Сколько известно галактик на данный. Сколько галактик во вселенной

Международная команда астрономов, возглавляемая Christopher J. Conselice, профессором астрофизики в университете Ноттингема, обнаружили, что Вселенная содержит не менее 2 триллионов галактик , в десять раз больше, чем считалось ранее. Работа команды, которая началась с гранта Королевского астрономического общества, была опубликована в Astrophysical Journal 14 октября 2016.

Астрономы давно стремились определить, сколько галактик существует в наблюдаемой Вселенной, той части космоса, где свет из отдаленных объектов успел добраться до нас. За последние 20 лет ученые использовали изображения из космического телескопа Хаббла для оценки того, что Вселенная, которую мы видим, содержит около 100 - 200 миллиардов галактик. Современные астрономические технологии позволяют нам изучать только 10% этих галактик, а остальные 90% будут видны только после того, как будут разработаны большие и лучшие телескопы.

Исследование профессора Conselice является кульминацией 15-ти летней работы, которая также частично финансировалась исследовательским грантом , присужденным студенту старших курсов Аарону Уилкинсону. Аарон, в настоящее время PhD (доктор философии) в университете Ноттингема, начал с анализа всех ранее проведенных исследований по подсчету количества галактик, что послужило фундаментальной базой для установления более масштабного исследования.

Команда профессора Conselice преобразовала узконаправленные снимки глубокого космоса с телескопов по всему миру, и особенно от телескопа Хаббл, в 3D карты. Это позволило им рассчитать плотность галактик, а также объем одной небольшой области пространства за другой. Это кропотливое исследование позволило команде установить, сколько галактик было пропущено в более ранних исследованиях. Можно сказать, что они провели межгалактические археологические раскопки.

Результаты этого исследования основаны на измерениях количества наблюдаемых галактик в разные эпохи – временные срезы в галактическом масштабе - за всю историю Вселенной. Когда профессор Conselice и его команда из Ноттингема в сотрудничестве с учеными из обсерватории Лейдена в Лейденском университете в Нидерландах и Института астрономии Эдинбургского университета, исследовали, сколько галактик было в каждую эпоху, они обнаружили, что на более ранней стадии развития Вселенной количество галактик было значительно больше, чем сейчас.

Похоже, что когда Вселенной было всего несколько миллиардов лет, количество галактик в заданном объеме пространства было в десять раз больше, чем сегодня в аналогичном объеме. Большинство из этих галактик были системами с малой массой, т.е. с массами, аналогичными массам галактик, окружающих сейчас Млечный Путь.

Профессор Конселис сказал: «Это очень удивительно, поскольку мы знаем, что за 13,7 миллиардов лет космической эволюции со времен Большого Взрыва размер галактик увеличивался за счет звездообразования и слияния с другими галактиками. Установление факта наличия большего числа галактик в прошлом подразумевает, что должна была произойти значительная эволюция, направленная на уменьшение их числа за счет обширного слияния систем. Мы упускаем подавляющее большинство галактик, потому что они очень слабые и далекие. Количество галактик во Вселенной является фундаментальным вопросом астрономии, и это поражает воображение, поскольку 90% галактик в космосе до сих пор не изучены. Кто знает, какие интересные свойства мы найдем при изучении этих галактик с помощью телескопов следующего поколения?»

Перевод статьи «Распределение плотности галактик при Z < 8 и ее последствия». Октябрь 2016. Права на перевод принадлежат
Авторы:
Christopher J. Conselice, School of Physics and Astronomy, Ноттингемский университет, Ноттингем, Англия.
Aaron Wilkinson, Лейденская обсерватория Лейденский университет, Нидерланды
Kenneth Duncan, Королевская обсерватория, Институт астрономии Эдинбургского университета, Шотландия

Аннотация

Распределение плотности галактик во Вселенной и, следовательно, общее число галактик является фундаментальным вопросом астрофизики влияющим на разрешение множества проблем в области космологии. Однако, до публикации данной статьи, никогда не было аналогичного подробного исследования этого важного показателя, а также определения четкого алгоритма нахождения данного числа. Для решения этой задачи мы использовали наблюдаемые галактические функции звездных масс до $z \sim 8$, чтобы определить, как изменяется плотность числа галактик в зависимости от функции времени и предела массы. Мы показали, что увеличение общей плотности галактик ($\phi_T$), более массивных, чем $M_* = 10^6M_\odot$, уменьшается как $\phi_T \sim t^{-1}$, где t - возраст Вселенной. Далее мы показали, что этот тренд разворачивается и скорее возрастает со временем при более высоких предельных значениях массы $M_* > 10^7M_\odot$. Используя $M_* = 10^6M_\odot$ как нижний предел, мы обосновали, что общее количество галактик во Вселенной до $z = 8$ равно: $2.0 {+0.7\choose -0.6} \times {10^{12}}$ или просто $2.0 \times {10^{12}}$ (два триллиона!) , т.е. почти в десять раз больше, чем было видно во всех исследованиях неба на основе . Мы обсудим влияние этих результатов для понимание процесса эволюции галактик, а также сравним наши результаты с новейшими моделями формирования галактик. Эти результаты также показывают, что космический фоновый свет в оптической и ближней инфракрасной области, вероятно, возникает из этих ненаблюдаемых слабых галактик. Мы также покажем, как эти результаты решают вопрос о том, почему ночное небо темное, иначе известный как .

1. Введение

Когда мы открываем Вселенную и ее свойства, мы всегда хотим знать абсолютные значения. Например, астрономический интерес состоит в том, чтобы рассчитать, сколько звезд находится в нашей Галактике, сколько планет окружают эти звезды (Fressin et al., 2013), общую плотность Вселенной (например, Fukugita & Peebles 2004), среди других абсолютов в свойствах Вселенной. Здесь был дан приблизительный ответ на один из этих вопросов, - это общая плотность числа галактик и, следовательно, общее число галактик во Вселенной.

