Эрнест резерфорд открытия в физике. Изучение лучей Беккереля. Книги Резерфорда, опыты по просвечиванию фольги альфа-частицами

Эрнест Резерфорд родился 30 августа 1871 г. в деревне Спринг Гроув (известной также под названием Брайтуотер) близ г. Нельсона, Новая Зеландия, в семье фермера Джеймса Резерфорда и его жены Марты Томсон (уроженки г. Хорнчёрч, графство Эссекс, Англия).

При рождении, Эрнеста, по ошибке, записали под именем Ёрнест (от англ. “earnest” – «серьёзный»). В детстве Эрнест ходит в школу г. Хэвлок, по окончании которой продолжает учёбу в колледже в г. Нельсоне. Он усердно трудится, чтобы поступить в Кентерберийский колледж, бывший подразделением Университета Новой Зеландии. В колледже Эрнест Резерфорд становится главой дискуссионного клуба и принимает активное участие в студенческой жизни.

В Кентерберийском колледже Резерфорд получает высшее образование, защищая звания бакалавра и магистра в области гуманитарных наук, а также бакалавра естественных наук, после чего, на протяжении двух лет, увлечённо занимается исследованиями в области электротехники. В 1895 г. он отправляется в Англию для повышения уровня образования, где с 1895 г. по 1898 г. трудится в Кавендишской лаборатории при Кембриджском университете. Он совершает значительный прорыв (и некоторое время держит рекорд) в обнаружении расстояния, которое определяет длину электромагнитной волны.

Труды, исследования и вклад в науку

В 1898 г. Резерфорд меняет Хью Лонгборна Каллендара на должности профессора физики, основанной благодаря покровительству Уильяма МакДональда, в Университете МакГилла. Именно здесь Резерфорд достигнет высот своей исследовательской деятельности. Его работа в Университете МакГилла увенчается получением в 1908 г. Нобелевской премии в области химии.

Резерфорд занимается глубинными исследованиями и практическим изучением явления радиоактивности. В этот период, в 1899 г., он вводит понятия альфа- и бета-частиц. Этот тип радиационного излучения учёный описывает как два отчётливых (легко различаемых) вида излучения потока частиц элементами торием и ураном. Основываясь на их проникающей способности, Резерфорд чётко излагает различия этих радиационных лучей.

В 1900 г. в Университете Новой Зеландии он получает степень доктора наук. С 1900 г. по 1903 г. к исследовательскому проекту Резерфорда на тему трансмутации элементов в Университете МакГилла присоединяется юный исследователь Фредерик Содди.

Резерфорд открывает и точно описывает, что радиация является следствием спонтанного разложения атомов. Учёный в мельчайших подробностях наблюдает, а в последствие и описывает, что образцу радиоактивного материала требуется определенное время для уменьшения его радиоактивности в 2 раза. Это время Резерфорд называет «периодом полураспада».

Это открытие в дальнейшем получит практическое применение: взяв за единицу измерения равномерную скорость распада вещества, будет определён возраста планеты Земля, оказавшейся намного старше, чем возраст, предполагаемый учёными того времени.

В 1903 г. Резерфорд обнаруживает, что радиация (уже открытая), излучаемая ещё безымянным радием (открытым в 1900 г. французским химиком Полом Виллардом) обладает отличительной чертой (от альфа- и бета-излучений), не описанной прежде. Он также замечает, что новый вид излучения обладает большой проникающей способность, и, не теряя времени, даёт ему самостоятельное название «гамма-излучение». В 1907 г. Резерфорда назначают на должность профессора физики Манчестерского университета. В Манчестере учёный продолжает работать с альфа-излучением. Совместно с Гансом Гейгером, он разрабатывает цинк-сульфидный отражающий экран и ионизационную камеру, предназначенную для подсчёта количества альфа-частиц.

В 1907 г. Резерфорд, вместе с Томасом Ройдсом, проводит химический опыт, заключающийся в прохождении альфа-лучей через узкое окно в вакуумную трубку. Лучи неизменно порождают в трубке искровой разряд, в результате чего образовывается спектр, меняющий свою природу аналогично альфа-лучам, накопившимся в трубке. Далее эксперимент показывает, как начинает образовываться чистый спектр газа гелия. Из этого следует, что альфа-лучи почти не ионизируют атомы, а точнее – ядра атомов, гелия.

В 1909 г. объединяет усилия с Гансом Гейгером и Эрнестом Марсденом и проводит опыт Гейгера-Марсдена, нацеленный на обнаружение и наглядную демонстрацию истинной ядерной природы атомов. Эксперимент проводится для получения чётко сформулированных результатов относительно свойств альфа-частиц. Резерфорд предлагает Гейгеру и Марсдену получить отклонение альфа-частиц на большие углы (предрешённых результатов опыта не было, поскольку, на момент его проведения, не существовало ни малейших теорий на этот счёт). Искомые отклонения были найдены, но носили единичный характер и ровную, чётко-организованную функцию угла отклонения. Истолкование и результаты этого эксперимента в 1911 г. выливаются в представление модели атома Резерфорда. Согласно его теории, даже маленькое положительно заряженное ядро имеет вращающиеся вокруг него электроны. В 1919 г. Резерфорд отправляется в Кавендишскую лабораторию, где проводит (первым в истории) опыт по трансмутации одного вещества в другое, превратив с помощью ядерной реакции азот в кислород. Этот опыт он осуществляет совместно с Нильсом Бором, выдвигая при этом теорию о существовании нейтронов и об их предположительном свойстве возмещать отталкивающее свойство положительно заряженных протонов, порождая силу ядерного притяжения, удерживающую ядро от распада.

В 1932 г. эту теорию существования нейтронов доказывает Джеймс Чедвик, получивший в 1935 г. Нобелевскую премию в области физики за это открытие.

Личная жизнь

В 1900 г. Резерфорд женится на Марии Георгине Ньютон. У них рождается дочь, Эйлин Мария.

Награды и почести

В 1908 г. Резерфорд получает Нобелевскую премию за революционные открытия и успешные исследования процесса распада веществ и следующих из него химических свойств радиоактивных веществ. В 1914 г. Резерфорда посвящают в рыцари. В 1916 г. учёного награждают медалью имени сэра Джеймса Гектора. В 1919 г. Резерфорд возвращается в Кавендишскую лабораторию при Кембриджском университете, где его назначают на пост руководителя лаборатории. В это время он становится научным наставником ряда исследователей – Джеймса Чедвика, Джона Дугласа Коккрофта, Эдварда Виктора Эпплтона и Томаса Синтона Уолтона, каждый из которых получил Нобелевскую премию за работы в области атомных реакций, открытия нейтрона, наглядных демонстраций и химических опытов по вопросам элементарных частиц и ионосферы. В 1925 г. Резерфорда награждают почётным орденом «За заслуги» перед Великобританией. В 1931 г. он получает почётный титул барона Резерфорда Нельсонского и Кембриджского в графстве Кембридж.

После смерти, Резерфорда удостаивают чести быть похороненным в Вестминстерском аббатстве, рядом с Дж. Дж. Томсоном и сэром Исааком Ньютоном.

Смерть

Эрнест Резерфорд страдал пупочной грыжей, и оперировать его, в знак особой чести (как носителю британского ордена «За заслуги»), надлежало только титулованному хирургу. Из-за долгих поисков подходящей кандидатуры, время было упущено, и 19 октября 1937 г. в больнице Резерфорд внезапно скончался.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Эрнест Резерфорд (фото размещено далее в статье), барон Резерфорд Нельсона и Кембриджа (родился 30.08.1871 в Спринг-Груве, Новая Зеландия — умер 19.10.1937 в Кембридже, Англия) - британский физик родом из Новой Зеландии, которого считают самым великим экспериментатором со времен Майкла Фарадея (1791-1867). Он был центральной фигурой в области изучения радиоактивности, а его концепция строения атома доминировала в ядерной физике. Стал лауреатом Нобелевской премии в 1908 году, был президентом Королевского общества (1925-1930) и Британской ассоциации содействия развитию науки (1923). В 1925 году был принят в члены Ордена заслуг и в 1931 году был удостоен звания пэра, получил титул лорда Нельсона.

