Кем и когда была открыта электропроводность металлов. Электрическая проводимость. Определение, единицы измерения

Электропроводность есть способность тела пропускать электрический ток под действием электрического поля. Для характеристики этого явления служит величина удельной электропроводности σ. Как показывает теория , величину σ можно выразить через концентрацию n свободных носителей заряда, их заряд е, массу m, время свободного пробега τ e , длину свободного пробега λe и среднюю дрейфовую скорость < v > носителей заряда. Для металлов в роли свободных носителей заряда выступают свободные электроны, так что:

σ = ne 2 · τе / m = (n · e 2 / m) · (λe / < v >) = e · n · u

где u - подвижность носителей, т.е. физическая величина, численно равная дрейфовой скорости, приобретенной носителями в поле единичной напряженности, а именно

u = < v > / E = (e · τ е) / m

В зависимости от σ все вещества подразделяются; на проводники - с σ > 10 6 (Ом · м) -1 , диэлектрики - с σ > 10 -8 (Ом · м) -1 и полупроводники - с промежуточным значением σ.

С точки зрения зонной теории деление веществ на проводники, полупроводники и диэлектрики определяется тем, как заполнена электронами при 0 К валентная зона кристалла: частично или полностью.

Энергия, которая сообщается электронам даже слабым электрическим полем, сравнима с расстоянием между уровнями в энергетической зоне. Если в зоне есть свободные уровни, то электроны, возбужденные внешним электрическим полем, будут заполнять их. Квантовое состояние системы электронов будет изменяться, и в кристалле появится преимущественное (направленное) движение электронов против поля, т.е. электрический ток. Такие тела (рис.10.1,а) являются проводниками.

Если валентная зона заполнена целиком, то изменение состояния системы электронов может произойти только при переходе их через запрещенную зону. Энергия внешнего электрического поля такой переход осуществить не может. Перестановка электронов внутри полностью заполненной зоны не вызывает изменения квантового состояния системы, т.к. сами по себе электроны неразличимы.

В таких кристаллах (рис. 10.1,б) внешнее электрическое поле не вызовет появление электрического тока, и они будут непроводниками (диэлектриками). Из этой группы веществ выделены те у которых ширина запрещенной зоны ΔE ≤ 1 эВ (1эВ = 1,6 · 10 -19 Дж).

Переход электронов через запрещенную зону у таких тел можно осуществить, например, посредством теплового возбуждения. При этом освобождается часть уровней - валентной зоны и частично заполняются уровни следующей за ней свободной зоны (зоны проводимости). Эти вещества являются полупроводниками.


Согласно выражению (10.1) изменение электропроводности (электрического сопротивления) тел с температурой может быть вызвано изменением концентрации n носителей заряда или изменением их подвижности u .

Металлы

Квантово-механические расчеты показывают, что для металлов концентрация n свободных носителей заряда (электронов) равна:

n = (1 / 3π 2) · (2mE F / ђ 2) 3/2

где ђ = h / 2π = 1,05 · 10 -34 Дж · с - нормированная постоянная Планка, E F - энергия Ферми.

Так как E F практически от температуры T не зависит, то и концентрация носителей заряда от температуры не зависит. Следовательно, температурная зависимость электропроводности металлов будет полностью определяться подвижностью u электронов, как и следует из формулы (10.1). Тогда в области высоких температур

u ~ λ e / ~ T -1

а в области низких температур

u ~ λ e / ~ const (T).


Степень подвижности носителей заряда будет определяться процессами рассеяния, т.е. взаимодействием электронов с периодическим полем решетки. Так как поле идеальной решетки строго периодическое, а состояние электронов - стационарное, то рассеяние (возникновение электрического сопротивления металла) может быть вызвано только дефектами (примесными атомами, искажениями структуры и т.д.) и тепловыми колебаниями решетки (фононами).

Вблизи 0 К, где интенсивность тепловых колебаний решетки и концентрация фононов близка к нулю, преобладает рассеяние на примесях (электрон-примесное рассеяние). Проводимость при этом практически не меняется, как следует из формулы (10.4), а удельное сопротивление


имеет постоянное значение, которое называется удельным остаточным сопротивлением ρ ост или удельным примесным сопротивлением ρ прим, т.е.