Этот вопрос является не просто праздным любопытством, но связан со многими другими вопросами в космологии и астрономии. Распределение плотности галактик связано с такими вопросами, как образование / эволюция галактики по числу сформированных систем, изменение отношений гигантских галактик к карликовым галактикам, отдаленная сверхновая и скорость гамма-всплеска, скорость образования звезд во Вселенной, и как новые галактики создаются / уничтожаются посредством слияний (например, Bridge et al. 2007; Lin et al. 2008; Jogee et al. 2009; Conselice et al. 2011; Bluck et al. 2012; Conselice 2014; Ownsworth et al. 2014). Количество галактик в наблюдаемой Вселенной также раскрывает информацию о плотности материи (вещества и энергии) Вселенной, фоновом свете на разных длинах волн, а также о понимании парадокса Ольберса. Однако до сих пор еще нет хорошего измерения этой фундаментальной величины. Наша способность исследовать распределение плотности галактик с помощью телескопов возникла только с появлением CCD-камер. Сверхдальние исследования по поиску далеких галактик начались в 1990-х годах (например, Koo & Kron 1992; Steidel & Hamilton 1992; Djorgovski et al. 1995), и достигли нынешней глубины после проектов на базе Космического телескопа «Хаббл», особенно таких как (Williams et al. 1996). В дальнейшем исследования были продолжены в рамках (Williams et al., 2000), (Giavalisco et al. 2004), обзор в инфракрасном спектре (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) (Grogin et al. 2011; Koekemoer et al. 2011), и увенчались Hubble Ultra Deep Field (Beckwith et al. 2006), который на сегодняшний день остается самым глубоким исследованием в оптическом и ближнем инфракрасном диапазоне нашей Вселенной.
Однако, несмотря на все эти исследования, до сих пор неясно, как общая плотность числа галактик эволюционирует с течением времени. Это интересный вопрос, поскольку мы знаем, что скорость звездообразования возрастает, а затем снижается при z < 8 (например, Bouwens et al. 2009; ; Madau & Dickinson 2014), в то же время галактики становятся более крупными и менее своеобразными (например, Conselice et al. 2004; Papovich et al. 2005; Buitrago et al. 2013; Mortlock et al. 2013; Lee et al. 2013; Conselice 2014; Boada et al. 2015). Однако мы не знаем, как изменяется общее количество галактик во времени и как это связано с общим образованием популяции галактик в целом.
Существует несколько причин того, почему нелегко определить общее количество галактик на основе результатов сверхдальних исследований. Однa из них заключается в том, что все сверхдальние наблюдения являются неполными. Это связано с ограничениями времени и глубины экспозиции, из-за этого некоторые галактики обнаруживаются более легко, чем другие. Результатом этого является неполная картина даже в самых сверхдальних обследованиях, которые могут быть исправлены, но которые все еще оставляют некоторую неопределенность. Однако более важная проблема заключается в том, что эти наблюдения не достигают самых слабых галактик, хотя из теории, мы знаем, что должно быть гораздо больше слабых галактик за пределами границ, доступных в настоящее время нам для наблюдений.
Важно также обратить внимание на то, что мы понимаем под общей плотностью галактик во Вселенной. Это не простая величина, которую можно определить как общую плотность, существующую в настоящее время, общая плотность, которая является наблюдаемой в принципе, и общая плотность, которую можно наблюдать с помощью современной технологии, - это разные вопросы с разными ответами. Существует также проблема, что мы ограничены космологическим горизонтом над тем, что мы можем наблюдать, и поэтому есть галактики, которые мы не можем видеть за его пределами. Даже количество галактик, которые существуют во Вселенной сегодня, то есть, если мы могли бы рассматривать всю Вселенную как есть в настоящий момент, а не быть ограниченным временем прохождения света, представляет собой сложный вопрос. Галактики в далекой вселенной эволюционировали за пределы того, что мы можем наблюдать в настоящее время из-за конечной природы скорости света и, по-видимому, будут похожими на те, что есть в видимой Вселенной. Мы рассматриваем все эти проблемы в данной статье, а именно, как плотность числа галактик изменяется в пределах текущей наблюдаемой вселенной до z ~ 8.
В целях сравнения, в Приложении к данной работе, мы также проводим анализ числа галактик, которые видны современным телескопам на всех длинах волн, и которые мы можем наблюдать в настоящее время. Затем мы сравниваем эти данные с измерениями общего числа галактик, которое потенциально может наблюдаться во Вселенной на основе измеренных функций масс (mass function). Мы также обсудим, как эти результаты раскрывают информацию об эволюции галактики и . Мы также приводим информацию о будущих исследованиях, и какую долю галактик они будут наблюдать.
Эта статья разделена на несколько разделов. §2 описывает данные, которые мы используем в этом анализе, §3 описывает результаты настоящей работы, в том числе методы анализа функций звездной массы галактики с целью получения общего количества галактик, находящихся во Вселенной, §4 описывает последствия этих результатов, а в §5 представлено краткое изложение статьи. В этой работе мы используем стандартную космологию: H 0 = 70 km s −1 Mpc −1 , и Ω m = 1 − Ω λ = 0.3.

2. Данные

Данные, которые мы используем для этой статьи, получены из многочисленных источников и результатов предыдущих работ. В Приложении мы описываем, сколько галактик мы можем наблюдать в настоящее время во Вселенной, основываясь на самых глубоких наблюдениях, доступных к настоящему времени. Здесь, в основной статье, мы исследуем вопрос о том, сколько галактик потенциально можно обнаружить во Вселенной, если глубокая визуализация по всем длинам волн выполнена во всех частях неба без каких-либо помех от Галактики или других искажений.
Для большей части данного анализа и результатов этой работы мы используем функции масс галактик из обозримой Вселенной вплоть до z ~ 8, чтобы определить, как плотность числа галактик эволюционирует со временем и . Эти функции массы и светимости сейчас только начинают измеряться для больших значений красного смещения, и наши первичные данные исходят из функций масс, рассчитанных с использованием высокоточных инфракрасных и оптических съемок телескопом Хаббла и наземных станций.
Как представлено в следующем разделе, функции масс, которые мы используем, взяты из , Fontana et al. ( , ), Tomczak et al. (2014), и для галактик при z < 3. Для самых высоких значений красного смещения мы используем функции масс, опубликованные , и . Мы упорядочили все эти функции масс из каждого вышеуказанного исследования на основе для звезд от $0.1M_\odot$ до $100M_\odot$. Мы использовали плотности галактик из этих функций масс, соответствующие их объемам, в отличие от физических объемов. Это говорит о том, как количество галактик изменяется в одном и том же эффективном объеме, при этом эффекты расширения Хаббла исключаются. Эти функции масс показаны на {{ show1_MathJax ? "Закрыть":"Рисунке 1" }} до предела масс, взятых из ранее упомянутых исследований, которые также перечислены в Таблице 1.

Рисунок 1. Функции масс, которые мы используем в данной статье, представлены на графикахс помощью Все эти значения взяты из различных исследований, упомянутых в §2. Функции масс представлены в зависимости от значений , на левом графике отображены системы при z < 1, средний график показывает 1 < z < 3 и z > 3 (крайний правый). Эти функции масс показаны так, что сплошные цветные линии являются функциями масс вплоть до предела соответствующих данных, в которых они полны, а пунктирные линии показывают нашу экстраполяцию до $M_* = 10^6 M_\odot$. «Самый плоский» график функции масс для 1 < z < 3 взят из работы и для z > 3 взят из работы .