Эрнест Резерфорд: краткая биография в ранние годы жизни

Отец Эрнеста Джеймс в середине XIX века ребенком переехал из Шотландии в Новую Зеландию, лишь недавно заселенную европейцами, где занимался сельским хозяйством. Мать Резерфорда - Марта Томпсон - приехала из Англии в подростковом возрасте и работала школьной учительницей, пока не вышла замуж и не родила десятерых детей, из которых Эрнест был четвертым (и вторым сыном).

Эрнест учился в бесплатных государственных учебных заведениях до 1886 г., когда он выиграл стипендию для учебы в частной средней школе Нельсона. Одаренный ученик преуспел почти в каждом предмете, но особенно в математике. Другая стипендия помогла Резерфорду поступить в 1890 году в Кентербери-колледж, один из четырех кампусов университета Новой Зеландии. Это было небольшое учебное заведение, в штате составе которого числилось всего восемь преподавателей, студентов же было менее 300. Юному дарованию посчастливилось иметь прекрасных учителей, которые разожгли в нем интерес к научным исследованиям, подкрепленным надежными доказательствами.

По завершении трехлетнего учебного курса Эрнест Резерфорд стал бакалавром и выиграл стипендию для года учебы в аспирантуре в Кентербери. Завершив ее в конце 1893 года, он получил степень магистра искусств - первую ученую степень в области физики, математики и математической физики. Ему было предложено остаться еще на один год в Крайстчерче для проведения независимых экспериментов. Исследование Резерфорда способности высокочастотного электрического разряда, например, от конденсатора, намагничивать железо в конце 1894 года принесло ему степень бакалавра наук. В этот период он полюбил Мэри Ньютон, дочь женщины, в чьем доме он поселился. Они поженились в 1900 г. В 1895-м Резерфорд получил стипендию имени Всемирной выставки 1851 г. в Лондоне. Он решил продолжать свои исследования в Кавендишской лаборатории, которую Дж. Дж. Томсон, ведущий европейский эксперт в области электромагнитного излучения, возглавил в 1884 г.

Кембридж

В знак признания растущей важности науки Кембриджский университет изменил свои правила, позволив выпускникам других вузов получать диплом после двух лет обучения и выполнения приемлемой научной работы. Первым студентом-исследователем стал Резерфорд. Эрнест, кроме демонстрации намагничивания колебательным разрядом железа, установил, что игла теряет часть своей намагниченности в магнитном поле, создаваемом переменным током. Это позволило создать детектор недавно открытых электромагнитных волн. В 1864 г. шотландский физик-теоретик Джеймс Клерк Максвелл предсказал их существование, а в 1885-1889 гг. немецкий физик Генрих Герц обнаружил их в своей лаборатории. Прибор Резерфорда для детекции радиоволн был проще и имел коммерческий потенциал. Следующий год молодой ученый провел в Кавендишской лаборатории, увеличивая диапазон и чувствительность прибора, который мог принимать сигналы на расстоянии полумили. Однако Резерфорду не хватило межконтинентального видения и предпринимательских навыков итальянца Гульельмо Маркони, который изобрел беспроводной телеграф в 1896 г.

Исследования ионизации

Не оставляя своего давнего увлечения альфа-частицами, Резерфорд изучал их небольшое рассеяние после взаимодействия с фольгой. Гейгер присоединился к нему, и они получили больше значимых данных. В 1909 г., когда студент-старшекурсник Эрнест Марсден искал тему для своего научно-исследовательского проекта, Эрнест предложил ему изучить большие углы рассеяния. Марсден обнаружил, что небольшое число α-частиц отклонялось более чем на 90° от своего первоначального направления, что вынудило Резерфорда воскликнуть, что это почти так же невероятно, как если бы 15-дюймовый снаряд, запущенный в лист папиросной бумаги, отскочил бы обратно и попал в стрелявшего.

Модель атома

Размышляя над тем, как такая тяжелая заряженная частица может отклоняться электростатическим притяжением или отталкиванием на такой большой угол, в 1944 г. Резерфорд пришел к выводу, что атом не может являться однородным твердым телом. По его мнению, он состоял в основном из пустого пространства и крошечного ядра, в котором сконцентрирована вся его масса. Резерфорд Эрнест модель атома подтвердил многочисленными экспериментальными доказательствами. Она стала его наибольшим научным вкладом, но за пределами Манчестера на нее обращали мало внимания. В 1913 г., однако, датский физик Нильс Бор показал всю важность этого открытия. Годом ранее он посетил лабораторию Резерфорда и вернулся в нее в качестве сотрудника факультета в 1914-1916 гг. Радиоактивность, как объяснил он, заключена в ядре, в то время как химические свойства определяются орбитальными электронами. Модель атома Бора породила новую концепцию квантов (или дискретных значений энергии) в электродинамике орбит, и он объяснил спектральные линии как выделение или поглощение энергии электронами при их переходе из одной орбиты на другую. Генри Мозли, еще один из многих учеников Резерфорда, аналогичным образом объяснил последовательность рентгеновского спектра элементов зарядом ядра. Таким образом была разработана новая согласованная картина физики атома.

Подлодки и ядерная реакция

Первая мировая война опустошила лабораторию, которой руководил Эрнест Резерфорд. Интересные факты из жизни физика в этот период касаются его участия в разработке средств борьбы с подводными лодками, а также членства в Совете адмиралтейства по изобретениям и научным исследованиям. Когда он нашел время, чтобы вернуться к своим предыдущим научным работам, то занялся изучением столкновения альфа-частиц с газами. В случае водорода, как и ожидалось, детектор фиксировал образование отдельных протонов. Но протоны возникали и при бомбардировке атомов азота. В 1919 г. Эрнест Резерфорд открытия пополнил еще одним: ему удалось искусственно спровоцировать ядерную реакцию в стабильном элементе.

Возвращение в Кембридж

Ядерные реакции занимали ученого на протяжении всей карьеры, которая проходила снова в Кембридже, где в 1919 г. преемником Томсона на посту директора Кавендишской лаборатории университета и стал Резерфорд. Эрнест привел сюда своего коллегу по университету Манчестера - физика Джеймса Чедвика. Вместе они бомбардировали альфа-частицами ряд легких элементов и вызывали ядерные превращения. Но им не удавалось проникнуть в более тяжелые ядра, поскольку α-частицы отталкивались от них из-за одинакового заряда, и ученые не могли определить, происходило это раздельно или вместе с мишенью. В обоих случаях требовалась более передовая технология.

Более высокие энергии в ускорителях частиц, необходимые для решения первой проблемы, стали доступны в конце 1920-х годов. В 1932 г. два студента Резерфорда - англичанин Джон Кокрофт и ирландец Эрнест Уолтон - стали первыми, кто фактически вызвал ядерное превращение. С помощью высоковольтного линейного ускорителя они бомбардировали литий протонами и расщепили его на две α-частицы. За эту работу они получили Нобелевскую премию 1951 г. по физике. Шотландец Чарльз Вильсон в Кавендише создал туманную камеру, которая давала визуальное подтверждение траектории заряженных частиц, за что был удостоен этой же престижной международной награды в 1927 г. В 1924-м английский физик Патрик Блэкетт модифицировал камеру Вильсона, чтобы сфотографировать около 400 000 альфа-столкновений и обнаружил, что большинство из них были обычными упругими, а 8 сопровождались распадом, в котором α-частица поглощалась ядром-мишенью перед его расщеплением на два фрагмента. Это стало важным шагом в понимании ядерных реакций, за что Блэкетту была присвоена Нобелевская премия по физике 1948 года.

