Водород. Физические и химические свойства, получение. Все о водороде и водородной воде

Самый распространенный элемент во вселенной - это водород. В веществе звезд он имеет вид ядер - протонов - и является материалом для термоядерных процессов. Почти половина массы Солнца также состоит из молекул H 2 . Содержание его в земной коре достигает 0,15 % , а атомы присутствуют в составе нефти, природного газа, воды. Вместе с кислородом, азотом и углеродом он является органогенным элементом, входящим в состав всех живых организмов на Земле. В нашей статье мы изучим физические и химические свойства водорода, определим основные области его применения в промышленности и значение в природе.

Положение в периодической системе химических элементов Менделеева

Первый элемент, открывающий периодическую систему - это водород. Его атомная масса составляет 1,0079. Имеет два стабильных (протий и дейтерий) и один радиоактивный изотоп (тритий). Физические свойства определяются местом неметалла в таблице химических элементов. В обычных условиях водород (формула его - H 2) представляет газ, который почти в 15 раз легче воздуха. Строение атома элемента уникально: он состоит только из ядра и одного электрона. Молекула вещества двухатомная, частицы в ней соединяются с помощью ковалентной неполярной связи. Ее энергоемкость достаточно велика - 431 кДж. Это объясняет невысокую химическую активность соединения в обычных условиях. Электронная формула водорода такова: H:H.

Вещество имеет еще целый ряд свойств, аналогов которым нет среди других неметаллов. Рассмотрим некоторые из них.

Растворимость и теплопроводность

Лучше всего проводят тепло металлы, но водород по теплопроводности приближается к ним. Объяснение феномена заключается в очень большой скорости теплового движения легких молекул вещества, поэтому в водородной атмосфере нагретый предмет остывает в 6 раз быстрее, чем на воздухе. Соединение может хорошо растворяться в металлах, например, почти 900 объемов водорода могут быть поглощены одним объемом палладия. Металлы могут вступать с H 2 в химические реакции, в которых проявляются окислительные свойства водорода. В этом случае образуются гидриды:

2Na + H 2 =2 NaH.

В этой реакции атомы элемента принимают электроны от частиц металла, превращаясь в анионы с единичным отрицательным зарядом. Простое вещество H 2 в данном случае является окислителем, что для него обычно не характерно.

Водород как восстановитель

Объединяет металлы и водород не только высокая теплопроводность, но и способность их атомов в химических процессах отдавать собственные электроны, то есть окисляться. Например, основные оксиды вступают в реакции с водородом. Окислительно-восстановительная реакция заканчивается выделением чистого металла и образованием молекул воды:

CuO + H 2 = Cu + H 2 O.

Взаимодействие вещества с кислородом при нагревании приводит также к получению молекул воды. Процесс является экзотермическим и сопровождается выделением большого количества тепловой энергии. Если газовая смесь H 2 и O 2 реагирует в соотношении 2:1, то ее называют так как при поджигании она взрывается:

2H 2 + O 2 = 2H 2 O.

Вода является и играет важнейшую роль в формировании гидросферы Земли, климата, погоды. Она обеспечивает круговорот элементов в природе, поддерживает все жизненные процессы организмов - обитателей нашей планеты.

Взаимодействие с неметаллами

Наиболее важные химические свойства водорода - это его реакции с неметаллическими элементами. При нормальных условиях достаточно химически инертны, поэтому вещество может реагировать только с галогенами, например с фтором или хлором, являющимися наиболее активными среди всех неметаллов. Так, смесь фтора и водорода взрывается в темноте или на холоде, а с хлором - при нагревании или на свету. Продуктами реакции будут галогеноводороды, водные растворы которых известны как фторидная и хлоридная кислоты. С взаимодействует при температуре 450-500 градусов, давлении 30-100 мПа и в присутствии катализатора:

N₂ + 3H₂ ⇔ p, t, kat ⇔ 2NH₃.

Рассмотренные химические свойства водорода имеют большое значение для промышленности. Например, можно получить ценный химический продукт - аммиак. Он является основным сырьем для получения нитратной кислоты и азотных удобрений: карбамида, нитрата аммония.

Органические вещества

Между углеродом и водородом приводит к получению простейшего углеводорода - метана:

C + 2H 2 = CH 4.

Вещество является важнейшей составной частью природного и Они применяются в качестве ценного вида топлива и сырья для промышленности органического синтеза.

В химии соединений углерода элемент входит в состав огромного количества веществ: алканов, алкенов, углеводов, спиртов и т. д. Известно много реакций органических соединений с молекулами H 2 . Они носят общее название - гидрирование или гидрогенизация. Так, альдегиды можно восстановить водородом до спиртов, непредельные углеводороды - до алканов. Например, этилен превращается в этан:

C 2 H 4 + H 2 = C 2 H 6 .

Важное практическое значение имеют такие химические свойства водорода, как, например, гидрогенизация жидких масел: подсолнечного, кукурузного, рапсового. Она приводит к получению твердого жира - саломаса, который используют в производстве глицерина, мыла, стеарина, твердых сортов маргарина. Для улучшения внешнего вида и вкусовых качеств пищевого продукта в него добавляют молоко, животные жиры, сахар, витамины.

В нашей статье мы изучили свойства водорода и выяснили его роль в природе и жизни человека.

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 0 = CO 2 + 4Н 2 - 165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который применяется иногда и в промышленности,- разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H 2 O + C ⇄ H 2 + CO

3.Из природного газа.

Конверсияс водяным паром: CH 4 + H 2 O ⇄ CO + 3H 2 (1000 °C) Каталитическое окисление кислородом: 2CH 4 + O 2 ⇄ 2CO + 4H 2

4. Крекинг и реформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2 Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e - → H 2 + 2H 2 O

  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) - в виде орто - и пара-водорода.