3. Распределение плотности галактик

3.1 Введение и предостережения

Основным методом, который мы используем для определения плотности галактик во Вселенной, является интеграция количества галактик через установленные функции масс для данного космологического красного смещения. Для этого требуется экстраполировать установленные функции звездной массы, чтобы достичь минимального предела массы популяции галактик. Есть много способов, которыми это можно сделать, о чем мы поговорим ниже. Одним из наиболее важных вопросов является нижний предел, от которого мы должны начинать подсчет количества галактик в зависимости от функций масс. Благодаря недавним публикациям, где приводятся функции звездной массы до z ~ 8 (например, ; , мы можем теперь сделать этот расчет впервые. Другая проблема заключается в том, может ли быть экстраполирована ниже предела данных, для которых она изначально была пригодна. Это вопрос, который мы подробно исследуем.
Это дополняет непосредственно наблюдаемый подход, представленный в Приложении, и является более точным способом измерения количества галактик в наблюдаемой в настоящее время Вселенной, если функции масс правильно измерены и точно параметризованы. Однако этот метод потенциально чреват подводными камнями, которые необходимо тщательно рассмотреть и проанализировать. Не в последнюю очередь это связано с тем, что измерения зависят от гораздо большего количества факторов, чем просто фотометрия и проблемы с идентификацией объекта, которые всегда присутствуют при простом измерении числа галактик. Ситуация здесь связана с другими неопределенностями, связанными с измерением звездных масс и красных смещений. Тем не менее, если мы можем объяснить эти неопределенности, интеграция установленных функций масс может рассказать нам о плотностях галактик в заданном интервале красного смещения с некоторой измеренной неопределенностью.
Мы используем этот метод для вычисления общей плотности галактик, находящихся в пределах наблюдаемой в настоящее время Вселенной, как функции красного смещения. Для этого мы непосредственно не интегрируем наблюдаемые функции масс, а используем параметризованную форму, заданную функцией Шехтера (1976), чтобы определить общую плотность числа галактик как функцию красного смещения. Форма этой функции задается:

$\phi(M) = b\times\phi^\ast\ln(10)^{1+\alpha}$ $\times\exp[-10^{b(M-M^\ast)}] . . . . .(1)$

где b = 1 для функции масс, b = 0.4 для , которая будет записана в терминах абсолютных величин. Для функции масс, $M^*$ есть типичная масса в логарифмических единицах и определяет, где функция массы изменяет наклон, а $M = \log(\frac{M_*}{M_\bigodot})$ есть масса в логарифмических единицах. Аналогично для функции светимости, $M^*$ соответствует типичной величине. Для обоих функций $\phi^*$ есть нормализация, а $\alpha$ определяет наклон для более тусклых и менее массивных галактик. Наш метод использует опубликованные значения $\phi^*$, $\alpha$ и $M^*$ для вычисления интегрированного количества галактик в различных красных смещениях.
Мы используем функцию светимости Шехтера как инструмент для вычисления общей плотности так как в целом она хорошо описывает распределение масс галактик во всех красных смещениях в диапазонах, которые мы исследуем. Однако мы не знаем, в каком нижнем пределе массы он остается действительным, что является одной неопределенностью в нашем анализе. Далее мы обсудим использование $M_*>10^6 M_\bigodot$ как лимита и обоснование его использования в качестве нашего нижнего предела. Мы также обсудим, как наши результаты изменились бы, если бы мы использовали другое значение ограничения нижнего предела массы.
Поскольку мы интегрируем функции масс через всю историю вселенной, мы должны использовать множество обследований для учета числа галактик при разных красных смещениях. Различные диапазоны красного смещения требуют исследований, выполненных на разных длинах волн, и различные исследования иногда обнаруживают разные значения параметров Шехтера. В этой работе мы пытаемся всесторонне изучить функции масс, которые, особенно при низком красном смещении, могут давать широко расходящиеся значения плотности и формы эволюции. Мы получаем почти одинаковые результаты, как при использовании двойной функции светимости Шехтера, применяемую для расчета функции масс при низких значениях космологического красного смещения, также как и в том случае, если мы используем степенной закон () для расчета функции масс при высоких значениях космологического красного смещения.

1. cтр. 170-183 Лекций по звездной астрономии. Локтин А.В., Марсаков В.А., 2009 год.
2.
3.
4. , раздел внегалактической базы данных НАСА (NASA/IPAC Extragalactic Database, NED) - крупнейшее хранилищее изображений, фотометрии и спектров галактик, полученных в ходе обзоров неба в микроволновом, инфракрасном, оптическом и ультрафиолетовом (УФ) диапазонах.
5.
6.
7.
8. В этой работе была представлена двойная функция светимости Шехтера (the double Schechter luminosity function). Раздел 4.2 на стр.10.
9. Lorenzo Zaninetti. 29 мая 2017. A Left and Right Truncated Schechter Luminosity Function for Quasars

В диапозоне космологического красного смещения z ~ 0 - 3 мы используем установленные значения функций масс и их ошибки из работ, проведенных , Fontana et al. ( , ), и . Эти функции звездных масс определяются путем измерения звездных масс объектов посредством процедуры SED fitting (). Несмотря на большой разброс в различных измерениях параметров функции Шехтера, мы используем всю эту информацию, чтобы принимать во внимание различные методы измерений и используемых моделей, а также космическую дисперсию (). Эти функции масс, параметризованные функцией Шехтера, показаны на Рисунке 1. Мы также конвертируем те исследования, в которых используются начальные функции масс Шабрие () - Pozzetti et al. (2007), Duncan et al. (2014), Mortlock et al. (2015) и Muzzin et al. (2013) который использует начальные функции масс Кроупа (Kroupa IMF) в начальные функции масс Солпитера (Salpeter IMF). Список значений, которые мы используем в нашем анализе, показан в {{ show2_MathJax ? "Закрыть":"Таблице 1" }}Примечание - В этой таблице перечислены параметры приведенных функций Шехтера, которые мы используем для выполнения наших расчетов. Они все нормализованы в целях получения сопостовимых значений начальных функций масс Солпитера (Salpeter IMF), хотя Pozzetti et al. (2007), Duncan et al. (2014) и Mortlock et al. (2015) в своих работах использовали начальные функции масс Шабрие (), а Muzzin et al. (2013) использовали начальные функции масс Кроупа (Kroupa IMF).

{{ show2_MathJax ? "Закрыть":"Таблице 1" }} .