Открытие нейтрона и термоядерного синтеза

Кавендиш стал местом проведения и других интересных работ. Существование нейтрона было предсказано Резерфордом в 1920 году. После долгих поисков, в 1932 году Чедвик обнаружил эту нейтральную частицу, доказав, что ядро состоит из нейтронов и протонов, а его коллега, английский физик Норман Федер, вскоре показал, что нейтроны могут вызывать ядерные реакции легче, чем заряженные частицы. Работая с подаренной недавно открытой в США тяжелой водой, в 1934 г. Резерфорд, Марк Олифант из Австралии и Пауль Хартек из Австрии провели бомбардировку дейтерия дейтронами и провели первый термоядерный синтез.

Жизнь вне физики

Ученый имел несколько увлечений, не касающихся науки, в число которых входили гольф и автоспорт. Эрнест Резерфорд, кратко говоря, придерживался либеральных убеждений, но не был политически активным, хотя и занимал должность председателя экспертного совета правительственного Департамента научных и промышленных исследований и являлся пожизненным президентом (с 1933 г.) организации Academic Assistance Council, созданной для помощи ученым, бежавшим из нацистской Германии. В 1931 г. он стал пэром, но это событие было омрачено смертью его дочери, скончавшейся восемью днями раньше. Выдающийся ученый умер в Кембридже после непродолжительной болезни и был похоронен в Вестминстерском аббатстве.

Эрнест Резерфорд: интересные факты

  • Он учился в Кентерберийском колледже университета Новой Зеландии на стипендию, получив степень бакалавра и магистра, а также два года занимался разработками, которые привели к изобретению нового вида радиоприемника.
  • Эрнест Резерфорд был первым выпускником, не окончившим Кэмбридж, которому было разрешено вести научно-исследовательскую работу в Кавендишской лаборатории под руководством сэра Дж. Дж. Томсона.
  • Во время Первой мировой войны он работал над решением практических проблем обнаружения подводных лодок.
  • В университете Макгилла в Канаде Эрнест Резерфорд вместе с химиком Фредериком Содди создал теорию атомного распада.
  • В университете Виктории в Манчестере он и Томас Ройдс доказали, что альфа-излучение состоит из ионов гелия.
  • Исследование Резерфорда по распаду элементов и радиоактивных веществ принесли ему Нобелевскую премию в 1908 году.
  • Свой самый известный эксперимент Гейгера - Марсдена, который продемонстрировал ядерную природу атома, физик провел уже после получения награды Шведской академии.
  • В его честь назван 104-й химический элемент - резерфордий, который в СССР и РФ до 1997 г. именовался курчатовием.

В чем Резерфорд превзошел Эйнштейна и в чем уступил Маркони, какие мегагранты были в Англии XIX века, какие потери великий ученый понес на Первой мировой войне и за что его называли Крокодилом и кроликом, сайт рассказывает в очередном выпуске рубрики «Как получить Нобелевку».

Памятник Резерфорду-ребенку в Новой Зеландии

Wikimedia Commons

Эрнест Резерфорд

Нобелевская премия по химии 1908 года. Формулировка Нобелевского комитета: «За проведенные им исследования в области распада элементов в химии радиоактивных веществ».

Когда пишешь статью о нобелевском лауреате, существует два особенно трудных случая. Первый вариант: о нашем герое известно очень мало, и приходится заниматься отдельным поиском, чтобы набрать материала на статью. Второй вариант: наш герой сверхзнаменит, имя его стало нарицательным, а воспоминания очевидцев часто противоречат друг другу. И тут возникает другой вопрос - вопрос выбора. Наш сегодняшний случай - именно такой. Очень мало лауреатов, которые настолько известны, как наш персонаж. Еще меньше - получивших Нобелевскую премию так, что сама номинация в его случае стала самым ярким случаем троллинга в истории науки. Хотя в том далеком 1908 году «троллингом» могли назвать разве что музыкальную сценку авторства Эдварда Грига. Но как еще можно назвать премию по химии, врученную физику до мозга костей, который сам неоднократно подчеркивал, что все науки «делятся на физику и коллекционирование марок»? С другой стороны, именем этого человека в разное время назывались целых три химических элемента. Вы уже догадались, кто наш герой? Разумеется, это он, первый новозеландский нобелевский лауреат, сэр Эрнест Резерфорд. Он же - с легкой руки будущего советского нобелевского лауреата и своего ученика Петра Капицы - Крокодил.

Юный Эрнест Резерфорд

Wikimedia Commons

Резерфорда можно считать счастливцем. Родившись дальше, чем в провинции, не в Девоншире каком-нибудь, не в Эдинбурге, не в Сиднее и даже не в Веллингтоне, а в новозеландской провинции, в фермерской семье, он сумел пробиться. Однако стипендию имени Всемирной выставки 1851 года для одаренных провинциалов наш герой получил лишь тогда, когда тот, кому ее присудили ранее, отказался.

Тем не менее Рубикон был перейден (так он писал своей невесте), деньги на пароход заняты, и с прототипом детектора радиоволн (примерно то же самое делали Маркони и Попов) Резерфорд отправился в Англию. Денег на то, чтобы разрабатывать детектор, ему не дали: все свои средства почта Британии поставила на Маркони, который получит Нобелевскую премию через год после Резерфорда. И новозеландец записался в Кавендишскую лабораторию при Кембридже.

Мало кто знает, что знаменитая Кавендишская лаборатория названа по имени не химика Генри Кавендиша (который был 2-м герцогом Девонширским), а его родственника, 7-го герцога Девонширского, Уильяма Кавендиша, канцлера Кембриджа, который пожертвовал денег на открытие лаборатории. Такой вот английский мегагрант. Между прочим, весьма успешный: на настоящий момент 29 сотрудников этого проекта получили Нобелевские премии (включая нашего Капицу).

Уильям Кавендиш, 7-й герцог Девонширский

Wikimedia Commons

Резерфорд стал докторантом у самого , первооткрывателя электрона (Томсон - лауреат «физического нобеля» 1906 года, но не за электрон, а за исследования прохождения токов в газах). И поучаствовал в нобелевских работах своего научного руководителя. А дальше можно просто перечислять лишь основные достижения Резефорда - великого экспериментатора и физика (доктор Эндрю Бальфур дал едкое определение-признание Резерфорду: «Мы заполучили дикого кролика из страны антиподов и он роет глубоко»).

Вместе с Томсоном он изучал ионизацию газов рентгеновским излучением. В 1898 году он выделил из радиоактивного излучения «альфа-лучи» и «бета-лучи». Сейчас мы знаем, что это ядра гелия и электроны. Кстати, химической природе альфа-лучей посвящена Нобелевская лекция Резерфорда.

Эккспериментальная установка по разделению радиоактивного излучения на альфа-, бета- и гамма-составляющие

Wikimedia Commons

В 1901-1903 годах вместе с будущим нобелиатом по химии 1921 года, Фредериком Содди, Резерфорд открыл естественные превращения элементов при радиоактивном распаде (за это наш герой и получил «Нобеля», так что все законно, ведь химия - это наука о превращении веществ друг в друга). При этом была открыта «эманация тория», газообразный радон-220, и сформулирован закон радиоактивного распада.

Фредерик Содди

Ганс Гейгер и Эрнест Резерфорд

Wikimedia Commons

Но самый известный свой эксперимент он (точнее, его ученики Гейгер и Мардсен) провел в 1909 году. Исследование прохождения альфа-частиц сквозь золотую фольгу абсолютно неожиданно для всех показало, что некоторые ядра гелия отбрасываются обратно. «Как если бы вы стреляли 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанес удар», - писал Резерфорд. Так было открыто атомное ядро и появилась планетарная модель атома, в которой электроны вращаются вокруг ядра, а модель Томсона, которая называлась «пудинг с изюмом», была отброшена.