В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна - Н₂. При обычных условиях - это газ без цвета, запаха и вкуса. Водород - самый лёгкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н 2 =2Н - 432 кДж Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н 2 = СаН 2 и с единственным неметаллом - фтором, образуя фтороводород: F 2 +H 2 =2HF С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может «отнимать» кислород от некоторых оксидов, наприме: CuO + Н 2 = Cu + Н 2 0 Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Далее будет дано и другое определение понятиям «окисление» и «восстановление». А данное определение, исторически первое, сохраняет значение и в настоящее время, особенно в органической химии. Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N 2 + 3H 2 → 2 NH 3

С галогенами образует галогеноводороды :

F 2 + H 2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl 2 + H 2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды :

Na + H 2 → 2 NaH Ca + H 2 → CaH 2 Mg + H 2 → MgH 2

Гидриды - солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никелевого катализатора и повышенной температуре происходит реакция гидрирования :

CH 2 =CH 2 + H 2 → CH 3 -CH 3

Водород восстанавливает альдегиды до спиртов:

CH 3 CHO + H 2 → C 2 H 5 OH.

Геохимия водорода

Водород - основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

  • Водородная энергетика

Атомарный водород используется для атомно-водородной сварки.

В пищевой промышленности водород зарегистрирован в качестве пищевой добавки E949 , как упаковочный газ.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадении на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96 % объёмных. При смеси с воздухом от 4% до 75(74) % объёмных.

Использование водорода

В химической промышленности водород используют при производстве аммиака, мыла и пластмасс. В пищевой промышленности с помощью водорода из жидких растительных масел делают маргарин. Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько ужасных катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют газом гелием. Водород используют также в качестве ракетного топлива. Когда-нибудь водород, возможно, будут широко применять как топливо для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар (правда, само получение водорода приводит к некоторому загрязнению окружающей среды). Наше Солнце в основном состоит из водорода. Солнечное тепло и свет - это результат выделения ядерной энергии при слиянии ядер водорода.

Использование водорода в качестве топлива (экономическая эффективность)

Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2 г) и 0,5 моль O 2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н 2 + 0,5 О 2 = Н 2 О

после завершения реакции образуется 1 моль H 2 O (18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана - 2200 кДж/моль). 1 м³ водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м³ газа, можно делать вывод о целесообразности перехода на водородное топливо.

Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1 м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1м³ для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.

Однако не следует забывать того, что при сжигании водорода мы получаем чистую воду, из которой его и добыли. То есть имеем возобновляемый запасатель энергии без вреда для окружающей среды, в отличие от газа или бензина, которые являются первичными источниками энергии.

Php on line 377 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/vodorod.php on line 377 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 377

В трудах химиков 16 и 17 веков неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 году Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его "горючий воздух". Будучи сторонником теории флогистона, Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 году А. Лавуазье путем анализа и синтеза воды доказал сложность ее состава, а в 1787 определил "горючий воздух" как новый химический элемент (Водород) и дал ему современное название hydrogene (от греч. hydor - вода и gennao - рождаю), что означает "рождающий воду"; этот корень употребляется в названиях соединений Водорода и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование "Водород" было предложено М. Ф. Соловьевым в 1824 году.

Распространение Водорода в природе. Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов типа CH, NH, OH, SiH, PH и т. д. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула Водорода. Обыкновенный Водород состоит из смеси 2 устойчивых изотопов: легкого Водорода, или протия (1 H), и тяжелого Водорода, или дейтерия (2 Н, или D). В природных соединениях Водорода на 1 атом 2 Н приходится в среднем 6800 атомов 1 Н. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым Водородом, или тритием (3 Н, или Т), с мягким β-излучением и периодом полураспада T ½ = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4·10 -15 % от общего числа атомов Водорода). Получен крайне неустойчивый изотоп 4 Н. Массовые числа изотопов 1 Н, 2 Н, 3 Н и 4 Н, соответственно 1, 2, 3 и 4, указывают на то, что ядро атома протия содержит только один протон, дейтерия - один протон и один нейтрон, трития - один протон и 2 нейтрона, 4 Н - один протон и 3 нейтрона. Большое различие масс изотопов Водорода обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом Водорода имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв. Нейтральный атом Водород может присоединять и второй электрон, образуя отрицательный ион Н - при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв. Квантовая механика позволяет рассчитать все возможные энергетические уровни атома Водород, а следовательно, дать полную интерпретацию его атомного спектра. Атом Водорода используется как модельный в квантовомеханических расчетах энергетических уровней других, более сложных атомов.

Молекула Водород Н 2 состоит из двух атомов, соединенных ковалентной химической связью. Энергия диссоциации (то есть распада на атомы) составляет 4,776 эв. Межатомное расстояние при равновесном положении ядер равно 0,7414Å. При высоких температурах молекулярный Водород диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный Водород образуется также в различных химических реакциях (например, действием Zn на соляную кислоту). Однако существование Водорода в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы Н 2 .

Физические свойства Водорода. Водород - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм. Водород кипит (сжижается) и плавится (затвердевает) соответственно при -252,8°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура Водорода очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм), критическая плотность 0,0312 г/см 3 . Из всех газов Водород обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/(м·К), то есть 4,16·10 -4 кал/(с·см·°С). Удельная теплоемкость Водорода при 0°С и 1 атм С p 14,208 кДж/(кг·К), то есть 3,394 кал/(г·°С). Водород мало растворим в воде (0,0182 мл/г при 20°С и 1 атм), но хорошо - во многих металлах (Ni, Pt, Pa и других), особенно в палладии (850 объемов на 1 объем Pd). С растворимостью Водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия Водорода с углеродом (так называемая декарбонизация). Жидкий Водород очень легок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при -253°С 13,8 спуаз).

