Виды радиационного излучения. Как защититься от гаммы излучения человеку — применение

> Гамма-излучение

Рассмотрите мощность, источники и измерение гамма-излучения . Узнайте, что такое гамма-распад, высокая частота электромагнитных лучей, диапазон длины волны.

Гамма-лучи – электромагнитные волны, формирующиеся в радиоактивном распаде с частотами больше 10 19 Гц.

Задача обучения

  • Выяснить диапазон гамма-лучей, отметив биологическое влияние.

Основные пункты

  • Это наивысшее электромагнитное излучение с энергией больше 100 кэВ, частотой – 10 19 Гц и длиной волн – 10 пикометров.
  • Гамма-лучи при радиоактивном распаде определяются этой категорией, не основываясь на энергии, поэтому нет нижнего предела.
  • По характеристикам совпадают с рентгеновскими лучами, но отличаются источником происхождения.
  • Среди природных источников: радиоизотопы и космические лучи.
  • Это ионизирующая разновидность, поэтому несет биологическую опасность.

Термины

  • Гамма-лучи – высокочастотное электромагнитное излучение, созданное при радиоактивности.
  • Гамма-распад – ядерная реакция с производством гамма-лучей.
  • Ионизирующее излучение – может привести к ионизации в веществах.

Гамма-излучение

Гамма-излучение - электромагнитные лучи на высокой частоте и энергии. Обычно показатели превышают 10 эксагерц (10 19 Гц), по энергии – 100кэВ, а длине волны – 10 пикометров (меньше диаметра атома). Гамма-лучи в радиоактивном распаде входят в эту категорию, не зависимо от энергии, поэтому нижнего предела не существует.

Излучение гамма-лучей (γ) из атомного ядра

Речь идет об ионизирующих лучах, поэтому они несут биологическую угрозу. Создаются распадом высокоэнергетических атомных ядер (гамма-распад) и прочими процессами. Гамма-лучи в 1900 году нашел Пол Вильяр, изучавший распад радия. В 1903 году Эрнест Резерфорд дал им наименование «гамма».

Источники гамма-лучей

Среди природных источников гамма-лучей стоит вспомнить радиоизотопы вроде калия-40, а также вторичное излучение атмосферных контактов с космическими лучами. Некоторые земные источники создают гамма-лучи, но не обладают ядерным происхождением. Это удары молнии и зеленые гамма-вспышки.

В астрономических процессах создается много гамма-лучей. Все дело в высокоэнергетических электронах, которые генерируют вторичные гамма-лучи в тормозном излучении, обратном комптоновском рассеивании и синхронном излучении. Большая их часть отбивается земной атмосферой и находится космическими аппаратами. Искусственными источниками служат ядерные реакторы и эксперименты в физике высоких энергий.

Гамма и рентгеновские лучи

Рентгеновское и гамма-излучение похожи по характеристикам, но отличаются источником. На более высоких частотах гамма-лучи сильнее проникают и несут больше разрушений живой ткани. Их также применяют в области медицины для терапии рака.

В последние десятилетия подход к их отличию резко изменился. Ранее использовался критерий длины волны, где показатель ниже 10-11 м автоматически относил волну к гамма. Но искусственным источникам удалось воспроизводить это явление и при глубоком изучении приняли решение отличать их по источнику происхождения. Гамма создаются ядром, а рентгеновские – электронами вне ядра.

Исключения встречаются в астрономии, где гамма-распад способен возникнуть при послесвечении сверхновых и прочих процессов с высокими энергиями, которые не связаны с радиоактивным распадом. Наиболее яркий пример – длительные гамма-всплески, чей механизм генерации не сходится с радиоактивным распадом. Они связаны с крушением звезд – гиперновые.