Как проходили бы альфа-частицы через атомы Томсона (ожидаемый результат эксперимента) и какие результаты наблюдались в реальности

Wikimedia Commons

Предложить такую модель было совершенным безумием. Потом выяснилось, что о планетарной модели атома задумывался, например, Эйнштейн, но не решился ее разрабатывать, ведь всем ясно, что рано или поздно электроны должны падать на ядро.

Во время Первой мировой войны Резерфорд работал над детектированием вражеских подлодок (он служил офицером связи). Война же нанесла нашему герою и страшный удар: на фронте погиб талантливейший его ученик - Генри Мозли.

Генри Мозли

Wikimedia Commons

В 1917 году Резерфорд начинает эксперименты по искусственному превращению элементов. Два года спустя эти эксперименты успешно завершились: в 1919 году в том же журнале Philosophical Magazine, где он с Содди рассказал о превращении элементов при естественном радиоактивном распаде, вышла статья «Аномальный эффект в азоте», в которой сообщалось о первом искусственном превращении элементов). В 1920 году Резерфорд предсказал существование нейтрона (его потом открыл ученик Резерфорда Чедвик).

Сэр Джеймс Чедвик

Wikimedia Commons

Во время войны Резерфорд стал и дворянином. Несмотря на то, что удар мечом Резерфорд получил от короля в 1914 году, бароном Резерфордом Нельсоном он официально стал только в 1931-м, с утверждением соответствующего герба. На гербе - птица киви, символ Новой Зеландии, и две экспоненциальные кривые, показывающие, как убывает со временем количество радиоактивных атомов при радиоактивном распаде. Он телеграфировал по подводному кабелю восьмидесятивосьмилетней матери: «Итак - лорд Резерфорд. Заслуга более твоя, чем моя. Люблю, Эрнест».

Английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, ин. ч.-к. РАН (1922), поч.ч. АН СССР (1925). Дир. Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совм. с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую исскуств. ядерную реакцию. Предсказал (1921) существование нейтрона. Ноб. пр. по химии (1908).


Эрнест Резерфорд считается величайшим физиком-экспериментатором двадцатого столетия. Он является центральной фигурой в наших познаниях в области радиоактивности, а также человеком, который положил начало ядерной физике. Помимо своего огромного теоретического значения его открытия получили широкий спектр применения, включая: ядерное оружие, атомные электростанции, радиоактивные исчисления и исследования радиации. Влияние трудов Резерфорда на мир огромно. Оно продолжает расти и, похоже, еще увеличится в будущем.

Резерфорд родился и вырос в Новой Зеландии. Там он поступил в Кентерберийский колледж и к двадцати трем годам получил три степени (бакалавра гуманитарных наук, бакалавра естественных наук, магистра гуманитарных наук). На следующий год ему присудили право на обучение в Кембриждском университете в Англии, где он провел три года как студент-исследователь под руководством Дж. Дж. Томсона, одного из ведущих ученых того времени. В двадцать семь лет Резерфорд стал профессором физики в университете Макджил в Канаде. Там он работал девять лет и в 1907 году вернулся в Англию, чтобы возглавить физический факультет Манчестерского университета. В 1919 году Резерфорд вернулся в Кембридж, на этот раз как директор Кавендишской лаборатории, и оставался на этом посту до конца жизни.

Радиоактивность была открыта в 1896 году французским ученым Антуаном Анри Беккерелем, когда он проводил эксперименты с урановыми соединениями. Но вскоре Беккерель потерял интерес к этому предмету, и большая часть наших основных знаний в области радиоактивности происходит из широких исследований Резерфорда. (Мари и Пьер Кюри открыли еще два радиоактивных элемента - полоний и радий, но не сделали открытий фундаментального значения.)

Одно из первых открытий Резерфорда заключалось в том, что радиоактивное излучение урана состоит из двух различных компонентов, которые ученый назвал альфа- и бета-лучи. Позже он продемонстрировал природу каждого компонента (они состоят из быстродвижущихся частиц) и показал, что существует еще и третий компонент, который назвал гамма-лучами.

Важная черта радиоактивности - это связанная с ней энергия. Беккерель, супруги Кюри и множество других ученых считали энергию внешним источником. Но Резерфорд доказал, что данная энергия - которая намного мощнее, чем освобождаемая при химических реакциях, - исходит изнутри отдельных атомов урана! Этим он положил начало важной концепции атомной энергии.

Ученые всегда предполагали, будто отдельные атомы неделимы и неизменяемы. Но Резерфорд (с помощью очень талантливого молодого помощника Фредерика Содди) смог пока зать, что когда атом испускает альфа- или бета-лучи, он преобразуется в атом иного сорта. Сначала химики не могли в это поверить. Однако Резерфорд и Содди провели целую серию экспериментов с радиоактивным распадом и трансформировали уран в свинец. Также Резерфорд измерил скорость распада и сформулировал важную концепцию "полураспада". Это вскоре привело к технике радиоактивного исчисления, которое стало одним из важнейших научных инструментов и нашло широкое применение в геологии, археологии, астрономии и во многих других областях.

Эта ошеломляющая серия открытий принесла Резерфорду в 1908 году Нобелевскую премию (позже Нобелевскую премию получил и Содди), но его величайшее достижение было еще впереди. Он заметил, что быстродвижущиеся альфа-частицы способны проходить сквозь тонкую золотую фольгу (не оставляя видимых следов!), но при этом слегка отклоняются. Возникло предположение, что атомы золота, твердые, непроницаемые, как "крошечные бильярдные шары" - как ранее считали ученые, - были мягкими внутри! Все выглядело так, будто меньшие и более твердые альфа-частицы могут проходить сквозь атомы золота как высокоскоростная пуля через желе.

Но Резерфорд (работая с Гейгером и Марсденом, своими двумя молодыми помощниками) обнаружил, что некоторые альфа-частицы, проходя сквозь золотую фольгу, отклоняются очень сильно. Фактически некоторые вообще отлетают назад! Почувствовав, что за этим кроется нечто важное, ученый тщательно посчитал количество частиц, полетевших в каждом направлении. Затем путем сложного, но вполне убедительного математического анализа он показал единственный путь, которым можно было объяснить результаты экспериментов: атом золота состоял почти полностью из пустого пространства, а практически вся атомная масса была сконцентрирована в центре, в маленьком "ядре" атома!

Одним ударом труд Резерфорда навсегда потряс наше привычное видение мира. Если даже кусок металла - кажущийся самым твердым из всех предметов - являлся в основном пустым пространством, значит, все, что мы считали вещественным, вдруг развалилось на крошечные песчинки, бегающие в необъятной пустоте!

Открытие Резерфордом атомных ядер является основой всех современных теорий строения атома. Когда Нильс Бор через два года опубликовал знаменитый труд, описывающий атом как миниатюрную солнечную систему, управляемую квантовой механикой, он использовал для своей модели в качестве отправной точки ядерную теорию Резерфорда. Так же поступили Гейзенберг и Шрёдингер, когда они сконструировали более сложные атомные модели, используя классическую и волновую механику.

Открытие Резерфорда также привело к появлению новой ветви науки: изучение атомного ядра. В этой области Резерфорду тоже было суждено стать пионером. В 1919 году он добился успеха при трансформировании ядер азота в ядра кислорода, обстреливая первые быстродвижущимися альфа-частицами. Это было достижение, о котором мечтали древние алхимики.

Вскоре стало ясно, что ядерные трансформации могут быть источником энергии Солнца. Более того, трансформация атомных ядер является ключевым процессом в атомном оружии и на атомных электростанциях. Следовательно, открытие Резерфорда вызывает гораздо больший интерес, чем просто академический.