ρ ост (или ρ прим) = const (T)

В области высоких температур у металлов становится преобладающим электрон-фононный механизм рассеяния. При таком механизме рассеяния электропроводность обратно пропорциональна температуре, как видно из формулы (10.3), а удельное сопротивление прямо пропорционально температуре:

График зависимости удельного сопротивления ρ от температуры приведен на рис. 10.2

При температурах отличных от 0 К и достаточно большом количестве примесей могут иметь место как электрон-фононное, так и электрон-примесное рассеяние; суммарное удельное сопротивление имеет вид


ρ = ρ прим + ρ ф

Выражение (10.6) представляет собой правило Матиссена об аддитивности сопротивления. Следует отметить, что как электрон-фононное, так и электрон-примесное рассеяние носит хаотический характер.

Полупроводники

Квантово-механические расчеты подвижности носителей в полупроводниках показали, что, во-первых, с повышением температуры подвижность носителей u убывает, и решающим в определении подвижности является тот механизм рассеяния, который обуславливает наиболее низкую подвижность. Во-вторых, зависимость подвижности носителей заряда от уровня легирования (концентрации примесей) показывает, что при малом уровне легирования подвижность будет определяться рассеянием на колебаниях решетки и, следовательно, не должна зависеть от концентрации примесей.

При высоких уровнях легирования она должна определяться рассеиванием на ионизированной легирующей примеси и уменьшаться с увеличением концентрации примеси. Таким образом, изменение подвижности носителей заряда не должно вносить заметного вклада в изменение электрического сопротивления полупроводника.

В соответствии с выражением (10.1) основной вклад в изменение электропроводности полупроводников должно вносить изменение концентрации п носителей заряда .

Главным признаком полупроводников является активационная природа проводимости, т.е. резко выраженная зависимость концентрации носителей от внешних воздействий, как-то температуры, облучения и т.д. Это объясняется узостью запрещенной зоны (ΔЕ < 1 эВ) у собственных полупроводников и наличием дополнительных уровней в запрещенной зоне у примесных полупроводников.

Электропроводность химически чистых полупроводников называется собственной проводимостью . Собственная проводимость полупроводников возникает в результате перехода электронов (n) с верхних уровней валентной зоны в зону проводимости и образованием дырок (p) в валентной зоне:


σ = σ n + σ ρ = e · n n · u n + e · n ρ · u ρ

где n n и· n ρ - концентрация электронов и дырок,
u n и u ρ - соответственно их подвижности,
e - заряд носителя.

С повышением температуры концентрация электронов в зоне проводимости и дырок в валентной зоне экспоненциально возрастает:

n n = u nо · exp(-ΔE / 2kT) = n ρ = n ρо · exp(-ΔE / 2kT)

где n nо и n pо - концентрации электронов и дырок при Т → ∞,
k = 1,38 · 10 –23 Дж/ К - постоянная Больцмана.

На рисунке 10.3,а приведен график зависимости логарифма электропровод-ности ln σ собственного полупроводника от обратной температуры 1 / Т: ln σ = = ƒ(1 / Т). График представляет собой прямую, по наклону которой можно опреде-лить ширину запрещенной зоны ∆Е.



Электропроводность легированных полупроводников обусловлена наличием в них примесных центров. Температурная зависимость таких полупроводников определяется не только концентрацией основных носителей, но и концентрацией носителей, поставляемых примесными центрами. На рис. 10.3,б приведены графики зависимости ln σ = ƒ (1 / Т) для полупроводников с различной степенью легирования (n1 < n2 < n3, где n – концентрация примеси).

Для слаболегированных полупроводников в области низких температур преобладают переходы с участием примесных уровней. С повышением температуры растет концентрация примесных носителей, значит растет и примесная проводимость. При достижении т. А (см. рис. 10.3,б; кривая 1) – температуры истощения примеси Т S1 – все примесные носители будут переведены в зону проводимости.

Выше температуры Т S1 и до температуры перехода к собственной проводимости Т i1 (см. т. В, кривая 1, рис. 10.3,б) электропроводность падает, а сопротивление полупроводника растет. Выше температуры Т i1 преобладает собственная электропроводность, т.е. в зону проводимости вследствие теплового возбуждения переходят собственные носители заряда. В области собственной проводимости σ растет, а ρ падает.