Это снимок неба в 100 МэВ, сделанный на прибор EGRET космического корабля CGRO. Яркие пятна – пульсары (вращающиеся нейтронные звезды с мощными магнитными полями). Ниже и выше плоскости – квазары (галактики со сверхмассивными черными дырами)

Влияние на здоровье

Любая ионизирующая радиация серьезно вредит на клеточном уровне. Но альфа и бета-частицы практически не проникают, поэтому вред наносится на локализированном уровне (радиационный ожог). А гамма-лучи и нейтроны сильнее проникают, из-за чего происходит диффузное повреждение организма. Наиболее опасные формы гамма-лучей создаются при энергиях 3-10 МэВ.

Каждый человек наверняка слышал о трех типах радиоактивного излучения - альфа, бета и гамма. Все они возникают в процессе радиоактивного распада вещества, и у них есть как общие свойства, так и различия. Наибольшую опасность несет последний тип излучения. Что же он представляет собой?

Природа радиоактивного распада

Чтобы детальнее понять свойства гамма-распада, необходимо рассмотреть природу ионизирующего излучения. Это определение означает, что энергия такого типа излучения очень высока - когда оно попадает в другой атом, называемый «атом-мишень», он выбивает движущийся по его орбите электрон. При этом атом-мишень становится положительно заряженным ионом (поэтому излучение и было названо ионизирующим). От ультрафиолетового или инфракрасного это излучение отличается высокой энергией.

В целом альфа-, бета- и гамма-распады имеют общие свойства. Можно представить себе атом в виде маленького зернышка мака. Тогда орбита электронов будет мыльным пузырем вокруг него. При альфа-, бета- и гамма-распаде из этого зернышка вылетает крошечная частица. При этом заряд ядра меняется, а это означает, что был образован новый химический элемент. Пылинка несется с гигантской скоростью и врезается в электронную оболочку атома-мишени. Потеряв электрон, атом-мишень становится положительно заряженным ионом. Однако при этом химический элемент остается тем же, ведь ядро атома-мишени осталось прежним. Ионизация является процессом химической природы, практически тот же процесс происходит при взаимодействии некоторых металлов, которые растворяются в кислотах.

Где еще происходит γ-распад?

Но ионизирующие излучения происходят не только при радиоактивном распаде. Они также происходят при атомных взрывах и в ядерных реакторах. На Солнце и других звездах, а также в водородной бомбе осуществляется синтез легких ядер, сопровождающийся ионизирующим излучением. В оборудовании для рентгена и тоже происходит этот процесс. Основное свойство, которое имеют альфа-, бета-, гамма-распады - это высочайшая энергия ионизации.

А различия между этими тремя типами излучений определяются их природой. Радиация была открыта в конце XIX столетия. Тогда никто не знал, что представляет собой это явление. Поэтому три типа излучений и были названы буквами латинского алфавита. Гамма-излучение было открыто в 1910 году ученым по имени Генри Грэгг. Гамма-распад имеет такую же природу, как и солнечный свет, инфракрасные лучи, радиоволны. По своим свойствам γ-лучи представляют собой фотонное излучение, однако энергия содержащихся в них фотонов очень высока. Другими словами, это излучение с очень короткой длиной волны.

Свойства гамма-лучей

Это излучение чрезвычайно легко проникает через любые препятствия. Чем более плотный материал стоит на его пути, тем он лучше его задерживает. Чаще всего с этой целью используют свинцовые или бетонные конструкции. В воздухе γ-лучи легко преодолевают десятки и даже тысячи метров.

Гамма-распад очень опасен для человека. При его воздействии могут повреждаться кожа и внутренние органы. Бета-излучение можно сравнить со стрельбой мелкими пулями, а гамма - со стрельбой иглами. Во время ядерной вспышки, помимо гамма-излучения, также происходит образование нейтронных потоков. Гамма-лучи попадают на Землю вместе с Помимо них, оно несет на Землю протоны и другие частицы.

Действие гамма-лучей на живые организмы

Если сравнить альфа-, бета- и гамма-распады, то последний будет наиболее опасным для живых организмов. Скорость распространения этого типа излучения равна скорости света. Именно из-за его высокой скорости оно быстро попадает в живые клетки, вызывая их разрушение. Каким образом?