Химические свойства Водорода. В большинстве соединений Водород проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий I группу системы Менделеева. Однако в гидридах металлов ион Водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H - построен подобно хлориду Na + Cl - . Этот и некоторые других факты (близость физических свойств Водорода и галогенов, способность галогенов замещать Водород в органических соединениях) дают основание относить Водород также и к VII группе периодической системы. При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный Водород обладает повышенной химические активностью по сравнению с молекулярным. С кислородом Водород образует воду:

Н 2 + 1 / 2 О 2 = Н 2 О

с выделением 285,937 кДж/моль, то есть 68,3174 ккал/моль тепла (при 25°С и 1 атм). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объему) от 4 до 94% Н 2 , а водородо-воздушной смеси - от 4 до 74% Н 2 (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом). Водород используется для восстановления многих металлов, так как отнимает кислород у их оксидов:

CuO + H 2 = Cu + H 2 O,

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl.

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях. При нагревании Водород энергично реагирует с серой:

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром. С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан).

Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя гидриды:

Н 2 + 2Li = 2LiH.

Важное практическое значение имеют реакции Водорода с оксидом углерода (II), при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например НСНО, СН 3 ОН и другие. Ненасыщенные углеводороды реагируют с Водородом, переходя в насыщенные, например:

С n Н 2n + Н 2 = С n Н 2n+2 .

Роль Водород и его соединений в химии исключительно велика. Водород обусловливает кислотные свойства так называемых протонных кислот. Водород склонен образовывать с некоторыми элементами так называемую водородную связь, оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение Водорода. Основные виды сырья для промышленного получения Водорода - газы природные горючие, коксовый газ и газы нефтепереработки. Водород получают также из воды электролизом (в местах с дешевой электроэнергией). Важнейшими способами производства Водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия):

СН 4 + H 2 О = СО + ЗН 2 ,

и неполное окисление углеводородов кислородом:

СН 4 + 1 / 2 О 2 = СО + 2Н 2

Образующийся оксид углерода (II) также подвергается конверсии:

СО + Н 2 О = СО 2 + Н 2 .

Водород, добываемый из природного газа, самый дешевый.

Из коксового газа и газов нефтепереработки Водород выделяют путем удаления остальных компонентов газовой смеси, сжижаемых более легко, чем Водород, при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор КОН или NaOH (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях Водород получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской Водород в баллонах.

Применение Водорода. В промышленном масштабе Водород стали получать в конце 18 века для наполнения воздушных шаров. В настоящее время Водород широко применяют в химической промышленности, главным образом для производства аммиака. Крупным потребителем Водорода является также производство метилового и других спиртов, синтетического бензина и других продуктов, получаемых синтезом из Водорода и оксида углерода (II). Водород применяют для гидрогенизации твердого и тяжелого жидкого топлив, жиров и других, для синтеза HCl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы Водорода - дейтерий и тритий.

Водород

Водород – первый элемент и один из двух представителей I периода Периодической системы. Атом водорода состоит из двух частиц – протона и электрона, между которыми существуют лишь силы притяжения. Водород и металлы IА-группы проявляют степень окисления +1, являются восстановителями и имеют сходство оптических спектров. Однако в состоянии однозарядного катиона Н + (протона) водород не имеет аналогов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов.

С другой стороны, как у водорода, так и у галогенов не хватает одного электрона до завершения внешнего электронного слоя. Подобно галогенам, водород проявляет степень окисления –1 и окислительные свойства. Сходен водород с галогенами и по агрегатному состоянию, и по составу молекул Э 2 . Но молекулярная орбиталь (МО) Н 2 не имеет ничего общего с таковыми молекул галогенов, в то же время МО Н 2 имеет определенное сходство с МО двухатомных молекул щелочных металлов, существующих в парообразном состоянии.

Водород – самый распространенный элемент Вселенной, составляет основную массу Солнца, звезд и других космических тел. На Земле по распространенности занимает 9-е место; в свободном состоянии встречается редко, и основная часть его входит в состав воды, глин, каменного и бурого угля, нефти и т. д., а также сложных веществ живых организмов.

Природный водород представляет собой смесь стабильных изотопов протия 1 Н (99,985%) и дейтерия 2 H (2 D), радиоактивного трития 3 Н (3 Т).

Простые вещества. Возможны молекулы легкого водорода – Н 2 (дипротий), тяжелого водорода – D 2 ­ (дидейтерий), Т 2 (дитритий), HD (протодейтерий), НТ (прототритий), DТ (дейтеротритий).

Н 2 (диводород, дипротий) – бесцветный трудносжижаемый газ, очень мало растворяется в воде, лучше – в органических растворителях, хемосорбируется металлами (Fe, Ni, Pt, Pd). В обычных условиях сравнительно мало активен и непосредственно взаимодей­ствует лишь со фтором; при повышенных температурах реагирует с металлами, неметаллами, оксидами металлов. Особенно высока восстановительная способность у атомарного водорода Н 0 , образующегося при термическом разложении молекулярного водорода или в результате реакций непосредственно в зоне проведения восстановительного процесса.

Восстановительные свойства водород проявляет при взаимодействии с неметаллами, оксидами металлов, галогенидами:

Н 2 0 + Cl 2 = 2Н +1 Cl; 2Н 2 + О 2 = 2Н 2 О; СuО + Н 2 = Сu + Н 2 О

В качестве окислителя водород взаимодействует с активными ме­таллами:

2Nа + Н 2 0 = 2NаН –1

Получение и применение водорода. В промышленности водород получают главным образом из природ­ных и попутных газов, продуктов газификации топлива и коксового газа. Производство водорода осно­вано на каталитических реакциях взаимодействия с водяным паром (конверсии) соответственно углеводородов (главным образом метана) и оксида углерода (II):

СН 4 + Н 2 О = СО + 3Н 2 (кат. Ni, 800°С)

СО + Н 2 О = СО 2 + Н 2 (кат. Fe, 550°С)

Важным способом получения водорода является выделение его из коксового газа и газов нефтепереработки путем глубокого охлаждения. Электролиз воды (электролитом обычно служит водный раствор щелочи) обеспечивает получение наиболее чистого водорода.