Для сильнолегированных полупроводников, у которых концентрация примеси n ~ 10 26 м –3 , т.е. соизмерима с концентрацией носителей заряда в металлах (см. кривая 3, рис. 10.3,б), зависимость σ от температуры наблюдается только в области собственной проводимости. С ростом концентрации примесей величина интервала АВ (АВ > A"B" > A"B") уменьшается (см. рис. 10.3,б).

Как в области примесной проводимости, так и в области собственной проводимости преобладает электрон-фононный механизм рассеяния. В области истощения примеси (интервалы AB, A"B", A"B") вблизи температуры Т S преобладает электрон-примесное рассеяние. По мере увеличения температуры (перехода к Т i) начинает преобладать электрон-фононное рассеяние. Таким образом, интервал АВ (A"B" или A"B"), называемый областью истощения примеси, является также областью перехода от механизма примесной проводимости к механизму собственной проводимости.

В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.

Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда - ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер - это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.


Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).

Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.

Наиболее высокой электропроводностью обладают , и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) - перемещением ионов - частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.

Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.

Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.

Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.

Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив - имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от , а вот скорость распространения электрического тока по проводнику как раз равна скорости света.

Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля - от соседа к соседу.

Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.


Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.

Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном - намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.


Единица изменения сопротивления - Ом. Сопротивление R = 1 Ом - это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом - столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.


Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность - это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.

Единица измерения электропроводности G (проводимости) - Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.


Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие , величина которого «р» характеризует проводящие свойства того или иного вещества.

Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.


Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м - для удельного сопротивления, и См*м/мм2 - для удельной электропроводности.

Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.

Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.

Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.

Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.

При понижении температуры - наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других - сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.

Позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.

Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.

Надеемся, что наша статья была для вас полезной, и теперь вы легко сможете вычислить сопротивление и проводимость любого провода при любой температуре.

Статистика Ферми - Дирака.

Лекция 5.

Процессы в твердых телах (электропроводность, теплопроводность, и т.д.) связаны с движением коллективов (ансамблей) тождественных частиц, в частности, электронов. Свойства таких ансамблей описываются законами квантовой статистики. Центральным понятием любой статистики (квантовой или классической) является функция распределения р(Е), определяющая вероятность того, что состояние с энергией Е в условиях теплового равновесия занято частицей . На частицы с полуцелым спином (т.е. s = 1/2) (их называют ферми-частицами, фермионами, ферми-газом; к ним принадлежат, конечно, электроны) действует принцип запрета Паули, и ансамбли таких частиц описываются статистикой Ферми-Дирака. Функция распределения в статистике Ферми-Дирака имеет вид

Отметим основные свойства распределения Ферми-Дирака:

1) Вид распределения не зависит от свойства конкретной системы частиц. Применительно к твердым телам можно сказать, что вне зависимости от структуры и состава тела, вида энергетических зон, функция р(Е) неизменна.

2) Различия в свойствах тел проявляются в различиях энергии Е F , которую называют энергией Ферми. Если для данного твердого тела известна энергия Е F , то известно, как расположена функция р(Е) на схеме энергетических уровней.

3) Как видно из формулы (1.21), при Е = Е F вероятность р(Е F) = 0,5 при любой температуре Т > 0. Если в кристалле имеется уровень энергии электрона, совпадающий с уровнем Ферми, то вероятность его заполнения электроном при Т > 0 равна 0,5. Заметим, что уровень Ферми в твердых телах может находиться как в разрешенных, так и в запрещенных зонах энергетического спектра.

4) При температуре Т = 0 вероятность р(Е) = 1, если Е < Е F и р(Е) = 0, если Е > Е F . Следовательно, уровень Ферми - это наибольшая энергия, которой может обладать электрон при Т = 0, если этот уровень расположен в разрешенной зоне. Функции р(Е) для Т = 0 и Т > 0 показаны на рис.1.12.

5) Для энергии Е - Е F >> kT величина (E - E F)/kT >> 1, поэтому формула преобразовывается к виду

В этом приближении распределение Ферми-Дирака переходит в распределение Больцмана.