На пути γ-излучение оставляет большое количество ионизированных атомов, которые в свою очередь ионизируют новую порцию атомов. Клетки, которые подверглись мощному воздействию гамма-излучения, изменяются на различных уровнях своей структуры. Трансформировавшись, они начинают разлагаться и отравлять организм. И самым последним этапом является появление дефектных клеток, которые уже не могут нормально выполнять свои функции.

У человека разные органы имеют разную степень чувствительности к гамма-излучению. Последствия зависят от полученной дозы ионизирующего излучения. В результате этого в организме могут происходить различные физические процессы, нарушаться биохимия. Наиболее уязвимыми являются органы кроветворения, лимфатическая и пищеварительная системы, а также структуры ДНК. Это воздействие опасно для человека и тем, что излучение накапливается в организме. А также оно имеет скрытый период воздействия.

Формула гамма-распада

Чтобы вычислить энергию гамма-излучения, можно воспользоваться следующей формулой:

В этой формуле h - постоянная Планка, v - частота кванта электромагнитной энергии, с - скорость света, λ - длина волны.

После открытия материалов, способных к самопроизвольному излучению элементарных частиц (радиоизлучению в результате распада), началось изучение их свойств. Активное участие в поиске новых и систематизации уже существующих знаний в физике принимали знаменитые супруги Кюри, а также Именно ему первому удалось открыть гамма-лучи. Поставленный им эксперимент был простым и, одновременно, гениальным.

В качестве источника излучения был взят радий. В толстостенной свинцовой емкости проделывалось узкое отверстие. На дне получившегося канала размещался радий. На небольшом удалении от емкости перпендикулярно оси отверстия был расположен фоточувствительный элемент - пластина. В промежутке между ней и емкостью с специальная установка могла генерировать магнитное поле высокой интенсивности, линии напряженности которого были ориентированы параллельно фоточувствительной пластине. Все элементы, кроме генератора поля, находились в безвоздушной среде, чтобы исключить воздействие атомов воздуха на результат эксперимента. Если бы Резерфорд проигнорировал этот момент, то гамма-лучи мог бы открыть кто-то другой.

При отсутствии магнитного воздействия на пластине возникало темное пятно, свидетельствующее о прямолинейном распространении излучения (все остальные направления попросту отсекались стенками свинцовой емкости). Но стоило появиться как на фоточувствительном элементе системы возникали сразу три пятна. Это означало, что некие частицы, излучаемые радием, отклоняются полем. Резерфорд предположил, что луч состоит как минимум из трех компонентов. Характер отклонения указывал на то, что частицы двух лучей обладают электрическим зарядом, а третий луч электронейтрален. Причем, отрицательная составляющая исходного излучения отклонялась гораздо выраженнее, чем положительная. Электронейтральная составляющая - это и есть гамма-лучи. Компонент с отрицательным зарядом получил название бета-лучей, а последний, положительный заряд - альфа-луч.

Кроме того, что они вели себя по-разному в магнитном поле, лучи обладали различными свойствами. Гамма-лучи способны проникать в материю на довольно большие расстояния. Так, свинцовая пластина толщиной в 1 см уменьшает их интенсивность всего в два раза. Альфа-луч может быть остановлен даже тонким листом бумаги. А вот бета-излучение занимает промежуточное положение: остановить поток можно металлом толщиной в несколько миллиметров.

Впоследствии выяснилось, что:

  • бета-луч представляет собой поток отрицательно заряженных частиц (электронов), перемещающихся с высокой скоростью;
  • альфа-луч - это ядра гелия, очень устойчивое образование;
  • гамма-луч - одна из разновидностей Спектр излучения полностью линейчатый, так как излучающее ядро характеризуется дискретными энергетическими состояниями. Представляют в виде уровней распределения энергии излученных квантов. Термин «гамма-излучение» все чаще применяется не только для описания процессов но и, вообще, для любого жесткого излучения электромагнитной природы в котором каждому кванту соответствует энергия не менее 10 кэВ. Источником данного вида излучения являются электроны в структуре возбужденных атомов. Излишек энергии переводит электроны на более высокие Оттуда они возвращаются к прежнему состоянию, выделяя излучение в виде рентгена или света (электромагнитные волны). Спектр электромагнитного излучения в случае гамма-лучей чрезвычайно мал и составляет не более 5*0,001 нм из-за чего отчетливее проявляются свойства частиц, а не волн.