Заметим, что мы рассматриваем только те функции масс, где параметр α в применимых моделях Шехтера разрешается изменять. Если результат функции массы получается от фиксированного значения α , то это приводит к искажению числа галактик, поскольку это значение имеет существенное влияние на число тусклых галаких с небольшой массой в заданном объеме (§3.2). Поэтому мы исключаем результаты функции масс из исследований, использующих α GOODS (Great Observatories Origins Deep Survey project) в рамках глубокого космического внегалактического обзора в ближнем инфракрасном диапазоне (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), а также из .
Для высоких значений космологического красного смещения функции масс являются относительно новым параметром, поэтому в целях получения согласованных и непротиворечивых данных мы также проанализировали полученные функции светимости в ультрафиолетовом диапазоне, в основном при 1500˚A. Для этого мы использовали данные, опубликованные в работах Bouwens et al. (2011), McLure et al. (2009), McLure et al. (2013), Bouwens et al. (2015) и Finkelstein et al. (2015). McLure et al. (2013) и Bouwens et al. (2015) анализируют данные, полученные из самых дальних обзоров , включая обзор HUDF12 , который исследовал галактики для самых высоких значений космологического красного смещения при $z = 8$ и $z = 9$.
Для преобразования лимта звездных масс к пределу УФ-величины, мы используем отношения между этими двумя величинами, рассчитанные в работе Duncan et al. (2014). Duncan et al. (2014) смоделировали линейное отношение между массой и светом в УФ и как она развивается при различных значениях космологического красного смещения. Мы используем их, чтобы определить, предел УФ-величины, соответствующий нашему стандартному лимиту масс $M_* = 10^6M_\odot$. Таким образом, мы можем связать наш лимит звездной массы с пределом абсолютной величины в УФ. Мы не используем эти значения в наших расчетах, но используем эти функции светимости для проверки соответствия наших результатов, полученных от функций звездных масс. Мы находим высокую согласованность с функциями звездной массы, в том числе при использовании различных вариаций преобразования звездной массы в УФ-светимость (например, Duncan et al. 2014; Song et al. 2015). Более того, все наши функции масс для высоких значений космологического красного смещения более или менее согласованы, за исключением Grazian et al. (2015), результаты которого приводят к несколько более низкому значению $\phi_T$.

5. Краткие итоги исследования

Мы исследовали фундаментальный вопрос о распределение плотности галактик во Вселенной. Мы анализируем эту задачу несколькоми способами и обсуждаем последствия для эволюции галактики и космологии. Мы используем недавно полученные массовые функции для галактик до z ∼ 8 для определения распределения плотности галактик во Вселенной. Наш основной вывод заключается в том, что плотность числа галактик уменьшается с течением времени как $\phi_T(z) \sim t^{-1}$, где t – возраст Вселенной.
Далее мы обсуждаем последствия этого увеличения плотности числа галактик с ретроспективного взгляда назад для множества ключевых астрофизических вопросов. Интегрируя плотность числа галактик мы рассчитали количество галактик во Вселенной , значение которого составило $2.0 {+0.7\choose -0.6} \times {10^{12}}$ для $z = 8$, которое в принципе можно наблюдать. Это примерно в десять раз больше, чем при прямом подсчете. Это означает, что нам еще предстоит обнаружить большую популяцию слабых далеких галактик.

В терминах астрофизической эволюции галактик мы показываем, что увеличение интегрируемых функций масс всех галактик с красным смещением объясняется моделью слияния. Мы показываем, что простая модель слияния способна воспроизводить снижение числа галактик с временным масштабом слияния $\tau=1.29 ± 0.35 Gyr$. Полученная скорость слияния при z = 1.5 составляет R ∼ 0.05 слияний $Gyr^{−1} Mpc^{−3}$, близко к значению, полученному при структурном и парном анализе. Большинство из этих сходящихся галактик представляют собой системы с более низкой массой, увеличивающие со временем плотность числа галактик с нижнего предела до более высоких масс при вычислении общей плотности.

Наконец, мы обсуждаем последствия наших результатов для будущих исследований.

В будущем, поскольку функции масс становятся более известными благодаря лучшему моделированию SED и более глубоким и более широким данным с JWST и Euclid / LSST, мы сможем более точно измерить общую плотность числа галактик и, таким образом, получить лучшую меру этой фундаментальной величины.

Наши предки думали, что Земля - это и есть весь Мир, а Солнце и Луна крутятся вокруг планеты. С развитием науки эти границы расширялись, сначала до пределов Солнечной системы, затем до Галактики Млечный Путь. Сегодня перед учеными стоят более сложные вопросы: где проходит граница Вселенной и сколько существует Галактик?

То, что “туманности”, которые видели астрономы в ночном небе – это другие галактики, не имеющие никакого отношения к нашей родной, ученые поняли лишь в 20-е годы прошлого века.

Важнейшую роль в этом открытии сыграл один из основоположников современной астрономии американец Эдвин Хаббл, в честь которого и был назван главный космический телескоп NASA Hubble.

Стоит также отметить, что вплоть до начала XXI века галактиками было принято считать скопления с числом звёзд в диапазоне от нескольких миллионов до десятков и даже сотен триллионов. Последних относят к категории “галактик-супергигантов”, но, помимо них, в космосе имеются и куда более крупные структуры! В частности, учёными выявлены многочисленные “галактические скопления” – группы гравитационно связанных друг с другом сотен галактик, “сверхскопления” – галактические суперкластеры, объединяющие “обычные” скопления, и, наконец, “мега-монстры” – галактические нити (другое их название – “великие стены”), простирающиеся в космическом пространстве на сотни миллионов и даже несколько миллиардов световых лет комплексные структуры, в состав которых входят сотни галактических кластеров и суперкластеров, а также разделяющих их пустот.

Более того, относительно недавно астрономы стали находить и куда более мелкие галактические сообщества, например, в 2003 году были обнаружены микрогруппы (так называемые "ультракомпактные карликовые галактики"), объединяющие всего лишь несколько сотен звёзд. Таким образом, в настоящее время наблюдается сильная разноголосица мнений как в вопросе определения чётких физических границ между галактиками и "галактическими скоплениями", так и относительно того, можно ли количественно ограничить минимально допустимое число звёздных систем, входящих в состав отдельно взятой галактики.

Не так всё просто и с научной классификацией основных типов и видов галактик, точнее, их форм и пространственных очертаний.

Первую серьёзную попытку рассортировать галактики предпринял всё тот же Эдвин Хаббл, составивший в 20-30-е годы прошлого века специальную диаграмму, получившую затем название "камертон Хаббла". Все галактики он поделил на четыре основных типа – эллиптические (с вытянутой сферической формой), спиральные (дисковидные галактики, похожие на плоские блины и обладающие несколькими отростками-завихрениями – наш Млечный Путь относится именно к этой категории), линзовидные (схожие по форме со спиральными, но без рукавов-отростков) и "неправильные" , то есть, не поддающиеся чёткой визуальной классификации. Сам Хаббл полагал, что все эти типы плавно перетекают друг в друга со временем, причём, самыми древними являются эллиптические, а прочие образовались позднее вследствие пространственных мутаций. Соответственно, его схема выглядела как вилка-камертон с двумя зубцами: на его ножке-основании были эллиптические галактики, а на зубцах-продолжениях – линзовидные и спиральные, тогда как "неправильные" были вообще обозначены отдельно.

Эта его исходная версия впоследствии подверглась серьёзной коррекции и была дополнена множеством промежуточных и переходных типов. Более того, учёные в настоящее время полагают, что никакой эволюционной логики в развитии различных форм галактик, по всей видимости, вообще не было. Так, на ранних этапах расширения Вселенной могли образовываться как эллиптические, так и спиральные/линзовидные галактики, а, согласно одной из популярных гипотез, большинство самых древних галактик и вовсе обладали неправильными очертаниями.