В лабораторных условиях водород обычно получают действием цинка на растворы серной или хлороводородной кислоты:

Zn + Н 2 SO 4 = ZnSO 4 + Н 2

Водород используется в химической промышленности для синтеза аммиака, метанола, хлороводорода, для гидрогенизации твердого и жидкого топлива, жиров и т. д. В виде водяного газа (в смеси с СО) применяется как топливо. При горении водорода в кислороде возникает высокая температура (до 2600°С), позволяющая сваривать и разрезать тугоплавкие металлы, кварц и пр. Жидкий водород используют как одно из наиболее эффективных реактивных топлив.

Соединения водорода (–I). Соединения водорода с менее электроотрицательными элементами, в которых он отрицательно поляризован относятся к гидридам , т.е. в основном его соединения с металлами.

В простых солеобразных гидридах существует анион Н – . Наиболее полярная связь наблюдается в гидридах активных металлов – щелочных и щелочно-земельных (например, КН, СаН 2). В химическом отно­шении ионные гидриды ведут себя как оснóвные соединения.

LiН + Н 2 О = LiОН + Н 2­­

К ковалентным относятся гидриды менее электроотрицательных, чем сам водород, неметаллических элементов (например, гидриды состава SiH 4 и ВН 3). По химической природе гидриды неметаллов являются кислотными соединениями.

SiH 4 + 3Н 2 О = Н 2 SiO 3 + 4Н 2

При гидролизе оснóвные гидриды образуют щелочь, а кислотные – кислоту.

Многие переходные металлы образуют гидриды с преимущественно металлическим характером связи нестехиометрического состава. Идеализированный состав металлических гидридов чаще всего отвечает формулам: М +1 Н (VН, NbН, ТаН), М +2 Н 2 (TiН 2 , ZrH 2) и М +3 Н 3 (UН 3 , РаН 3).

Соединения водорода (I). Положительная поляризация атомов водорода наблюдается в его многочисленных соединениях с ковалентной связью. При обычных условиях – это газы (НCl, Н 2 S, Н 3 N), жид­кости (Н 2 О, НF, НNO 3), твердые вещества (Н 3 РO 4 , Н 2 SiO 3). Свойства этих соединений сильно зависят от природы электроотрицательного элемента.

Литий

Литий достаточно широко распространен в земной коре. Он входит в состав многих минералов, содержится в каменном угле, почвах, морской воде, а также в живых организмах. Наиболее ценны минералы – сподумен LiAl(SiО 3) 2 , амблигонит LiAl(PО 4)F и лепидолит Li 2 Al 2 (SiО 3) 3 (F,OH) 2 .

Простое вещество. Li (литий) серебристо-белый, мягкий, низкоплавкий щелочной металл самый легкий из металлов. Реакционноспособный; на воздухе покрывается оксидно-нитридной пленкой (Li 2 О, Li 3 N). Воспламенятся при умеренном нагревании (выше 200°С); окрашивает пламя газовой горелки в темно-красный цвет. Сильный восстановитель. По сравнению с натрием и собственно щелочными металлами (подгруппа калия) литий является химически менее активным металлом. В обычных условиях бурно реагирует со всеми галогенами. При нагревании непосредственно соединяется с серой, углем, водородом и другими неметаллами. Будучи накален, горит в СО 2 . С металлами литий образует интерметаллические соединения. Кроме того, образует твердые растворы с Na, Al, Zn и с некоторыми другими металлами. Литий энергично разлагает воду, выделяя из нее водород, еще легче взаимодействует с кислотами.



2Li + Н 2 О = 2LiОН + Н 2

2Li + 2НCl = 2LiСl + Н 2

3Li + 4НNO 3 (разб.) = 2LiNO 3 + NO + 2Н 2 O

Литий хранят под слоем вазелина или парафина в запаянных сосудах.

Получение и применение. Литий получают при вакуум-термическом восстановлении сподумена или оксида лития в качестве восстановителя применяют кремний или алюминий.

2Li 2 О + Si = 4Li + SiО 2

3Li 2 О + 2Al = 6Li + A1 2 О 3

При электролитическом восстановлении используют расплав эвтектической смеси LiCl-KCl.

Литий придает сплавам ряд ценных физико-химических свойств. Так, у сплавов алюминия с содержанием до 1% Li повышается механическая прочность и коррозионная стойкость, введение 2% Li в техническую медь значительно увеличивает ее электрическую проводимость и т. д. Важнейшей областью применения лития является атомная энергетика (в качестве теплоносителя в атомных реакторах). Его используют как источник получения трития (3 Н).

Соединения лития (I). Бинарные соединения лития – бесцветные кристаллические вещества; являются солями или солеподобными соединениями. По химической природе, растворимости и характеру гидролиза они напоминают производные кальция и магния. Плохо растворимы LiF, Li 2 CО 3 , Li 3 PО 4 и др.

Пероксидные соединения для лития малохарактерны. Однако для него известны пероксид Li 2 О 2 , персульфид Li 2 S 2 и перкарбид Li 2 C 2 .

Оксид лития Li 2 О – оснóвный оксид, получается взаимодействием простых веществ. Активно реагирует с водой, кислотами, кислотными и амфотерными оксидами.

Li 2 О + Н 2 О = 2LiOH

Li 2 О + 2НCl(разб.) = 2LiCl + H 2 О

Li 2 О + CО 2 = Li 2 CО 3

Гидроксид лития LiOH – сильное основание, но по растворимости и силе уступает гидроксидам остальных щелочных металлов, и в отличие от них, при накаливании LiOH разлагается:

2LiOH ↔ Li 2 О + Н 2 О (800-1000°С, в атмосфере Н 2)

LiOH получают электролизом водных растворов LiCl. Применяется как электролит в аккумуляторах.