6) Основной параметр распределения Ферми - Дирака - энергию Е F находят из условия, что полное число электронов, заполняющих уровни энергетических зон, равняется числу электронов в кристалле.

Соответствующий квантовомеханический расчет показывает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой.



Однако кристаллическая решетка никогда не бывает совершенной. Нарушения строгой периодичности решетки бывают обусловлены наличием примесей или вакансий, а также тепловыми колебаниями решетки. Рассеяние электронов на атомах примеси и на фононах приводит к возникновению электросопротивления металлов. Чем чище металл и ниже температура, тем меньше его сопротивление.

Удельное электрическое сопротивление металлов можно представить в виде

где r колеб - сопротивление, обусловленное тепловыми колебаниями решетки, r прим - сопротивление, обусловленное рассеянием электронов на атомах примеси. Слагаемое r колеб уменьшается с понижением температуры и обращается в нуль при Т = 0 К. Слагаемое r прим при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла (кроме металлов переходящих в сверхпроводящее состояние).

Пусть в единице объема металла имеется n свободных электронов. Назовем среднюю скорость этих электронов дрейфовой скоростью V др . По определению

В отсутствие внешнего поля дрейфовая скорость равна нулю, и электрический ток в металле отсутствует. При наложении на металл внешнего электрического поля Е дрейфовая скорость становится отличной от нуля - в металле возникает электрический ток. Согласно закону Ома дрейфовая скорость является конечной и пропорциональной силе F = - e E .

Кроме силы - e E на электроны проводимости в металле действует сила “трения”, среднее значение которой равно

(r - коэффициент пропорциональности).

Уравнение движения для “среднего” электрона имеет вид

где m * - эффективная масса электрона. Эффективная масса m * может сильно отличаться от фактической массы электрона m, в частности она может принимать отрицательные значения. Несмотря на это, именно значение m * определяет характер движения электрона в решетке.

Таким образом, воздействие решетки на движение можно учесть, заменив в уравнении движения истинную массу m эффективной массой m * . Уранение (1.25) позволяет найти установившееся значение V др. Если после установления стационарного состояния выключить внешнее полеЕ , дрейфовая скорость начнет убывать и по достижении состояния равновесия между электронами и решеткой обращается в ноль. Найдем закон убывания дрейфовой скорости после выключения внешнего поля. Положив Е = 0 , получим уравнение

Его решение имеет вид

где - значение дрейфовой скорости в момент выключения поля. Из (1.26) следует, что за время

значение дрейфовой скорости упадет в e раз. t - время релаксации , характеризующее процесс установления равновесия между электронами и решеткой, нарушенное действием внешнего поля Е . Тогда из (1.24) получаем

Установившееся значение дрейфовой скорости можно найти, приравняв нулю сумму силы - eE и силы трения

Установившееся значение плотности тока получаем, умножив это значение V др на заряд электрона - e и на плотность электронов n

Коэффициент пропорциональности между Е и j представляет собой удельную электропроводность s. Таким образом,

В классической теории электропроводности выражение для проводимости имеет вид

где t / - среднее время свободного пробега электронов.

Из сравнения формул (1.29) и (1.30) вытекает, что время релаксации совпадает по порядку величины с временем свободного пробега электронов в металле.

Отметим, что выкладки, приведшие к формуле (1.29), одинаково пригодны как при классической трактовке движения электронов проводимости в металле, так и при квантовомеханической трактовке. Различие этих двух трактовок заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем, в соответствии с чем каждое слагаемое в (1.23) получает добавку в направлении, противоположномЕ . При квантовомеханическом подходе приходиться принимать во внимание, что возмущаются полем и изменяют свою скорость лишь электроны, занимающие состояния вблизи уровня Ферми. Электроны, находящиеся на более глубоких уровнях, полем не возмущаются, и их вклад в сумму (1.23) не изменяется. Кроме того, при классической трактовке используется обычная масса m, при квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m * .

«Физика - 10 класс»

Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля?
Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

Вы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников - законом Ома.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ - плазма. Эти проводники широко используются в технике.

В вакуумных электронных приборах электрический ток образуют потоки электронов.

Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников .

Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

Нет универсального носителя тока. В таблице приведены носители тока в различных средах.