Стоит отметить, что много новой информации о разных формах и возрастах разбросанных по Вселенной галактик было получено совсем недавно – в 90-е годы прошлого и в начале нынешнего века, и большая заслуга в этом принадлежит космическому телескопу Hubble, запущенному на околоземную орбиту в 1990 году. За 20 с лишним лет Hubble сделал огромное количество снимков отдалённых звёздных скоплений и выявил в ряде регионов Вселенной тысячи неизвестных ранее галактик.

В последней по времени исследовательской программе Frontier Fields с помощью телескопа Hubble изучаются наиболее древние участки звёздного неба. И в конце 2015 год после анализа очередной серии снимков Hubble и другого космического телескопа Spitzer, американскими астрономами была идентифицирована самая древняя на сегодня галактика, которая, по-видимому, образовалась спустя всего 400 миллионов лет после Большого Взрыва.



Как рождаются галактики?

Несмотря на огромный прогресс, достигнутый галактической астрономией во второй половине ХХ и в начале XXI веков, пока остаётся нерешённым целый ряд фундаментальных проблем, относящихся прежде всего к физическим механизмам образования и последующего развития этих крупномасштабных космических структур.

Согласно современным расчётам, предполагаемый возраст Вселенной, то есть, время, прошедшее с момента Большого Взрыва, составляет порядка 13 млрд 800 млн лет. В настоящее время учёные полагают, что первые галактики во Вселенной стали формироваться через несколько сотен миллионов лет после Большого Взрыва. Причём ещё совсем недавно считалось, что этот процесс был запущен позднее, – примерно спустя миллиард лет с момента "начала времён".

Благодаря быстрому совершенствованию научной аппаратуры в эпоху ИКТ-революции астрономам удалось отмотать ленту истории Вселенной далеко назад, однако даже самые мощные на сегодня телескопы пока не в состоянии разглядеть свет от очень тусклых космических объектов, образовавшихся на самых ранних этапах её эволюции.

Поэтому учёным-теоретикам приходится по большей части заниматься построением различных гипотез и математических моделей, объясняющих специфику галактогенеза. В принципе, современные компьютерные технологии уже позволяют детально просчитывать различные физические сценарии этого процесса, но для того, чтобы получить правильную картинку, сначала необходимо, как минимум, разобраться с тем, что из себя представляет пресловутая тёмная материя. Тёмная материя, по-видимому, является ключевой участницей галактогенеза, и без чёткого понимания её роли в этом процессе учёным едва ли удастся разработать по-настоящему эффективные и работающие компьютерные модели. Ещё один непонятный элемент этой головоломки – чёрные дыры, а точнее степень их участия в рождении и дальнейшем росте галактик. По предположениям учёных, эти колоссальные сгустки материи скрываются в центральных зонах большинства галактик.

Пока же наиболее популярной среди теоретиков считается гипотеза, согласно которой в результате сверхбыстрого расширения молодой Вселенной в ней в большом количестве накапливались разнородные сгустки (комки) материи, которые постепенно под действием взаимной гравитации объединялись друг с другом во всё более массивные структуры (сначала – в отдельные звёзды, а затем – в звёздные скопления-зародыши будущих галактик). Особое внимание в схеме галактогенеза уделяется и возможным сценариям участия в этом процессе тёмной материи, которая, скорее всего, выступала в качестве основного цементрирующего материала, гравитационно удерживающего новообразования, возникавшие в различных регионах Вселенной.

Съемки в прямом эфире

Одним из важнейших научных направлений является исследование процессов слияния и объединения друг с другом зрелых галактик, наблюдаемых нашими приборами "в реальном времени" (разумеется, с поправкой на тот очевидный факт, что приборы наблюдения, фиксируя сигналы, приходящие к нам на Землю, видят эти объекты такими, какими они были в очень далёком прошлом).

На протяжении нескольких миллиардов лет после Большого Взрыва сформировавшиеся галактики различных форм и видов регулярно наращивали свою массу и объём, по большей части засасывая из окружающего космического пространства газ и пылевые частицы. Однако постепенно этот "ничейный материал" во Вселенной стал дефицитным и средние темпы увеличения массы звёздного вещества в зрелых галактиках резко упали. Поэтому главным ресурсом пополнения запасов вещества галактик на поздних этапах эволюции оказались ближайшие к ним звёздные скопления меньшего размера.

Карликовая эллиптическая галактика в созвездии Стрельца – одна из двух неудачливых соседок Млечного Пути, которую наша галактика постепенно вбирает в себя, кормясь поставляемым извне новым сырьём. Вторая известная науке её жертва – ещё одна мини-галактика в созвездии Большого Пса, которую Млечный Путь уже почти полностью переварил: согласно данным астрономических наблюдений, от неё к настоящему времени остались лишь "рожки да ножки" (звёзды, сохранившиеся в её бывшей центральной зоне-ядре). В более же древние времена, по оценкам учёных, Млечный Путь успел успешно полакомиться как минимум восемью другими мелкими галактиками. Однако, в отдалённом будущем, примерно через 4 миллиарда лет, нашей галактике предстоит весьма нелицеприятная встреча с ещё более крупным, чем она, соседом, – галактикой Андромеды. По расчётам теоретиков, по прошествии ещё двух миллиардов лет после этого сближения Млечный путь и Андромеда должны слиться в одну большую эллиптичесую галактику.

Окружающее нас космическое пространство – это не просто одинокие звезды, планеты, астероиды и кометы, сверкающие на ночном небосклоне. Космос представляет собой огромную систему, где все находится в тесном взаимодействии друг с другом. Планеты группируются вокруг звезд, которые в свою очередь собираются в скопление или в туманность. Эти образования могут быть представлены одиночными светилами, а могут и насчитывать сотни, тысячи звезд, формируя уже более масштабные вселенские образования – галактики. Наша звездная страна, галактика Млечный путь, является только малой частью бескрайней Вселенной, в которой помимо этого существуют и другие галактики.

Вселенная постоянно находится в движении. Любой объект в космосе входит в состав той или иной галактики. Следом за звездами перемещаются и галактики, каждая из которых имеет свои размеры, определенное место в плотном вселенском строю и свою траекторию движения.

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь — не единственное вселенское образование.

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям — волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями — рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Если представить, что мы наблюдаем за космосом из нашей галактики Млечный Путь, которая якобы находится в центре мироздания, то крупномасштабная модель структуры Вселенной будет иметь следующий вид.

Темная материя — она же пустота, сверхскопления, скопления галактик и туманности — это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

До недавнего времени самой маленькой галактикой во Вселенной считалась карликовая галактика «Segue 2», находящаяся в 35 килопарсеках от нашей звезды. Однако в 2018 году японскими учеными-астрофизиками была выявлена еще меньшая по размеру галактика — Virgo I, которая является спутником Млечного Пути и находится на расстоянии 280 тыс. световых лет от Земли. Однако ученые считают, что это не предел. Высокая вероятность того, что существуют галактики куда более скромных размеров.