Гамма-излучение (γ-излучение) – электромагнитное излучение, принадлежащее наиболее высокочастотной (коротковолновой) части спектра электромагнитных волн.

На шкале электромагнитных волн гамма-излучение соседствует с рентгеновскими лучами, но имеет более короткую длину волны. Первоначально термин “гамма-излучение” относился к тому типу излучения радиоактивных ядер, который не отклонялся при прохождении через магнитное поле, в отличие от α- и β-излучений.

Условно верхней границей длин волн гамма-излучения, отделяющей его от рентгеновского излучения, можно считать величину 10-10 м. При столь малых длинах волн первостепенное значение имеют корпускулярные свойства излучения. Гамма-излучение представляет собой поток частиц - гамма-квантов или фотонов, с энергиями Е=hν. Фотоны с энергиями Е > 10 кэВ относят к гамма-квантам. Частота гамма-излучения (> 3∙1018 Гц) отвечает скоростям электромагнитных процессов, протекающих внутри атомных ядер и с участием элементарных частиц. Поэтому источниками гамма-излучения могут быть атомные ядра и частицы, а также ядерные реакции и реакции между частицами, в частности аннигиляция пар частица-античастица. И наоборот, гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров ядерного гамма-излучения и гамма-излучения, возникающего в процессах взаимодействия частиц, дает важную информацию о структуре этих микрообъектов.

Источником гамма-излучения являются:

торможение быстрых заряженных частиц в среде (тормозное гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле ядер вещества) или при их движении в сильных магнитных полях (синхротронное излучение);

процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд;

переходы ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения обычно лежит в интервале от нескольких кэВ до нескольких МэВ и спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра;

при распадах частиц и реакциях с их участием обычно испускаются гамма-кванты с большими энергиями - десятки-сотни МэВ.

при соударении электронов большой энергии от ускорителей с интенсивными пучками видимого света, создаваемых лазерами. При этом электрон передает свою энергию световому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве в результате соударений фотонов с большой длиной волны с быстрыми электронами, ускоренными электромагнитными полями космических объектов.

Энергия γ–кванта равна разности энергий состояний, между которыми происходит переход.

Е2

hν Е1

Рис.1 Образование гамма-кванта

Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (

10-2 эВ). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми со скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий.

Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом:

фотоэлектрическое поглощение (фотоэффект);

комптоновское рассеяние (Комптон-эффект);

образование пар электрон-позитрон.

При фотоэффекте гамма-квант выбивает из атома один из его электронов, а сам исчезает. При Комптон-эффекте гамма-квант рассеивается на одном из слабо связанных с атомом или свободных электронов вещества. Если энергия гамма-кванта превышает 1,02 МэВ, то возможно его превращение в электрическом поле ядер в пару электрон-позитрон (процесс обратный аннигиляции).


Рис.2 Образование вспышки гамма-излучения

Таинственные вспышки гамма-излучения действительно вызваны последствиями вспышек новых звезд с образованием черных дыр. Это подтвердили результаты нового исследования. Исследователи из Австралии, США и Великобритании - включая Пауля Прайса из Mount Stromlo Observatory в Канберре сообщают о своих результатах 13 сентября в выпуске журнала Nature.

Вспышки гамма-излучения самые сильные и мощные во Вселенной. Они были впервые зарегистрированы в 60-ых годах прошлого века американскими военными, которые ошибочно их приняли за ядерные взрывы советских атомных бомб. С тех пор ученые обнаружили, что они исходят из дальнего космоса – в миллиардах световых лет от нас. Но что было причиной их возникновения оставалось тайной.