Электронная проводимость металлов.


Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика - порядка 10 28 1/м 3 .

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10 -4 м/с.


Экспериментальное доказательство существования свободных электронов в металлах.


Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 10 11 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.


Движение электронов в металле.


Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила = q e . Под действием этой силы электроны начинают двигаться направленно, т. е. на хаотичное движение электронов накладывается Скорость направленного движения увеличивается в течение некоторого времени t 0 до тех пор, пока не произойдёт столкновение электронов с ионами кристаллической решётки. При этом электроны теряют направление движения, а затем опять начинают двигаться направленно. Таким образом, скорость направленного движения электрона изменяется от нуля до некоторого максимального значения, равного В результате средняя скорость упорядоченного движения электронов оказывается равной т. е. пропорциональной напряжённости электрического поля в проводнике: υ ~ Е и, следовательно, разности потенциалов на концах проводника, так как где l - длина проводника.

Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~ U.

В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Этот факт подтверждает, например, зависимость сопротивления от температуры. Согласно классической теории металлов, в которой движение электронов рассматривается на основе второго закона Ньютона, сопротивление проводника пропорционально эксперимент же показывает линейную зависимость сопротивления от температуры.

Деление твёрдых тел на проводники, полупроводники и диэлектрики связано со строением их энергетических зон. Теория энергетических зон рассмотрена во введении к данному циклу работ.

В металле зона проводимости заполнена электронами не целиком, а лишь частично, приблизительно до уровня Ферми. По этой причине электроны в металле свободны и могут переходить с занятых уровней на свободные под влиянием слабых электрических полей. Концентрация свободных электронов в металле велика (порядка ~ 10 28 м -3), поэтому от температуры и других внешних факторов она зависит слабо. По этой причине согласно (6), температурная зависимость удельной проводимости, а значит и сопротивления, определяется изменением подвижности электронов. При этом существенным является то, что электронный газ в металле вырожден , т.е. его энергия является не температурой, а концентрацией электронов. Действительно, электроны в металле занимают энергетические уровни до уровня Ферми, который отстоит от «дна» валентной зоны на несколько электрон-вольт. Тепловая же энергия электронов (~ ) при обычных температурах намного меньше, порядка ~ 10 -2 эВ. Следовательно, поглощать тепловую энергию могут лишь немногие электроны с верхних уровней. Средняя энергия электронов, таким образом, почти не меняется с увеличением температуры.

У электронного газа, находящегося в состоянии вырождения, скорости хаотического движения электронов также определяются не температурой тела, а концентрацией носителей заряда. Эти скорости могут в десятки раз превышать среднюю скорость теплового движения, вычисленную из классической теории ( »10 5 м/с), т.е. »10 6 м/с.

Движущиеся электроны обладают как корпускулярными, так и волновыми свойствами. Длина волны электрона определяется формулой де Бройля:

, (8)

где - постоянная Планка,

Скорость электрона,

Эффективная масса электрона (понятие вводится для того, чтобы описать его движение носителя в твёрдом теле).

Подставив значение скорости =10 6 м/с в (8), найдём длину волны де Бройля для электрона в металле, она составляет величину 0,4 – 0,9 нм.



Итак, в металлических проводниках, где длина волны электрона порядка 0,5 нм, микродефекты создают значительное рассеяние электронных волн. Скорость направленного движения электронов при этом уменьшается, что согласно (4) приводит к уменьшению подвижности. Подвижность электронов в металле сравнительно невелика. В таблице 1 приведены подвижности электронов для некоторых металлов и полупроводников.

Таблица 1. Подвижность электронов в различных материалах при =300 К

С увеличением температуры увеличиваются колебания узлов решётки и появляется всё больше и больше препятствий на пути направленного движения электронов и электропроводность уменьшается, а сопротивление металла растёт.

Опыт показывает, что для чистых металлов зависимость от температуры линейна:

, (9)

где - термический коэффициент сопротивления,

Температура по шкале Цельсия,

Сопротивление при =0°С.

Для определения и необходимо построить график зависимости .

Рис.1. Зависимость сопротивления металла от температуры

Точка пересечения прямой с осью даст значение . Значение находится по формуле:

(10)