Личность Резерфорда постоянно поражала всех, кто с ним встречался. Он был крупным человеком с громким голосом, беспредельной энергией и заметным недостатком скромности. Когда коллеги отмечали сверхъестественную способность Резерфорда всегда находиться "на гребне волны" научных исследований, он сразу отвечал: "А почему бы и нет? Ведь это я вызвал волну, не так ли?" Немногие ученые стали бы возражать против этого утверждения.

V

Памяти Эрнеста Резерфорда

Статья в газете "Известия"

В лице Эрнеста Резерфорда мировая наука потеряла самого крупного и смелого физика-экспериментатора наших дней. Я не сомневаюсь, что его имя в истории физики станет наравне с именем Фарадея.

Резерфорд, как и Фарадей,- в основном экспериментатор, наделенный исключительной интуицией. Она вела его к тем экспериментам, посредством которых он находил в самых трудных и основных проблемах науки простые и ясные решения. В физике, как и во всякой науке, существует ряд основных проблем, решение которых обозначает как бы вехами тот путь, по которому развивается научная мысль. Мало кому из ученых удается поставить больше одной такой вехи. Резерфорд, как и Фарадей, поставил их несколько.

В 1903 г., одиноко работая в маленьком провинциальном университете Монреаля (в Канаде), он доказал, что радиоактивность есть спонтанный распад элемента радия, открытого супругами Кюри. Он доказал это блестяще и неопровержимо убедительно, получив из радия эманацию и гелий. Смелая идея, руководившая его работой, шла вразрез с установившимся уже много десятилетий понятием о постоянстве атома. Эта работа подвела совсем новый фундамент под наши взгляды на материю и лежит теперь в основе наших космологических воззрений.

В 1911 г. Резерфорд создает модель атома. Экспериментально он показывает, что атом всякого вещества как бы подобен Солнечной системе. В центре положительно заряженное весомое ядро окружено отрицательными электронами. Эта модель в 1913 г. легла в основу Розданной Нильсом Бором теории атома и спектров. Теперь эти взгляды являются ведущими как в физике, так и в химии.

В 1919 г. Резерфорд экспериментально доказал возможность искусственного разложения материи. Он разложил ядро элемента азота и, таким образом, указал путь и положил основание современной физике ядра.

Для всех, близко его знавших, его смерть была полной неожиданностью. Он все время энергично руководил своими учениками в Кавендишской лаборатории, где он создал самую крупную школу физиков Англии. Его творческая мысль неистощимо работала, и он принимал живое участие в совместной работе ученых всех стран.

Резерфорд был не только гениальным ученым, но и большим учителем. Он оставляет после себя значительное количество учеников, рассеянных по всему свету.

Работы Резерфорда получили мировое признание. Еще в 1908 г. он получил Нобелевскую премию, имел все научные международные отличия. Он был почетным членом всех академий мира, в том числе и нашей всесоюзной..

Из доклада, прочитанного в Университете физико-химии им. Н. Д. Зелинского

Эрнест Резерфорд, известный всему миру как величайший ученый наших дней, родился в 1871 г. в деревне Брайтуотер, около городка Нельсон в Новой Зеландии. Ученый, имевший все международные отличия, какие только может иметь человек науки, Резерфорд начал свою жизнь очень скромно. Он был четвертым ребенком мелкого фермера, у которого после него было еще восемь детей. Его отцу, культивировавшему лен, было не под силу дать образование 12 детям, и Резерфорд, начиная с детского возраста и до получения высшего образования, все время учился на стипендии.

Это был очень живой, активный, веселый ребенок, любивший охоту, спорт. В школе и в университете он играл форвардом в футбольной команде. Но также он любил читать, мастерить модели, разбирать механизмы. Еще мальчиком он сделал себе фотографический аппарат, что по тем временам было довольно трудно. Окончив школу в 1890 г., он поступает в университет Кентербери-колледж в г. Крайстчерч. Это маленький провинциальный университет, там было всего 150 студентов и семь профессоров. С первого дня он увлекается наукой и начинает исследовательскую работу.

В студенческие годы Резерфорд очень заинтересовался радиоволнами, открытыми Герцем. Его увлекла идея беспроволочного телеграфа, но вопрос тогда упирался в то, чтобы найти детектор для электрических колебаний, возбужденных приходящими волнами. Резерфорд обнаружил, что высокочастотные колебания размагничивают железо. Практически это очень легко обнаружить, если рядом с намагниченным пучком железных проволок, помещенным в колебательный контур, поставим магнитную иглу. Тогда игла заметно отклонится при приеме радиоволн. Это открытие он опубликовал, и в маленьком университете это произвело впечатление и сразу создало Резерфорду репутацию.

В 1891 г. студенты организовали маленькое научное общество, в котором Резерфорд еще совсем молодым человеком делает доклад "Об эволюции материи". В этой работе он высказал для того времени совершенно революционные мысли: он утверждал тогда, что все атомы состоят из одних и тех же составных частей. Этот доклад был встречен очень неодобрительно, и ему пришлось извиниться перед обществом.

Надо сказать, что тогда, в 1891 г., у Резерфорда не было никаких данных для такого утверждения. Радиоактивность была открыта лишь в 1896 г., и со времени Дальтона атом рассматривался как нечто незыблемое. Но смелость Резерфорда, высказавшего такую мысль, правильность которой он экспериментально доказал через 12 лет, очень показательна.

В 1894 г. он кончает университет и, получив так называемую стипендию 1851 года, уезжает в Англию - в Кембридж. "Стипендия 1851 года"-это самая крупная стипендия, которую можно получить в Англии молодому ученому, и она полностью обеспечила научную работу Резерфорда на 2-3 года.

1895 год был годом реформ в Кембриджском университете. До этого года в исследовательских лабораториях Кембриджа не могли работать студенты, окончившие другие университеты. Но по инициативе Дж. Дж. Томсона было решено этот порядок изменить и дать возможность студентам, окончившим другие университеты, продолжать научную работу в кембриджских лабораториях.

Резерфорд был одним из первых молодых ученых, которые воспользовались этим изменением. Он записался в Кавендишскую лабораторию, руководимую Дж. Дж. Томсоном. Вместе с ним туда также поступили Мак-Леннан, Таунсенд и Ланжевен. Резерфорд в продолжение своего пребывания в Кавендишской лаборатории работал в одной комнате с Ланжевеном и очень с ним подружился. Дружба двух ученых, начавших вместе свою научную деятельность, была самой тесной и неразрывной до самой смерти Резерфорда.

В Кембридже Резерфорд начал с того, что продолжал свои работы по радиопередаче. Он устанавливает радиосвязь между лабораторией и обсерваторией, т. е. на расстоянии больше двух километров. Он первый в те времена передавал радиосигналы на такое большое расстояние. Надо думать, что, продолжай он эти работы, он ушел бы очень далеко, но его не привлекало практическое решение этого вопроса. В то время его начинает интересовать другой вопрос - об ионизации газов рентгеновскими лучами, природа которых в то время еще не была известна. Он начал работать вместе с Дж. Дж. Томсоном; ими было установлено такое явление, как ток насыщения при ионизации. Эту работу, опубликованную в 1896 г., можно считать основной по этому вопросу.

Как раз во время этой работы, в 1896 г., Беккерель открыл радиоактивность. Резерфорд увлекся этим явлением и стал его изучать. Он первый показал, что радий испускает два рода лучей (он назвал их а-лучи и b-лучи), которые разнятся по своей способности проникать через материю. Он показал, что эти лучи отличаются от обычного лучеиспускания.

В 1897 г. Резерфорд - уже молодой ученый с известной репутацией. В том же году он получает приглашение занять кафедру физики в университете города Монреаля в Канаде, уезжает туда и в продолжение 10 лет (с 1897 по 1907 г.) работает в Канаде. Эти годы, проведенные в маленьком провинциальном университете, были годами его плодотворнейшей работы. Мне кажется, это особенно поучительно для молодых ученых. Часто приходится слышать от молодых, начинающих ученых жалобы на то, что они не могут работать потому, что нет подходящих условий, нет подходящей лаборатории, нет того, нет другого. А теперь представьте себе молодого ученого, попадающего на другой конец света от своей родины, совершенно изолированного от всего научного мира, куда в те времена и журналы приходили с опозданием больше месяца. Но этот человек полон идей, полон энтузиазма и в этом далеком уголке мира он создает самые передовые, самые революционные, самые ведущие взгляды в науке того времени. Он привлекает этим молодых ученых всего мира, и к нему начинают уже съезжаться ученики.