Согласно доктору Паулю Фрэнсису, старшему лектору в Австралийском Национальном Университете и астрофизику Прайсу из Mount Stromlo Observatory, недавно появились две конкурирующие гипотезы объяснения причин вспышек гамма-излучения. Одна из них заключалась в том, что вспышки гамма-излучения возникают из-за столкновения нейтронных звезд и черных дыр. Другая основывалась на вспышках гамма-излучения в момент коллапса новых звезд и становления черных дыр.

Однако теперь Прайс и его коллеги нашли, что близлежащие вспышки гамма-излучения фактически столь же мощны как и те, которые исходят из дальнего космоса, просто фиксируются их последствия – вторая стадия. Им удалось впервые засвидетельствовать по крайней мере одну вспышку гамма-излучения, которая была связана с новой звездой.

Кроме гамма-излучения от этих объектов исходит свет и радиоволны. Ученые выяснили, что вспышки гамма-излучения возникают в двух моментах на определенных стадиях. Сначала происходит очень короткий и сильный взрыв, который сопровождается потоками гамма-излучения. Его практически невозможно засечь, поскольку нужно знать где произойдет вспышка в определенный момент времени. Затем возникает более энергичная по длительности вспышка на несколько дней, которая сопровождается "послесвечением" с излучением оптических и радиоволн. Эти последствия коллапса новой звезды фактически составляют только 1% полной энергии от первой вспышки гамма-излучения. Если рассматривать сумму излученной энергии близлежащих вспышек гамма-излучения, включая потоки радио- и световых волн, то они эквивалентны энергии потоков гамма-излучения, приходящих из далекого космоса. То есть, в основном мы регистрируем последствия вспышек новых звезд, так называемое ‘послесвечение’. Миллиарды лет назад, вспышки новых звезд случались гораздо чаще и были интенсивными. Именно их мы и регистрируем, как картину прошлого. Эти вспышки гамма-излучения могут показать нам, как звезды умирают. "Мы теперь знаем", говорит Прайс, "что в то время, как последствия вспышек гамма-излучения являются очень разрушительными, в реальности они составляют только наконечник айсберга по мощи выпущенной энергии."


Рис.3 Процесс получения гамма-излучения от чёрных дыр

Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др.

Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. 3-е изд., перераб. и доп. М., Энергоатомиздат, 1985

Альфа-, бетаи гамма-спектроскопия, пер. с англ., под ред. К. Зигбана, в, 1, М., 1969

Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 1, М., 1955

Трофимова Т. И. Курс физики. Учебное пособие для вузов. – Изд 9-е, перераб. И доп. – М:. Издательский центр «Академия», 2004. – 560 с.

В.Ф. Сулейманов. Рентгеновская Астрономия. Физический Факультет Казанского Государственного Университета (Методическое пособие к Специальному практикуму по астрофизике) Казань 1998

ГАММА-ИЗЛУЧЕНИЕ - электромагнитное излучение, испускаемое при радиоактивном распаде и ядерных реакциях, т. е. при переходе ядра атома из одного энергетического состояния в другое.

Г.-и. применяют в медицине для лечения опухолей (см. Гамма-терапия , Лучевая терапия), а также для стерилизации помещений, аппаратуры и лекарственных препаратов (см. Стерилизация , холодная). В качестве источников Г.-и. используют гамма-излучатели - естественные и искусственные радиоактивные изотопы (см. Изотопы , радиоактивные), в процессе распада

которых испускаются гамма-кванты. Гамма-излучатели применяют для изготовления источников Г.-и. различной интенсивности и конфигурации (см. Гамма-аппараты).

По своей природе гамма-лучи сходны с рентгеновскими, инфракрасными и ультрафиолетовыми лучами, а также с видимым светом и радиоволнами. Эти виды электромагнитного излучения (см.) отличаются только условиями образования. Напр., в результате торможения быстро летящих заряженных частиц (электронов, альфа-частиц или протонов) возникает тормозное излучение (см.); при различных переходах атомов и молекул из возбужденного состояния в невозбужденное происходит испускание видимого света, инфракрасного, ультрафиолетового или характеристического рентгеновского излучения (см.).

