5
    5. Возведите в квадрат каждый полученный результат. Значения разностей будут как положительными, так и отрицательными; если нанести эти значения на числовую прямую, то они будут лежать справа и слева от среднего значения совокупности. Это не годится для вычисления дисперсии, так как положительные и отрицательные числа компенсируют друг друга. Поэтому возведите в квадрат каждую разность, чтобы получить исключительно положительные числа.

      • В нашем примере:
        ( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} для каждого значения совокупности (от i = 1 до i = 6):
        (-5,5) 2 {\displaystyle ^{2}} = 30,25
        (-5,5) 2 {\displaystyle ^{2}} , где x n {\displaystyle x_{n}} – последнее значение в генеральной совокупности.
      • Для вычисления среднего значения полученных результатов нужно найти их сумму и разделить ее на n:(( x 1 {\displaystyle x_{1}} - μ) 2 {\displaystyle ^{2}} + ( x 2 {\displaystyle x_{2}} - μ) 2 {\displaystyle ^{2}} + ... + ( x n {\displaystyle x_{n}} - μ) 2 {\displaystyle ^{2}} ) / n
      • Теперь запишем приведенное объяснение с использованием переменных: (∑( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} ) / n и получим формулу для вычисления дисперсии совокупности.

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.