За группами галактик идут скопления, области космического пространства в которых существует до сотни галактик различных видов, форм и размеров. Скопления имеют колоссальные размеры. Как правило, диаметр такого вселенского образования составляет несколько мегапарсек.

Отличительной чертой структуры Вселенной является ее слабая изменчивость. Несмотря на громадные скорости, с которыми движутся галактики во Вселенной, все они остаются в составе одного скопления. Здесь действует принцип сохранения положение частиц в пространстве, на которые действует темная материя, образовавшаяся в результате большого взрыва. Предполагается, что находясь под воздействием этих пустот, заполненных темной материей, скопления и группы галактик продолжают миллиарды лет двигаться в одном направлении, соседствуя друг с другом.

Самые крупные образования во Вселенной — галактические сверхскопления, которые объединяют группы галактик. Самое известное сверхскопление — Великая Стена Клоуна, объект вселенского масштаба, растянувшийся в длину на 500 млн. световых лет. Толщина этого сверхскопления составляет 15 млн. световых лет.

В нынешних условиях космические аппараты и техника не позволяют нам рассмотреть Вселенную на всю ее глубину. Нам под силу обнаружить только сверхскопления, скопления и группы. Помимо этого наш космос имеет гигантские пустоты, пузыри темной материи.

Шаги на пути изучения Вселенной

Современная карта Вселенной позволяет нам не только определить свое местоположение в космосе. Сегодня, благодаря наличию мощных радиотелескопов и техническим возможностям телескопа Хаббл, человек сумел не только приблизительно подсчитать количество галактик во Вселенной, но и определить их типы и разновидности. Еще в 1845 году британский астроном Уильям Парсонс, с помощью телескопа исследуя облака газа, сумел выявить спиралевидную природу строения галактических объектов, акцентируя внимания на том, что в разных областях яркость звездных скоплений может быть большей или меньшей.

Сто лет назад Млечный Путь считался единственной известной галактикой, хотя математически было доказано наличие других межгалактических объектов. Свое название наш космический двор получил еще в глубокой древности. Древние астрономы глядя на мириады звезд на ночном небе, заметили характерную особенность их расположения. Основное скопление звезд было сосредоточено вдоль мнимой линии, напоминающей дорожку из разбрызганного молока. Галактика Млечный Путь, небесные светила другой хорошо знакомой галактики Андромеда являются самыми первыми вселенскими объектами, с которых началось изучение космического пространства.

Наш Млечный Путь имеет полный набор всех галактических объектов, который должна иметь нормальная галактика. Здесь присутствуют скопления и группы звезд, общее число которых примерно составляет 250-400 млрд. Имеются в нашей галактике облака газа, образующего рукава, присутствуют свои черные дыры и солнечные системы, подобные нашей.

Вместе с тем, Млечный Путь, как и Андромеда с Треугольником, являются только малой частью Вселенной, входящей в местную группу сверхскопления под названием Дева. Наша галактика имеет форму спирали, где основная масса звездных скоплений, облака газа и другие космические объекты двигаются вокруг центра. Диаметр внешней спирали составляет 100 тыс. световых лет. Млечный Путь — по космическим меркам не большая галактика, масса которой составляет 4,8х1011 Mʘ. В одном из рукавов Ориона Лебедя находится и наше Солнце . Расстояние от нашей звезды до центра Млечного Пути составляет 26 000 ± 1 400 св. лет.

Долгое время считалось, что одна из самых популярных среди астрономов туманность Андромеды является частью нашей галактики. Последующие исследования этой части космоса дали неопровержимые доказательства того, что Андромеда является самостоятельной галактикой, причем значительно крупнее, чем Млечный Путь. Полученные с помощью телескопов снимки показали, что Андромеда имеет собственное ядро. Здесь также присутствуют скопления звезд и имеются свои туманности, двигающиеся по спирали. Каждый раз астрономы пытались все глубже и глубже заглянуть внутрь Вселенной, исследуя обширные области космического пространства. Количество звезд в этом вселенском гиганте оценивается в 1 триллион.

Стараниями Эдвина Хаббла удалось установить примерное расстояние до Андромеды, которая никак не могла быть частью нашей галактики. Эта была первая галактика, которая подверглась такому пристальному изучению. Последующие годы дали новые открытия в области исследования межгалактического пространства. Более тщательно изучалась та часть галактики Млечный Путь, в которой находится наша Солнечная система. С середины XX века стало ясно, что помимо нашего Млечного Пути и хорошо известной Андромеды, в космосе имеется огромное количество других образований вселенского масштаба. Однако для порядка требовалось упорядочить космическое пространство. Если звезды, планеты и другие космические объекты поддавались классификации, то с галактиками дело обстояло сложнее. Сказывались огромные размеры исследуемых областей космического пространства, которые не только было трудно изучить визуально, но и оценить на уровне человеческой природы.

Типы галактик в соответствии с принятой классификацией

Хаббл первый решился на такой шаг, сделав в 1962 году попытку логическим путем классифицировать известные на тот момент галактики. Классификация осуществлялась на основании формы исследуемых объектов. В результате Хабблу удалось расставить все галактики по четырем группам:

  • наиболее распространенным типом являются спиральные галактики;
  • далее следуют эллиптические спиральные галактики;
  • с перемычкой (бар) галактики;
  • неправильные галактики.

Следует отметить, что наш Млечный Путь относится к типичным спиральным галактикам, однако есть одно «но». С недавнего времени выявлено наличие перемычки — бара, который присутствует в центральной части образования. Другими словами наша галактика берет свое начало не с галактического ядра, а вытекает из перемычки.

Традиционно спиральная галактика выглядит в форме диска спиралевидной плоской формы, в котором обязательно присутствует яркий центр – ядро галактики. Таких галактик больше всего во Вселенной и обозначаются они латинской буквой S. Помимо этого существуют разделение спиральных галактик на четыре подгруппы – So, Sa, Sb и Sc. Маленькие буквы обозначают наличие яркого ядра, отсутствие рукавов или наоборот, наличие плотных рукавов, охватывающих центральную часть галактики. В таких рукавах располагаются скопления звезд, группы звезд, в состав которых входит наша Солнечная система, прочие космические объекты.

Главной особенностью этого типа является медленное вращение вокруг центра. Млечный Путь совершает полный оборот вокруг своего центра за 250 млн. лет. Спирали, расположенные ближе к центру состоят в основном из скоплений старых звезд. Центр нашей галактики – это черная дыра, вокруг которой и происходит все основное движение. Протяженность пути по современным оценкам составляет по направлению к центру 1,5-25 тыс. световых лет. В процессе своего существования спиральные галактики могут сливаться с другими вселенскими образованиями меньших размеров. Свидетельством таких столкновений в более ранние периоды является наличие гало звезд и гало скоплений. Подобная теория лежит в основе теории образования спиральных галактик, которые стали результатом столкновения двух галактик, расположенных по соседству. Столкновение не могло пройти бесследно, придав общий вращательный импульс новому образованию. Рядом со спиральной галактикой находится карликовая галактика, одна, две или сразу несколько, являющиеся спутниками более крупного образования.