Работа Резерфорда в Канаде ознаменовалась целым рядом крупнейших открытий. Им была открыта эманация тория. Вместе с Резерфордом там же работал в то время молодой химик Содди, и с ним Резерфорд начал изучать химический характер элементов, получаемых при радиоактивном распаде, так как было очень важно установить наряду с физическими и химические особенности радиоактивного процесса. В то время радиоактивность еще не была понята, и Резерфорд вместе с Содди были первыми, кто доказал, что это есть спонтанный переход одних элементов в другие, называемый теперь радиоактивным распадом. При этом испускаются либо а-лучи, состоящие из быстро летящих атомов гелия с положительным зарядом, либо р-лучи - быстро летящие электроны. На основании этого Резерфорд предполагал, что эманация тория есть элемент, отличный от самого тория. Вместе с Содди он по диффузии определил атомный вес эманации и показал, что она соответствует благородному газу.

Теория радиоактивного распада, выдвинутая Резерфордом и Содди в 1903 г., произвела революцию. Когда Резерфорд говорил об эволюции материи еще студентом в 1891 г., в студенческом кружке, он не имел на это никаких оснований, но теперь, когда он это доказал на основе чисто опытных данных, это произвело колоссальное впечатление не только в узком кругу его университета, но и на ученых всего мира. Но все же этот взгляд был тогда настолько революционен, что многие, даже очень крупные, ученые его не разделяли. Кельвин так и умер, не согласившись с тем, что радиоактивность есть распад атомов элементов, которые он считал незыблемой основой строения материи.

В этом же году, 32 лет, Резерфорд был выбран в Королевское общество (научное общество, эквивалентное нашей Академии наук). Но это не исключительный случай в английской академии. Там обычно ученого выбирают сразу же после того, как он достиг крупного успеха в научной работе, и потому нередки случаи избрания молодых ученых 25-28 лет. В этом большая сила английской академии, делающая ее активным научным центром, и этим она выгодно отличается от академий других стран.

В 1907 г. освобождается кафедра физики в Манчестере- в одном из крупных университетов Англии. В XIX в. эту кафедру занимали такие ученые, как Дальтон, Джоуль и др. Резерфорд переезжает туда. И в период с 1907 по 1919 г., находясь в Манчестере, он делает целый ряд не менее крупных работ, чем в Монреале. Из его работ этого периода надо отметить работу по рассеянию α-частиц при прохождении через вещество. Она привела к тому, что Резерфорд установил новую модель атома, принятую до сих пор.

В 1908 г. за свои работы он получает Нобелевскую премию по химии. В 1919 г. он открывает искусственную дезинтеграцию вещества и показывает, что в природе существует не только спонтанный распад радиоактивных элементов, но можно вызвать и искусственное разложение ядра под влиянием бомбардировки α-лучами. Это было открыто на азоте, а потом проверено на ряде других легких элементов. Таким образом, он создает совершенно новую область ядерной физики - искусственный распад атома.

Так же, как и в Канаде, в Манчестере он привлекает к себе целую плеяду молодых ученых. С ним работают не только англичане, но и немец Гейгер, датчанин Бор и другие, и в его лаборатории его учениками делается ряд выдающихся работ.

В 1919 г. Резерфорд получает кафедру в Кембридже, едет туда и весь остаток своей жизни проводит в Кембридже директором Кавендишской лаборатории, оставленной Дж. Дж. Томсоном, который ушел в отставку. Здесь он продолжает работу по искусственному разложению элементов. Он руководит работами своих учеников, и в его лаборатории делаются два из самых крупных открытий ядерной физики за последнее десятилетие - открытие нейтрона Чадвиком и работа Кокрофта и Уолтона по искусственному разложению вещества под влиянием бомбардировки пучком протонов, ускоренных искусственным путем.

Мы видим, что, начав свои экспериментальные работы по радиоактивности в 1896 г., Резерфорд затем их неуклонно развивает, и к концу его жизни эта область знания принимает такие размеры, что представляется нам уже в виде отдельной науки - ядерной физики.

Для того чтобы понять значение каждого открытия резерфорда, надо представить себе тот исторический фон, на котором они происходили. Эта задача чересчур широкая для такого доклада, как мой. Но очень поучительно на отдельных примерах проследить те методы, которыми Резерфорд вел свою научную работу и которыми он достигал таких крупных результатов.

Резерфорд был экспериментатором и в этом отношении напоминает Фарадея. Он мало пользовался формулами и мало прибегал к математике. Иной раз, пытаясь вывести при своих докладах формулу, он путался и тогда просто писал результат, замечая:

Если все вывести правильно, то так и получится.

Но экспериментом он владел исключительно. Можно сказать, что он "видел" явление, над которым работал, хотя бы оно и происходило в неизмеримо малом ядре атома.

Если говорить очень схематично, то среди физиков существуют как бы два типа исследователей. Один - это тип скорее немецкой школы, когда экспериментатор исходит из известных теоретических предположений и старается их проверить на опыте. Другой же тип ученого, скорее английской школы, исходит не из теории, а из самого явления - изучает его и смотрит, может ли это явление быть объяснено существующими теориями. Тут изучение явления, его анализ являются основным мотивом для экспериментатора. И если такое деление возможно, Резерфорд был ярким представителем этого второго направления в экспериментальной физике. Главное для Резерфорда было - разобраться, понять явление. Эксперимент должен быть так построен, чтобы было ясно, в чем состоит явление. Для этого точность и сложность измерений должны быть как раз таковы, чтобы можно было разобраться и понять явление.

Как пример я приведу случай с изучением α-частиц. Радий испускает α-частицы. Резерфорд показал в самом начале своих опытов, что они не являются обычным лучеиспусканием. Но что же все-таки они собой представляют?

Резерфорд решил, что, если они вылетают из радия, они должны быть каким-то уже существующим элементом. Для того чтобы узнать - каким, надо только определить массу, а массу нужно определить лишь настолько точно, чтобы увидеть, какому из существующих элементов она соответствует.

Резерфорд ставит эксперимент, который очень характерен для него. Опишу этот эксперимент, хотя он имеет только историческое значение, так как теперь для определения массы α-частиц пользуются более точными и сложными методами. Но первоначальный метод Резерфорда поражает своей простотой и тем, как прямо он вел к цели.

На рисунке изображен прибор для этих опытов. Простой электроскоп 1, сделанный из листков золотой фольги, помещен над 20 параллельно поставленными металлическими пластинками 2. Зазор между пластинками только 1 мм, чтобы α-лучи, испускаемые радиоактивной солью 3 (положенной на дне), проходили в камеру электроскопа параллельным пучком. Чтобы удалять эманацию и увеличивать пробег α-лучей, через прибор пропускался водород.

Прикладывая сильное магнитное поле, направленное параллельно плоскостям пластинок 2, можно было почти полностью прекратить ионизацию в камере электроскопа. Таким простым способом Резерфорд показал, что α-лучи представляют собой быстро двигающиеся заряженные частицы. Прикрывая со стороны электроскопа половину зазоров между пластинками, можно было показать, что при одном направлении магнитного поля ионизация прекращается при меньших силах поля, чем при другом направлении. Так было установлено направление отклонения α-лучей магнитным полем и отсюда выведено, что знак заряда α-частиц положителен. Создавая между пластинками 2 электрическое поле, поочередно присоединяя их к противоположным полюсам батареи, Резерфорду удалось получить прекращение ионизации и отклонение α-лучей электрическим полем. Из этих данных он определил скорость α-частиц и показал также, что они представляют поток положительно заряженных атомов с большей массой, чем атомы водорода, и с точностью до 10% определил отношение их заряда к массе. Это отношение указывало на то, что α-частицы, по-видимому, соответствуют атомам гелия, дважды ионизованным.