В процессе взаимодействия с веществом электромагнитное излучение проявляет как волновые свойства (интерферирует, преломляется, дифрагирует), так и корпускулярные. Поэтому его можно характеризовать по длине волны или рассматривать как поток незаряженных частиц - квантов (фотонов), которые обладают определенной массой Мк и энергией (E=hv, где h=6,625×10 27 эрг×сек - квант действия, или постоянная Планка, ν = c/λ - частота электромагнитного излучения). Чем выше частота, а следовательно и энергия электромагнитного излучения, тем в большей мере проявляются его корпускулярные свойства.

Свойства различных видов электромагнитного излучения не зависят от способа их образования и определяются длиной волны (λ) или энергией квантов (E). При этом следует иметь в виду, что энергетической границы между тормозным и Г.-и. не существует, в отличие от таких видов электромагнитного излучения, как радиоволны, видимый свет, ультрафиолетовое и инфракрасное излучение, для каждого из которых характерен определенный диапазон энергий (или длин волн), практически не перекрывающийся. Так, энергия гамма-квантов, испускаемых в процессе радиоактивного распада (см. Радиоактивность), лежит в пределах от нескольких десятков килоэлектрон-вольт до нескольких мегаэлектрон-вольт, а при некоторых ядерных превращениях может достигать десятков мега-электрон-вольт. В то же время на современных ускорителях генерируется тормозное излучение с энергией от нуля до сотен и тысяч мега-электрон-вольт. Однако тормозное и Г.-и. существенно различаются не только по условиям образования. Спектр тормозного излучения - непрерывный, а спектр Г.-и., как и спектр характеристического излучения атома, - дискретный (линейчатый). Объясняется это тем, что ядра, так же как атомы и молекулы, могут находиться только в определенных энергетических состояниях, и переход из одного состояния в другое происходит скачкообразно.

В процессе прохождения через вещество гамма-кванты взаимодействуют с электронами атомов, электрическим полем ядра, а также с самим ядром. В результате происходит ослабление интенсивности первичного пучка Г.-и. в основном за счет трех эффектов: фотоэлектрического поглощения (фотоэффект), некогерентного рассеяния (комптон-эффект) и образования пар.

Фотоэлектрическое поглощение - процесс взаимодействия с электронами атомов, при к-ром гамма-кванты передают им всю свою энергию. В результате гамма-квант исчезает, а его энергия расходуется на отрыв электрона от атома и сообщение ему кинетической энергии. В этом случае энергия гамма-кванта передается преимущественно электронам, находящимся на К-оболочке (т. е. на оболочке, наиболее близкой к ядру). С увеличением атомного номера вещества-поглотителя (z) вероятность фотоэффекта растет примерно пропорционально 4-й степени атомного номера вещества (z 4), а с увеличением энергии гамма-квантов вероятность этого процесса резко уменьшается.

Некогерентное рассеяние - взаимодействие с электронами атомов, при к-ром гамма-квант передает электрону только часть своей энергии и количества движения и после соударения изменяет направление своего движения (рассеивается). В этом случае взаимодействие происходит в основном с внешними (валентными) электронами. С увеличением энергии гамма-квантов вероятность некогерентного рассеяния уменьшается, но более медленно, чем вероятность фотоэффекта. Вероятность процесса возрастает пропорционально увеличению атомного номера вещества-поглотителя, т. е. примерно пропорционально его плотности.

Образование пар - процесс взаимодействия Г.-и. с электрическим полем ядра, в результате к-рого происходит превращение гамма-кванта в пару частиц: электрон и позитрон. Этот процесс наблюдается только при энергии гамма-кванта больше 1,022 Мэв (больше суммы энергии, взаимосвязанной с массой покоя электрона и позитрона); с увеличением энергии гамма-кванта вероятность этого процесса возрастает пропорционально квадрату атомного номера вещества-поглотителя (z 2).