Близким по своей структуре и составу к спиральным галактикам являются эллиптические спиральные галактики. Это огромные, самые крупные вселенские объекты, включающие большое количество сверхскоплений, скоплений и групп звезд. В самых больших галактиках количество звезд превышает десятки триллионов. Основное отличие таких образований — сильно растянутая в пространстве форма. Спирали расположены в форме эллипса. Эллиптическая спиральная галактика М87 является одной из самых крупных во Вселенной.

С перемычкой галактики встречаются значительно реже. На них приходится примерно половины всех спиральных галактик. В отличие от спиральных образований, в таких галактиках начало берется из перемычки, называемой баром, вытекающей из двух самых ярких звезд, расположенных в центре. Ярким примером такого образования является наш Млечный Путь и галактика Большое Магелланово Облако. Ранее это образование относили к неправильным галактикам. Появление перемычки является на данный момент одной из основных областей исследования в современной астрофизике. По одной из версий, близко расположенная черная дыра высасывает и поглощает газ из соседних звезд.

Самые красивые галактики во Вселенной относятся к типу спиральных и неправильных галактик. Одной из самых красивых является галактика Водоворот, расположенная в небесном созвездии Гончие Псы. В данном случае отчетливо видны центр галактики и спирали, вращающиеся в одном направлении. Неправильные галактики представляют собой хаотически расположенные сверхскопления звезд, не имеющие четкой структуры. Ярким примером такого образования является галактика под номером NGC 4038, расположенная в созвездии Ворон. Здесь наряду с огромными газовыми облаками и туманностями можно увидеть полное отсутствие порядка в расположении космических объектов.

Выводы

Изучать Вселенную можно бесконечно. Каждый раз, с появлением новых технических средств, человек приоткрывает завесу космоса. Галактики являются самыми непостижимыми для человеческого разума объектами в космическом пространстве, как с психологической точки зрения, так и оглядываясь на науку.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Те, кто имеет немного представления о Вселенной, хорошо знает, что космос постоянно находится в движении. Вселенная с каждой секундой расширяется, становиться все больше и больше. Другое дело, что в масштабах человеческого восприятия мира, осознать размеры происходящего и представить структуру Вселенной достаточно трудно. Помимо нашей галактики, в которой расположено Солнце и находимся мы, существуют десятки, сотни других галактик. Точного количества далеких миров не знает никто. Сколько галактик во Вселенной, можно знать только приблизительно, создав математическую модель космоса.

Следовательно, учитывая размеры Вселенной, можно с легкостью допустить мысль, что в десятке, в сотне миллиардов световых лет от Земли, существуют миры, похожие на наш.

Пространство и миры, которые нас окружают

Наша галактика, получившая красивое название «Млечный путь», еще несколько веков назад, по мнению многих ученых, была центром мироздания. На деле оказалось, что это только часть Вселенной,и существуют другие галактики различных видов и размеров, большие и маленькие, одни дальше, другие ближе.

В космосе все объекты тесно взаимосвязаны, движутся в определенном порядке и занимают отведенное место. Известные нам планеты, хорошо знакомые звезды, черные дыры и сама наша Солнечная система располагаются в галактике Млечный путь. Название это не случайно. Еще древние астрономы, наблюдавшие ночное небо, сравнили окружающий нас космос с молочной дорожкой, где тысячи звезд похожи на капли молока. Галактика Млечный путь, небесные галактические объекты, находящиеся в нашем поле зрения, составляют ближайший космос. Что может находиться за пределами видимости телескопов, стало известно только в XX веке.

Последующие открытия, которые увеличили наш космос до размеров Метагалактики, натолкнули ученых на теорию о Большом взрыве. Грандиозный катаклизм произошел почти 15 млрд. лет назад и послужил толчком к началу процессов образования Вселенной. Одну стадию вещества сменяла другая. Из плотных облаков водорода и гелия стали формироваться первые зачатки Вселенной — протогалактики, состоящие из звезд. Все это происходило в далеком прошлом. Свет многих небесных светил, который мы можем наблюдать в сильнейшие телескопы, является лишь прощальным приветом. Миллионы звезд, если не миллиарды, усыпавшие наш небосклон, находятся в миллиарде световых лет от Земли, и давно прекратили свое существование.

Карта Вселенной: ближайшие и дальние соседи

Наша Солнечная система, прочие космические тела, наблюдаемые с Земли — это сравнительно молодые структурные образования и наши ближайшие соседи в огромной Вселенной. Долгое время ученые считали, что ближайшей к Млечному Пути являлась карликовая галактика Большое Магелланово облако, расположенная всего в 50 килопарсеках. Только совсем недавно стали известны реальные соседи нашей галактики. В созвездии Стрельца и в созвездии Большого Пса расположились маленькие карликовые галактики, масса которых в 200- 300 раз меньше массы Млечного пути, а расстояние до них составляет чуть более 30-40 тыс. световых лет.

Это одни из самых маленьких вселенских объектов. В таких галактиках количество звезд относительно небольшое (порядка нескольких миллиардов). Как правило, карликовые галактики постепенно сливаются или поглощаются более крупными образованиями. Скорость расширяющейся Вселенной, которая составляет 20-25 км/с, невольно приведет соседствующие галактики к столкновению. Когда это произойдет и чем обернется, мы можем только предполагать. Столкновение галактик происходит все это время, и в силу скоротечности нашего существования, наблюдать за происходящим не представляется возможным.

Андромеда, в два-три раза превышающая своими размерами нашу галактику, является одной из самых близких к нам галактик. Среди астрономов и астрофизиков она продолжает оставаться одной из самых популярных и располагается всего в 2,52 миллионах световых лет от Земли. Как и наша галактика, Андромеда входит в Местную группу галактик. Размер этого гигантского космического стадиона — три миллиона световых лет в поперечнике, а количество присутствующих в ней галактик насчитывается порядка 500. Однако даже такой гигант, как Андромеда, выглядит коротышкой в сравнении с галактикой IC 1101.

Эта самая большая во Вселенной спиралевидная галактика располагается в сотне с лишним миллионов световых лет от нас и имеет диаметр более 6 миллионов световых лет. Несмотря на то, что в ее состав входит 100 триллионов звезд, галактика в основном состоит из темной материи.

Астрофизические параметры и типы галактик

Первые исследования космоса, проведенные в начале XX века, дали обильную почву для размышлений. Обнаруженные в объектив телескопа космические туманности, которых со временем насчитали более тысячи, представляли собой интереснейшие объекты во Вселенной. Длительное время эти светлые пятна на ночном небе считались скоплениями газа, входящими в структуру нашей галактики. Эдвин Хаббл в 1924 году сумел измерить расстояние до скопления звезд, туманностей и сделал сенсационное открытие: эти туманности — ни что иное, как далекие спиралевидные галактики, самостоятельно странствующие в масштабах Вселенной.