Но надо было точнее доказать, что это действительно гелий. Эта работа была предпринята позднее, в 1909 г., уже в Манчестере, когда он располагал большими запасами радия.

Прибор для этих опытов был тоже чрезвычайно прост. Он изображен на рисунке

В маленькую стеклянную тонкостенную трубочку 1 помещалась эманация радия. Толщина стенок этой трубки была всего лишь 0,01 мм, и быстрые α-частицы могли проходить через стекло, в то время как эманация была изолирована. Эта трубка помещалась в стеклянный сосуд 2, оканчивающийся капиллярной разрядной трубочкой с электродами 5 и 4. Посредством поднятия и опускания ртути в сосуде 2 в пространстве, окружающем трубочку 1, создавался вакуум. Трубочка с эманацией оставалась в приборе в продолжение двух дней, а потом газ, образованный проходящими α-частицами, сжимался поднятием ртути в разрядную трубку. При свечении газа в трубке были видны желтые гелиевые линии, которые доказывали присутствие гелия. Что этот гелий не продиффундировал из трубочки с эманацией, легко показывалось контрольным опытом, при котором эта трубка наполнялась гелием. Тогда гелиевые линии не появлялись в спектре. Так было показано, что α-лучи есть атомы гелия.

Эти два описанных мной опыта исключительно просты, их свободно может сделать любой студент. Но в то же время эти опыты, так правильно поставленные, так прямо ведущие к цели, решали в тот период вопрос первостепенной важности и произвели революцию во взглядах на материю.

Резерфорда не удовлетворяло изучение пучка α-лучей по наблюдению производимой ими ионизации, и он искал метод, каким он мог бы обнаружить отдельные α-частицы. Первое найденное им решение основывалось на методе сцинтилляций.

Еще Крукс заметил, что под влиянием бомбардировки положительными лучами некоторые вещества светятся - люминесцируют. Наиболее ярко светящимся веществом оказалась цинковая обманка. Когда Резерфорд вместе с Гейгером поместили цинковую обманку под микроскоп и направили на нее пучок α-лучей, то вместо того, чтобы видеть в поле зрения микроскопа ровный светящийся фон, они увидели отдельные вспыхивающие точки. Они заключили, что вспышки происходят в тех местах, где α-частицы ударяют о цинковую обманку. Так можно было определить число испускаемых α-частиц по счету вспышек, возникающих в цинковой Обманке.

Другой способ обнаружения α-частиц, открытый Резерфордом, благодаря изобретению усилительных ламп стал теперь еще более могущественным, чем счет сцинтилляций,- это метод счетчика. Этот метод основан на явлении, открытом Таунсендом. Если в газе при пониженном давлении находится острие, то можно подобрать такой потенциал, при котором еще не возникает разряд. Если теперь в окружающем газе произвести даже самую слабую ионизацию хотя бы одной α-частицей, то разряд сразу возникнет на некоторый промежуток времени. В 1908 г. Резерфорд и Гейгер построили первый счетчик, работающий на этом принципе. Он изображен на рисунке. Вместо острия они взяли тонкую проволочку 1, помещенную в цилиндрический сосуд 2. Между проволочкой и цилиндром создавался критический потенциал. Через отверстие 3, закрытое очень тонким слюдяным листком, могут проникать α-лучи, источник которых находится в сосуде 4. Разрядные токи от проволочки регистрируются струнным гальванометром, по отбросам которого можно считать α-частицы. Теперь в счетчике, изобретенном Резерфордом и Гейгером, струнный гальванометр заменяется ламповым усилителем, что делает счетчик чрезвычайно чувствительным. В современном своем виде он является одним из основных приборов, посредством которых только и стало возможным полное изучение космической радиации.

В 1910 г. к нему в лабораторию приехал работать молодой ученый по имени Марсден. Он попросил Резерфорда дать ему какую-нибудь очень простую задачу. Резерфорд поручил ему считать α-частицы, проходящие через вещество, и найти их рассеяние. При этом Резерфорд заметил, что, по его мнению, Марсден ничего особенного не обнаружит. Свои соображения Резерфорд основывал на принятой в то время модели атома Дж. Дж. Томсона. В соответствии с этой моделью атом представлялся сферой размером 10 -8 см с равнораспределенным положительным зарядом, в которую были вкраплены электроны. Гармонические колебания последних определяли спектры лучеиспускания. Нетрудно показать, что α-частицы должны были легко проходить через такую сферу, и особенного рассеяния их нельзя было ожидать. Всю энергию на своем пути α-частицы тратят на то, чтобы выбивать электроны, т. е. ионизовать окружающие атомы.

Марсден под руководством Гейгера стал делать свои наблюдения и скоро заметил, что большинство α-частиц проходит через вещество, но все же существует заметное рассеяние, а некоторые частицы как бы отскакивают назад. Когда это узнал Резерфорд, он сказал: "Это невозможно. Это так же невозможно, как для пули невозможно отскочить от бумаги".

Эта фраза показывает, как конкретно и образно он видел явление.

Изучая закон распределения отразившихся α-частиц, Резерфорд постарался определить, какое распределение поля внутри атома необходимо, чтобы объяснить закон рассеяния, при котором α-частицы могли бы даже возвращаться обратно. Он пришел к выводу, что это возможно тогда, когда весь заряд сосредоточен в центре, а не распределен по всему объему атома. Размер этого центра, названного им ядром, очень мал: 10 -12 -10 -13 см в диаметре. Но куда же тогда поместить электроны? Резерфорд решил, что отрицательно заряженные электроны надо распределить кругом - они могут удерживаться благодаря вращению, центробежная сила которого уравновешивает силу притяжения положительного заряда ядра. Следовательно, модель атома есть не что иное, как некая солнечная система, состоящая из ядра - солнца и электронов - планет. Так он создал свою модель атома.

Эта модель встретила полное недоумение, так как она противоречила некоторым тогдашним, казавшимся незыблемыми, основам физики. Резерфорд, конечно, понимал, что на основе максвелловской теории электроны, вращаясь вокруг центра, неминуемо должны испускать свет, терять свою кинетическую энергию и рано или поздно упасть на ядро. Идти вразрез с основами максвелловской теории в то время было чрезвычайно трудно. Поэтому модель атома Резерфорда вначале не была признана.

Так продолжалось два года. В это время к Резерфорду приехал работать молодой датский ученый Нильс Бор. Они часто обсуждали эту модель атома. Для Бора также было ясно, что принципы строения этой модели не находятся в соответствии с теми законами, которые было принято тогда считать основными. И Бор начал работать над этим парадоксом. Он верил в экспериментальную обоснованность модели Резерфорда, но надо было найти ей теоретическое обоснование. Ему пришла гениальная мысль применить для этого обоснования только тогда появившиеся идеи квантовой теории излучения. Они были выдвинуты сперва Планком и значительно обобщены Эйнштейном.

В 1913 г. Бор дает обоснование модели атома Резерфорда, которая теперь носит название модели Бора - Резерфорда и является той основой, на которой покоится вся современная атомная физика.

Одной из основных черт Резерфорда при его экспериментировании была исключительная наблюдательность, уменье обобщить явление, выяснить самое важное, самое нужное. Это можно проследить на ряде примеров. Когда он открыл эманацию тория, то он исходил из наблюдения разницы в ионизации, производимой торием при открытой и закрытой дверце электроскопа. Казалось, что поток воздуха, проходящий через препарат, изменяет радиоактивность самого тория. Резерфорд стал собирать этот воздух и сразу обнаружил, что он сам радиоактивен. Это и было открытием эманации. Большинство ученых, увидя разницу, начало было изучать явление либо при закрытой, либо при открытой дверце. Резерфорд же сразу ставит вопрос, почему это явление происходит так, а не иначе, и сейчас же старается уяснить себе, в чем тут дело. Вот этот неизменно возникающий вопрос "почему?" и таил в себе ключ к великим открытиям.