При совместной кристаллизации или сплавлении солей лития с однотипными соединениями других щелочных металлов образуются эвтектические смеси (LiNО 3 –KNО 3 и др.); реже образуются двойные соединения, например M +1 LiSО 4 , Na 3 Li(SО 4) 2 ∙6H 2 О и твердые растворы.

Расплавы солей лития и их смесей являются неводными растворителями; в них растворяется большинство металлов. Эти растворы имеют интенсивную окраску и являются очень сильными восстановителями. Растворение металлов в расплавленных солях важно для многих электрометаллургических и металлотермических процессов, для рафинирования металлов, проведения различных синтезов.

Натрий

Натрий – один из наиболее распространенных элементов на Земле. Важнейшие минералы натрия: каменная соль или галит NaCl, мирабилит или глауберова соль Na 2 SO 4 ∙10H 2 О, криолит Na 3 AlF 6 , бура Na 2 B 4 O 7 ∙10H 2 О и др.; входит в состав многих природных силикатов и алюмосиликатов. Соединения натрия содержатся в гидросфере (около 1,5∙10 т), в живых организмах (так, в крови человека ионы Na + составляют 0,32%, в мышечной ткани – до 1,5%).

Простое вещество. Na (натрий) – серебристо-белый, легкий, очень мягкий, низкоплавкий щелочной металл. Весьма реакционноспособный; на воздухе покрывается оксидной пленкой (тускнеет), воспламеняется при умеренном нагревании. Устойчив в атмосфере аргона и азота (с азотом реагирует только при нагревании). Сильный восстановитель; энергично реагирует с водой, кислотами, неметаллами. С ртутью образует амальгаму (в отличие от чистого натрия, реакция с водой протекает спокойно). Окрашивает пламя газовой горелки в желтый цвет.

2Na + Н 2 О = 2NaOH + Н 2

2Na + 2НCl(разб.) = 2NaCl + Н 2

2Na + 2NaOH(ж) = 2Na 2 О + H 2

2Na + H 2 = 2NaH

2Na + Hal 2 = 2NaHal (комн., Hal = F, Cl; 150-200° C, Hal = Br, I)

2Na + NH 3 (г) = 2NaNH 2 + H 2

Co многими металлами натрий образует интерметаллические соединения. Так, с оловом дает ряд соединений: NaSn 6 , NaSn 4 , NaSn 3 , NaSn 2 , NaSn, Na 2 Sn, Na 3 Sn и др.; с некоторыми металлами дает твердые растворы.

Натрий хранят в запаянных сосудах или под слоем керосина.

Получение и применение натрия. Натрий получают электролизом расплавленного NaCl и реже NaOH. При электролитическом восстановлении NaCl используют эвтектическую смесь, например, NaCl-KCl (температура плавления почти на 300°С ниже, чем температура плавления NaCl).

2NaCl(ж) = 2Na + Cl 2 (эл. ток)

Натрий используется в металлотермии, органическом синтезе, ядерных энергетических установках (в качестве теплоносителя), клапанах авиационных двигателей, химических производствах, где требуется равномерный обогрев в пределах 450-650° С.

Соединения натрия (I). Наиболее характерны ионные соединения кристаллического строения, отличающиеся тугоплавкостью, хорошо растворяются в воде. Труднорастворимы некоторые производные со сложными анионами, как гексагидроксостибат (V) Na; мало растворим NaHCO 3 (в отличие от карбоната).

При взаимодействии с кислородом натрий (в отличие от лития) образует не оксид, а пероксид: 2Na + O 2 = Na 2 O 2

Оксид натрия Na 2 O получают восстановлением Na 2 O 2 металлическим натрием. Известны также малостойкие озонид NaO 3 и надпероксид натрия NaO 2 .

Из соединений натрия важное значение имеют его хлорид, гидроксид, карбонаты и многочисленные другие производные.

Хлорид натрия NaCl является основой для целого ряда важнейших производств, таких, как производство натрия, едкого натра, соды, хлора и др.

Гидроксид натрия (едкий натр, каустическая сода ) NaOH – очень сильное основание. Применяется в разнообразных отраслях промышленности, главные из которых – производство мыл, красок, целлюлозы и др. Получают NaOH электролизом водных растворов NaCl и хи­мическими методами. Так, распространен известковый способ – взаимодействие раствора карбоната натрия (соды) с гидроксидом кальция (гашеной известью):

Na 2 CO 3 + Са(ОН) 2 = 2NaOH + СаСO 3

Карбонаты натрия Na 2 CO 3 (кальцинированная сода ), Na 2 СО 3 ∙10Н 2 О (кристаллическая сода ), NaHCO 3 (питьевая сода ) используются в химической, мыловаренной, бумажной, текстильной, пищевой промышленности.

Подгруппа калия (калий, рубидий, цезий, франций)

Элементы подгруппы калия – наиболее типичные металлы. Для них наиболее характерны соединения с преимущественно ионным типом связи. Комплексообразование с неорганическими лигандами для К + , Rb + , Cs + нехарактерно.

Наиболее важными минералами калия являются: сильвин КCl, сильвинит NaCl∙KCl, карналлит KCl∙MgCl 2 ∙6H 2 О, каинит KCl∙MgSО 4 ∙3H 2 О. Калий (вместе с натрием) входит в состав живых организмов и всех силикатных пород. Рубидий и цезий содержатся в минералах калия. Франций радиоактивен, стабильных изотопов не имеет (наиболее долгоживущий изотоп Fr с периодом полураспада 22 мин.).

Простые вещества. К (калий) – серебристо-белый, мягкий, низкоплавкий щелочной металл. Чрезвычайно реакционноспособный, сильнейший восстановитель; реагирует с О 2 воздуха, водой (идет воспламенение выделяющегося Н 2), разбавленными кислотами, неметаллами, аммиаком, сероводородом, расплавом гидроксида калия. Практически не реагирует с азотом (в отличие от лития и натрия). Образует интерметаллиды с Na, Tl, Sn, Pb и Bi. Окрашивает пламя газовой горелки в фиолетовый цвет.