Наряду с основными процессами взаимодействия Г.-и. с веществом наблюдается когерентное (классическое) рассеяние Г.-и. Это такой процесс взаимодействия с электронами атома, в результате к-рого гамма-квант изменяет только направление своего движения (рассеивается), а его энергия не изменяется. До процесса рассеяния и после него электрон остается связанным с атомом, т. е. его энергетическое состояние не изменяется. Этот процесс существен только для Г.-и. с энергией до 100 кэв. При энергии излучения выше 100 кэв вероятность когерентного рассеяния на 1-2 порядка меньше, чем некогерентного. Гамма-кванты могут взаимодействовать также с ядрами атомов, вызывая различные ядерные реакции (см.), называемые фотоядерными. Вероятность фотоядерных реакций на несколько порядков меньше, чем вероятность других процессов взаимодействия Г.-и. с веществом.

Т. о., при всех основных процессах взаимодействия гамма-квантов с веществом часть энергии излучения преобразуется в кинетическую энергию электронов, которые, проходя через вещество, производят ионизацию (см.). В результате ионизации в сложных хим. веществах происходит изменение их хим. свойств, а в живой ткани эти изменения в конечном итоге приводят к биол, эффектам (см. Ионизирующие излучения , биологическое действие).

Удельный вес каждого из указанных процессов взаимодействия Г.-и. с веществом зависит от энергии гамма-квантов и атомного номера вещества-поглотителя. Так, в воздухе, воде и биол, тканях поглощение за счет фотоэффекта составляет 50% при энергии Г.-и., равной примерно 60 кэв. При энергии 120 кэв доля фотоэффекта составляет всего 10% , а начиная с 200 кэв основным процессом, обусловливающим ослабление Г.-и. в веществе, является некогерентное рассеяние. Для веществ со средним атомным номером (железо, медь) доля фотоэффекта незначительна при энергии больше 0,5 Мэв; для свинца фотоэффект необходимо учитывать до энергии Г.-и. порядка 1,5-2 Мэв. Процесс образования пар начинает играть нек-рую роль для веществ с малым атомным номером примерно с 10 Мэв, а для веществ с большим атомным номером (свинец) - с 2,5-3 Мэв. Ослабление Г.-и. в веществе происходит тем сильнее, чем меньше энергия гамма-квантов и чем больше плотность и атомный номер вещества. При узком направлении пучка Г.-и. уменьшение интенсивности моноэнергетического Г.-и. (состоящего из гамма-квантов с одинаковой энергией) происходит по экспоненциальному закону:

где I - интенсивность излучения в данной точке после прохождения слоя поглотителя толщиной d, I o - интенсивность излучения в этой же точке при отсутствии поглотителя, e - число, основание натуральных логарифмов (е = 2,718), μ (см -1) - линейный коэффициент ослабления, характеризующий относительное ослабление интенсивности Г.-и. слоем вещества толщиной в 1 см; линейный коэффициент ослабления представляет собой суммарную величину, складывающуюся из линейных коэффициентов ослабления τ, σ и χ, обусловленных соответственно процессами фотоэффекта, некогерентного рассеяния и образования пар (μ =τ+σ+χ).

Т. о., коэффициент ослабления зависит от свойств поглотителя и от энергии Г.-и. Чем тяжелее вещество и чем меньше энергия Г.-и., тем больше коэффициент ослабления.

Библиография: Аглинцев К. К. Дозиметрия ионизирующих излучений, с. 48 и др., М.-Л., 1950; Бибергаль А. В., Маргулис У. Я. и Воробьев Е. И. Защита от рентгеновских и гамма-лучей, М., 1960; Гусев Н. Г. и др. Физические основы защиты от излучений, с. 82, М., 1969; Кимель Л. Р. и Машкович В.П. Защита от ионизирующих излучений, с. 74, М., 1972.

У. Я. Маргулис.