Вот другой случай. Его замечательная наблюдательность проявилась и при открытии искусственного разложения вещества. Дело в том, что когда наблюдали сцинтилляции, то часто оказывалось, что из бомбардируемого вещества вылетают лучи с очень длинным пробегом - гораздо более длинным, нежели пробег бомбардирующих α-частиц. Их наблюдали все, часто о них говорили, но никто не пытался их объяснить, никто не задавал себе вопроса "почему?". Резерфорд решил, что это явление надо проанализировать и попытаться выяснить, в чем дело. Вскоре объяснение было найдено. Оказалось, что под влиянием бомбардировки а-лучами атомы азота, всегда присутствующего в воздухе, распадаются. Этим и объяснялись длинные пробеги. Резерфорд поставил свои опыты исключительно просто. На рисунке

изображен его прибор. Герметическую камеру 1 через два крана можно заполнить газом при различных давлениях (2 - источник α-частиц, 3 - экран, на котором наблюдают сцинтилляции с помощью микроскопа 4). Экран со стороны источника α-частиц покрыт серебряной пластинкой, которая поглощает значительную часть энергии их пробега. Наполняя камеру 1 азотом, Резерфорд наблюдал, что при некотором давлении большинство сцинтилляций пропадает. Это происходит тогда, когда α-частицы, испускаемые радиоактивным источником, тратят всю энергию на ионизацию воздуха, и не доходят до экрана. Но остающиеся сцинтилляции указывали на присутствие очень малого количества α-частиц с пробегом в несколько раз больше пробега α-частиц, испускавшихся источником. Если вместо азота взять другой газ, например углекислоту или кислород, то таких остаточных сцинтилляций не появляется. Единственное объяснение в том, что они появляются из азота. Так как энергия остаточных α-частиц больше, чем первичных, то они могут появляться только за счет разложения ядра атома азота. Так было доказано разложение азота и принципиально решена задача алхимии.

Такая простота постановки вопроса, так просто экспериментально оформленная, не может не поразить любого исследователя, не только физика. Подобная простота является исключительно гениальной, в особенности когда она ведет к таким поразительным результатам.

Многие говорят, что Резерфорд обладал исключительной интуицией - он как бы чувствовал, как сделать опыт и что искать. Под интуицией обычно подразумевается какой-то бессознательный процесс, который идет внутри человека,- это то, чего нельзя объяснить, что подсознательно приводит к правильному решению. Я лично думаю, что, может быть, это отчасти и правда, но во всяком случае это сильно преувеличено. Для обычного читателя просто неизвестно то колоссальное количество работы, которое производит ученый. Он узнает только ту часть, которая ведет к определенным результатам. Наблюдая Резерфорда вблизи, можно было видеть, какое колоссальное количество работы он выполнял. Его энергия и энтузиазм были неисчерпаемы. Он все время работал и все время искал чего-то нового. Резерфорд публиковал и доводил до сведения своих товарищей ученых только работы с положительными результатами, и вряд ли они составляли больше нескольких процентов той громадной работы, которую он проводил; остальное не только не было опубликовано, но вообще оставалось неизвестным даже его ученикам. Иногда только по отдельным намекам, прорывавшимся в разговоре с ним, можно было уловить, что он нечто пробовал, но у него не вышло. Он не любил говорить о проектах своих работ и охотнее говорил только о том, что уже сделано и дало результаты.

Одним из блестящих примеров его исключительной проницательности является открытие нейтрона. Нейтрон- это материальная частица, по массе равная ядру водорода, но не несущая никакого заряда. Экспериментальное доказательство существования такой частицы было сделано Чадвиком - ближайшим учеником Резерфорда - в Кембридже в 1932 г. За это открытие Чадвик получил Нобелевскую премию. Он изучал одно явление, при котором в результате бомбардировки бериллия γ-лучами полония получились чрезвычайно проникающие лучи. Ему удалось показать, что это не были γ-лучи. Впервые эта радиация была обнаружена Боте и исследована затем супругами Жолио-Кюри, но объяснить ее удалось только Чадвику, который доказал, что в данном случае мы имеем дело с нейтронами. Открытие нейтрона играет огромную роль в современной ядерной физике, так как нейтрон является одной из основных элементарных частиц, из которых построены ядра всех элементов. Оказывается, что Резерфорд за 12 лет до открытия нейтрона чрезвычайно подробно предсказал возможность его существования. Вот выдержка из лекции Резерфорда в Королевском обществе, прочитанной в 1920 г.:

"Если мы правы в этом предположении,- говорил резерфорд,- то очень вероятно, что один электрон может связывать два ядра водорода или, что также возможно, одно ядро водорода. В первом случае это влечет за собой возможность существования атома с массой, равной почти 2, и с одним зарядом, который должен рассматриваться как изотоп водорода. В другом же случае это приводит к мысли о возможности существования атома, масса которого 1 и ядерный заряд 0.

Такое атомное образование не представляется невозможным. Современные взгляды таковы, что нейтральный атом водорода рассматривается как ядро с единичным зарядом, к которому на некотором расстоянии присоединен электрон, и спектр водорода объясняется движением этого удаленного электрона. При некоторых условиях, однако, электрон может быть связан с ядром водорода сильнее, образуя нечто вроде нейтрального дублета. Такой атом имел бы новые свойства. Его внешнее поле было бы практически равно нулю повсюду, за исключением области, прилегающей непосредственно к ядру. И по этой причине он мог бы свободно проходить через вещество. Его присутствие было бы трудно уловимо спектроскопом, и, вероятно, его было бы невозможно сохранить в закрытом сосуде. С другой стороны, он должен был бы свободно входить в структуру атомов и мог бы или соединяться с ядром, или быть разложенным его сильным полем, результатом чего возможен был бы вылет заряженного атома водорода или электрона или же их обоих".

Таким образом, Резерфорд задолго предсказал все те основные моменты, по которым стала развиваться вся ядерная физика после открытия Чадвика и Жолио-Кюри.

Я не назвал бы этот процесс интуицией. Это процесс глубокого мышления и глубокого экспериментирования. Мы все знали, что Резерфорд сам искал нейтрон - он искал его долго и настойчиво, но не нашел его там, где искал. В этой ситуации много зависело от случая. По, чему надо было выбрать бериллий и полоний, а не другие вещества - этого нельзя было предвидеть теорией. Тут надо было просто упорно искать...

Смерть Резерфорда - очень тяжелый удар для ученых всего мира. В нем наука потеряла величайшего со времен Фарадея пионера физических исследований. В продолжение всей своей жизни, столь плодотворной научными открытиями, он работал над самыми фундаментальными проблемами современной теории атома.

Его можно рассматривать не только как создателя новой главы в науке, но и как создателя целой новой науки - физики ядра.

Уже с 1896 г., совсем молодым человеком, он начал изучать радиоактивность, которая только была открыта, и с тех пор его работа, продолжавшаяся 40 лет, каждый год давала человечеству новые открытия и новые идеи, которые были руководящими в атомной физике во всем мире.

Его влияние на международную науку значительно усилилось благодаря большому количеству учеников всех национальностей, в том числе ряда советских ученых, которые работали в лаборатории Резерфорда. Его самоотверженность и необычайная индивидуальность заслужили с их стороны не только уважение и восхищение, но также и глубокую любовь. Так была создана вокруг него самая крупная школа физиков, которая когда-либо существовала. И мы легко понимаем, почему его смерть ощущалась многими учеными как большая личная потеря.