Rb (рубидий) белый, мягкий, весьма низкоплавкий щелочной металл. Чрезвычайно реакционноспособный; сильнейший восстановитель; энергично реагирует с О 2 воздуха, водой (идет воспламенение металла и выделяющегося Н 2), разбавленными кислотами, неметаллами, аммиаком, сероводородом. Не реагирует с азотом. Окрашивает пламя газовой горелки в фиолетовый цвет.

Cs (цезий) белый (на срезе светло-желтый), мягкий, весьма низкоплавкий щелочной металл. Чрезвычайно реакционноспособный, сильнейший восстановитель; реагирует с О 2 воздуха, водой (идет воспламенение металла и выделяющегося Н 2), разбавленными кислотами, неметаллами, аммиаком, сероводородом. He реагирует с азотом. Окрашивает пламя газовой горелки в синий цвет.

Fr (франций) белый, весьма легкоплавкий щелочной металл. Радиоактивен. Самый реакционноспособный из всех металлов, по химическому поведению подобен цезию. На воздухе покрывается оксидной пленкой. Сильный восстановитель; энергично реагирует с водой и кислотами, выделяя Н 2 . Выделены соединения франция FrClО 4 и Fr 2 методом осаждения с соответствующими малорастворимыми солями Rb и Cs.

Калий и его аналоги хранят в запаянных сосудах, а также под слоем парафинового или вазелинового масла. Калий, кроме того, хорошо сохраняется под слоем керосина или бензина.

Получение и применение. Калий получают электролизом расплава КCl и натрийтермическим методом из расплавленного гидроксида или хлорида калия. Рубидий и цезий чаще получают вакуум-термическим восстановлением их хлоридов металлическим кальцием. Все щелочные металлы хорошо очищаются возгонкой в вакууме.

Металлы подгруппы калия при нагревании и освещении сравнительно легко теряют электроны, и эта способность делает их ценным материалом для изготовления фотоэлементов.

Соединения калия (I), рубидия (I), цезия (I). Производные калия и его аналогов являются преимущественно солями и солеподобными соединениями. По составу, кристаллическому строению, растворимости и характеру сольволиза их соединения проявляют большое сходство с однотипными соединениями натрия.

В соответствии с усилением химической активности в ряду K–Rb–Cs возрастает тенденция к образованию пероксидных соединений. Так, при сгорании они образуют надпероксиды ЭО 2 . Косвенным путем можно получить также пероксиды Э 2 О 2 и озониды ЭО 3 . Пероксиды, надпероксиды и озониды – сильные окислители, легко разлагаются водой и разбавленными кислотами:

2КО 2 + 2Н 2 О = 2КОН + Н 2 О 2 + О 2

2КО 2 + 2НCl = 2КCl + Н 2 О 2 + О 2

4КО 3 + 2Н 2 О = 4КОН + 5О 2

Гидроксиды ЭОН – самые сильные основания (щелочи); при накаливании, подобно NaOH, возгоняются без разложения. При растворении в воде выделяется значительное количество теплоты. Наибольшее значение в технике имеет КОН (едкое кали), получаемый электролизом водного раствора КCl.

В противоположность аналогичным соединениям Li + и Na + их оксохлораты (VII) ЭОCl 4 , хлороплатинаты (IV) Э 2 РlCl 6 , нитритокобальтаты (III) Э 3 [Со(NO 2) 6 ] и некоторые другие труднорастворимы.

Из производных подгруппы наибольшее значение имеют соединения калия. Около 90% солей калия потребляется в качестве удобрении. Его соединения применяются также в производстве стекла, мыла.

Подгруппа меди (медь, серебро, золото)

Для меди наиболее характерны соединения со степенями окисления +1 и +2, для золота +1 и +3, а для серебра +1. Все они обладают ярко выраженной склонностью к комплексообразованию.

Все элементы IB-группы относятся к сравнительно малораспространенным. Наибольшее значение из природных соединений меди имеют минералы: медный колчедан (халькопирит ) CuFeS 2 , медный блеск Cu 2 S, а также куприт Cu 2 О, малахит CuСО 3 ∙Cu(ОН) 2 и др. Серебро входит в состав сульфидных минералов других металлов (Pd, Zn, Cd и др.). Для Cu, Ag и Au довольно обычны также арсенидные, стибидные и сульфидарсенидные минералы. Медь, серебро и особенно золото встречаются в природе в самородном состоянии.

Все растворимые соединения меди, серебра и золота ядовиты.

Простые вещества. Си (медь) красный, мягкий, ковкий металл. Не изменяется на воздухе в отсутствии влаги и СO 2 , при нагревании тускнеет (образование оксидной пленки). Слабый восстановитель (благородный металл); не реагирует с водой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии O 2 , цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами металлов. Реагирует при нагревании с галогеноводородами.

Cu + H 2 SO 4 (конц., гор.) = CuSО 4 + SO 2 + H 2 O

Cu + 4НNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

ЗCu + 8НNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4Н 2 O

2Cu + 4НCl(разб.) + O 2 = 2CuCl 2 + 2Н 2 O

Cu + Cl 2 (влаж., комн.) = CuCl 2

2Cu + O 2 (нагр.) = 2CuО

Cu + 4KCN(конц.) + Н 2 O = 2K + 2KOH + H 2

4Cu + 2O 2 + 8NH 3 + 2Н 2 O = 4OH

2Cu + СO 2 + O 2 + Н 2 O = Cu 2 СO 3 (ОН) 2 ↓

Ag (серебро) белый, тяжелый, пластичный металл. Малоактивный (благородный металл); не реагирует с кислородом, водой, разбавленными хлороводородной и серной кислотами. Слабый восстановитель; реагирует с кислотами-окислителями. Чернеет в присутствии влажного H 2 S.