Американский астроном впервые предположил, что наша Вселенная – это множество галактик. Исследования космоса в последней четверти XX века, наблюдения, сделанные с помощью космических аппаратов и техники, включая знаменитый телескоп Хаббл, подтвердили эти предположения. Космос безграничен и наш Млечный путь — далеко не самая крупная галактика во Вселенной и к тому же не является ее центром.

Только с появлением мощных технических средств наблюдения, Вселенная стала обретать четкие очертания. Ученые столкнулись с тем фактом, что даже такие огромные образования, какими являются галактики, могут отличаться по своей структуре и строению, форме и размерам.

Усилиями Эдвина Хаббла мир получил систематизированную классификацию галактик, делящую их на три типа:

  • спиральные;
  • эллиптические;
  • неправильные.

Эллиптические галактики и спиральные являются самыми распространенными типами. К ним относятся наша галактика Млечный Путь, а также соседняя с нами галактика Андромеда и многие другие галактики во Вселенной.

Эллиптические галактики имеют форму эллипса и вытянуты в одном из направлений. Эти объекты лишены рукавов и часто меняют свою форму. По своим размерам эти объекты также отличаются друг от друга. В отличие от спиральных галактик, эти космические монстры не имеют четко выраженного центра. Ядро в таких структурах отсутствует.

По классификации такие галактики обозначаются латинской буквой E. Все на сегодняшний день известные эллиптические галактики разделены на подгруппы E0-E7. Распределение по подгруппам осуществляется в зависимости от конфигурации: от галактик почти круглой формы (E0, E1 и E2)до сильно растянутых объектов с индексами E6 и E7. Среди эллиптических галактик встречаются карлики и настоящие гиганты, имеющие диаметры в миллионы световых лет.

К спиральным галактикам относятся два подтипа:

  • галактики, представленные в виде пересеченной спирали;
  • нормальные спирали.

Первый подтип выделяется следующими особенностями. По форме такие галактики напоминают правильную спираль, однако в центре такой спиральной галактики находится перемычка (бар), дающая начало рукавам. Такие перемычки в галактике обычно являются следствием физических центробежных процессов, делящих ядро галактики на две части. Существуют галактики с двумя ядрами, тандем которых и составляет центральный диск. Когда ядра встречаются, перемычка исчезает и галактика становится нормальной, с одним центром. Существует перемычка и в нашей галактике Млечный путь, в одном из рукавов которой находится наша Солнечная система. От Солнца к центру галактики путь по современным оценкам составляет 27 тыс. световых лет. Толщина рукава Ориона Лебедя, в котором пребывает наше Солнце и вместе с ним наша планета, составляет 700 тыс. световых лет.

В соответствии с классификацией спиральные галактики обозначаются латинскими буквами Sb. В зависимости от подгруппы, существуют и другие обозначения спиральных галактик: Dba, Sba и Sbc. Разница между подгруппами определяется длиной бара, его формой и конфигурацией рукавов.

Спиральные галактики могут иметь различные размеры, начиная от 20 000 световых лет и до 100 тыс. световых лет в диаметре. Наша галактика «Млечный Путь» пребывает в «золотой серединке», своими размерами тяготея к галактикам средней величины.

Самый редкий тип — неправильные галактики. Эти вселенские объекты представляют собой крупные скопления звезд и туманностей, не имеющие четкой формы и структуры. В соответствии с классификацией они получили индексы Im и IO. Как правило, у структур первого типа диска нет или он слабо выражен. Нередко у таких галактик можно рассмотреть подобие рукавов. Галактики с индексами IO представляют собой хаотическое скопление звезд, облаков газа и темной материи. Яркими представителям такой группы галактик являются Большое и Малое Магелланово Облако.

Все галактики: правильные и неправильные, эллиптические и спиральные, состоят из триллионов звезд. Пространство между звездами с их планетарными системами заполнено темной материей или облаками космического газа и частицами пыли. В промежутках этих пустот находятся черные дыры, большие и малые, которые нарушают идиллию космического спокойствия.

Исходя из имеющейся классификации и по результатам исследований, можно с некоторой долей уверенности ответить на вопрос, сколько галактик во Вселенной и какого они типа. Больше всего во Вселенной спиральных галактик. Их более 55 % от общего количества всех вселенских объектов. Эллиптических галактик в два раза меньше — всего 22% от общего числа. Неправильных галактик, аналогичных Большому и Малому Магеллановым Облакам, во Вселенной только 5%. Одни галактики соседствуют с нами и находятся в поле зрения мощнейших телескопов. Другие находятся в самом дальнем пространстве, где преобладает темная материя и в объективе видна больше чернота бескрайнего космоса.

Галактики при близком осмотре

Все галактики относятся к определенным группам, которые в современной науке принято называть кластерами. Млечный Путь входит в один из таких кластеров, в котором присутствуют еще до 40 более-менее известных галактик. Сам кластер же является частью сверхскопления, более крупной группы галактик. Земля, вместе с Солнцем и Млечным Путем входит в сверхскопление Девы. Таков наш фактический космический адрес. Вместе с нашей галактикой в скоплении Девы существуют более двух тысяч других галактик, эллиптических, спиральных и неправильных.

Карта Вселенной, на которую сегодня ориентируются астрономы, дает представление о том, как выглядит Вселенная, каковая ее форма и структура. Все скопления собираются вокруг пустот или пузырей темной материи. Допускается мысль, что темная материя и пузыри также заполнены какими-то объектами. Возможно это антивещество, которое в противоположность законами физики, образует аналогичные структуры в другой системе координат.

Современное и будущее состояние галактик

Ученые считают, что составить общий потрет Вселенной невозможно. Мы располагаем визуальными и математическими данными о космосе, который находится в пределах нашего понимания. Реальные масштабы Вселенной представить невозможно. То, что мы видим в телескоп, является светом звезд, который идет к нам уже миллиарды лет. Возможно, реальная картина на сегодняшний день уже совершенно иная. Самые красивые галактики во Вселенной в результате космических катаклизмов уже могли превратиться в пустые и безобразные облака космической пыли и темной материи.

Нельзя исключать, что в далеком будущем, наша галактика столкнется с более крупной соседкой по Вселенной или проглотит карликовую галактику, существующую по соседству. Каковы будут последствия таких вселенских изменений, остается только гадать. Несмотря на то, что сближение галактик происходит со световой скоростью, земляне вряд ли станут свидетелями вселенской катастрофы. Математики подсчитали, что до рокового столкновения осталось чуть более трех миллиардов земных лет. Будет ли в то время существовать жизнь на нашей планете — вопрос.

В существование звезд, скоплений и галактик также могут вмешаться и другие силы. Черные дыры, которые пока известны человеку, в состоянии поглотить звезду. Где гарантия, что подобные чудовища огромных размеров, прячущиеся в темной материи и в пустотах космоса, не смогут поглотить галактику целиком.