Ag + 2H 2 SO 4 (конц., гор.) = Ag 2 SO 4 ↓ + SO 2 + Н 2 O

3Ag + 4HNO 3 (paзб.) = 3AgNO 3 + NO + 2H 2 O

4Ag + H 2 S + О 2 (воздух) = 2Ag 2 S + 2H 2 O

2Ag + Наl 2 (нагр.) = 2AgHal

4Ag + 8KCN + 2H 2 O + O 2 = 4K + 4KOH

Аи (золото) желтый, ковкий, тяжелый, высокоплавкий металл. Устойчив в сухом и влажном воздухе. Благородный металл; не реагирует с водой, кислотами-неокислителями, концентрированной серной и азотной кислотами, щелочами, гидратом аммиака, кислородом, азотом, углеродом, серой. В растворе простых катионов не образует. Переводится в раствор «царской водкой» , смесями галогенов и галогеноводородных кислот, кислородом в присутствии цианидов щелочных металлов. Окисляется нитратом натрия при сплавлении, дифторидом криптона.

Au + HNO 3 (конц.) + 4НCl(конц.) = Н + NO + 2Н 2 O

2Au + 6H 2 SeO 4 (конц., гор.) = Au 2 (SeO 4) 3 + 3SeO 2 + 6Н 2 O

2Au + 3Cl 2 (до 150°C) = 2AuCl 3

2Au + Cl 2 (150-250°С) = 2AuCl

Au + 3Наl + 2ННаl(конц.) = Н + NO + 2Н 2 О (Hal = Cl, Br, I)

4Au + 8NaCN + 2Н 2 О + О 2 = 4Na + 4KOH

Au + NaN0 3 = NaAuО 2 + NO

Получение и применение. Медь получают пирометаллургическим восстановлением окисленных сульфидных концентратов. Выделяющийся при обжиге сульфидов диоксид серы SO 2 идет на производство серной кислоты, а шлак используется для производства шлакобетона, каменного литья, шлаковаты и пр. Восстановленную черновую медь очищают электрохимическим рафинированием. Из анодного шлама извлекают благородные металл, селен, теллур и др. Серебро получают при переработке полиметаллических (серебряно-свинцово-цинковых) сульфидных руд. После окислительного обжига, цинк отгоняют, медь окисляют, а черновое серебро подвергают электрохимическому рафинированию. При цианидном способе добычи золота сначала золотоносную породу отмывают водой, затем обрабатывают раствором NaCN на воздухе; при этом золото образует комплекс Na, из которого его осаждают цинком:

Na + Zn = Na 2 + 2Au↓

Этим способом можно выделять и серебро из бедных руд. При ртутном способе золотоносную породу обрабатывают ртутью с целью получения амальгамы золота, затем ртуть отгоняется.

Си, Ag и Au друг с другом и со многими другими металлами образуют сплавы. Из сплавов меди наибольшее значение имеют бронзы (90% Cu, 10% Sn), томпак (90% Cu, 10% Zn), мельхиор (68% Cu, 30% Ni, 1% Mn, 1% Fe), нейзильбер (65% Cu, 20% Zn, 15% Ni), латунь (60% Cu, 40% Zn), а также монетные сплавы.

Ввиду высокой тепло- и электропроводимости, ковкости, хороших литейных качеств, большого сопротивления на разрыв и химической стойкости медь широко используется в промышленности, электротехнике, машиностроении. Из меди изготавливают электрические провода и кабели, различную промышленную аппаратуру (котлы, перегонные кубы и т.п.)

Серебро и золото вследствие мягкости обычно сплавляют с другими металлами, чаще с медью. Сплавы серебра служат для изготовления ювелирных и бытовых изделий, монет, радиодеталей, серебряно-цинковых аккумуляторов, в медицине. Сплавы золота применяются для электрических контактов, для зубопротезирования, в ювелирном деле.

Соединения меди (I), серебра (I) и золота (I). Степень окисления +1 наиболее характерна для серебра; у меди и, в особенности, у золота эта степень окисления проявляется реже.

Бинарные соединения Cu (I), Ag (I) и Au (I) – твердые кристаллические солеподобные вещества, в большинстве нерастворимые в воде. Производные Ag (I) образуются при непосредственном взаимодействии простых веществ, а Cu (I) и Au (I) – при восстановлении соответствующих соединений Cu (II) и Au (III).

Для Cu (I) и Ag (I) устойчивы амминокомплексы типа [Э(NH 3) 2 ] + , и поэтому большинство соединений Cu (I) и Ag (I) довольно легко растворяется в присутствии аммиака, так:

CuCl + 2NH 3 = Cl

Ag 2 O + 4NH 3 + H 2 O = 2(OH)

Гидроксиды типа [Э(NH 3) 2 ](OH) значительно устойчивее, чем ЭОН, и по силе приближаются к щелочам. Гидроксиды ЭОН неустойчивы, и при попытке их получения по обменным реакциям выделяются оксиды CuО (красный), Ag 2 O (темно-коричневый), так:

2AgNO 3 + 2NaOH = Ag 2 O + 2NaNO 3 + Н 2 O

Оксиды Э 2 O проявляют кислотные свойства при взаимодействии с соответствующими основными соединениями образуются купраты (I), аргентаты (I) и аураты (I).

Cu 2 O + 2NаОН(конц.) + Н 2 O = 2Na

Нерастворимые в воде и кислотах галогениды ЭНаl довольно значительно растворяются в растворах галогеноводородных кислот или основных галогенидов:

CuCl + HC1 = H AgI + KI = K

Аналогично ведут себя нерастворимые в воде цианиды ЭCN, сульфиды Э 2 S и пр.

Большинство соединений Cu (I) и Au (I) легко окисляется (даже кислородом воздуха), переходя в устойчивые производные Cu (II) и Au (III).

4CuCl + O 2 + 4НCl = 4CuCl 2 + 2Н 2 О

Для соединений. Cu (I) и Au (I) характерно диспропорционирование:

2CuC1 = СuCl 2 + Cu

3AuCl + КCl = K + 2Au

Большинство соединений Э (I) при небольшом нагревании и при действии света легко распадаются, поэтому их обычно хранят в банках из темного стекла. Светочувствительность галогенидов серебра используется для приготовления светочувствительных эмульсий. Оксид меди (I) применяют для окрашивания стекла, эмалей, а также в полупроводниковой технике.

Соединения меди (II). Степень окисления +2 характерна только для меди. При растворении солей Cu (II) в воде или при взаимодействии CuО (черного цвета) и Cu(ОН) 2 (голубого цвета) с кислотами образуются голубые аквакомплексы 2+ . Такую же окраску имеет большинство кристаллогидратов, например, Cu(NO 3) 2 ∙6H 2 O; встречаются также кристаллогидраты Cu (II), имеющие зеленую и темно-коричневую окраску.

При действии аммиака на растворы солей меди (II) образуются аммиакаты:

Cu(OH) 2 ↓ + 4NH 3 + 2H 2 = (OH) 2

Для меди (II) характерны также анионные комплексы – купраты (II). Так, Сu(ОН) 2 при нагревании в концентрированных растворах щелочей частично растворяется, образуя синие гидроксокупраты (II) типа M 2 +1 . В водных растворах гидроксокупраты (II) легко разлагаются.

В избытке основных галогенидов CuHal 2 образуют галогенокупраты (II) типа M +1 и М 2 +1 [СuНаl 4 ]. Известны также анионные комплексы Cu (II) с цианид-, карбонат-, сульфат- и другими анионами.

Из соединений меди (II) технически наиболее важен кристаллогидрат CuSO 4 ∙5H 2 O (медный купорос ) применяется для получения красок, для борьбы с вредителями и болезнями растений, служит исходными продуктом для получения меди и ее соединений и т. д.

Соединения меди (III), серебра (III), золота (III). Степень окисления +3 наиболее характерна для золота. Соединения меди (III) и серебра (III) неустойчивы и являются сильными окислителями.

Исходным продуктом для получения многих соединений золота является АuCl 3 , который получают взаимодействием порошка Аu с избытком Cl 2 при 200°С.

Галогениды, оксид и гидроксид Au (III) – амфотерные соединения с преобладанием кислотных свойств.

NaOH + Au(OH) 3 = Na

Au(OH) 3 + 4HN0 3 = H + 3H 2 O

AuHal 3 + M +1 Hal = M

Нитрато- и цианоаураты (III) водорода выделены в свободном состоянии. В присутствии солей щелочных металлов образуются аураты, например: М +1 , M +1 и др.

Соединения золота (V) и(VII). Взаимодействием золота и фторида криптона (II) получен пентафторид золота AuF 5:

2Au + 5KrF 2 = 2AuF 5 + 5Кr

Пентафторид AuF 5 проявляет кислотные свойства, с оснóвными фторидами образует фтороаураты (V).

NaF + AuF 5 = Na

Соединения Au (V) – очень сильные окислители. Так, AuF 5 окисляет даже XeF 2:

AuF 5 + XeF 2 = XeF 4 + AuF 3

Известны также соединения типа XeFAuF 6 , XeF 5 AuF 6 и некоторые другие.

Известен крайне неустойчивый фторид AuF 7 .

Водород

ВОДОРО́Д -а; м. Химический элемент (H), лёгкий газ без цвета и запаха, образующий в соединении с кислородом воду.

Водоро́дный, -ая, -ое. В-ые соединения. В-ые бактерии. В-ая бомба (бомба огромной разрушительной силы, взрывное действие которой основано на термоядерной реакции). Водоро́дистый, -ая, -ое.

водоро́д

(лат. Hydrogenium), химический элемент VII группы периодической системы. В природе встречаются два стабильных изотопа (протий и дейтерий) и один радиоактивный (тритий). Молекула двухатомна (Н 2). Газ без цвета и запаха; плотность 0,0899 г/л, t кип - 252,76°C. Соединяется с многими элементами, с кислородом образует воду. Самый распространённый элемент космоса; составляет (в виде плазмы) более 70% массы Солнца и звёзд, основная часть газов межзвёздной среды и туманностей. Атом водорода входит в состав многих кислот и оснований, большинства органических соединений. Применяют в производстве аммиака, соляной кислоты, для гидрогенизации жиров и др., при сварке и резке металлов. Перспективен как горючее (см. Водородная энергетика).

ВОДОРОД

ВОДОРО́Д (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1,00794. Химический символ водорода Н читается в нашей стране «аш», как произносится эта буква по-французски.
Природный водород состоит из смеси двух стабильных нуклидов (см. НУКЛИД) с массовыми числами 1,007825 (99,985 % в смеси) и 2,0140 (0,015 %). Кроме того, в природном водороде всегда присутствуют ничтожные количества радиоактивного нуклида - трития (см. ТРИТИЙ) 3 Н (период полураспада Т 1/2 12,43 года). Так как в ядре атома водорода содержится только 1 протон (меньше в ядре атома элемента протонов быть не может), то иногда говорят, что водород образует естественную нижнюю границу периодической системы элементов Д. И. Менделеева (хотя сам элемент водород расположен в самой верхней части таблицы). Элемент водород расположен в первом периоде таблицы Менделеева. Его относят и к 1-й группе (группе IА щелочных металлов (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) ), и к 7-й группе (группе VIIA галогенов (см. ГАЛОГЕНЫ) ).
Массы атомов у изотопов водорода различаются между собой очень сильно (в разы). Это приводит к заметным различиям в их поведении в физических процессах (дистилляция, электролиз и др.) и к определенным химическим различиям (различия в поведении изотопов одного элемента называют изотопными эффектами, для водорода изотопные эффекты наиболее существенны). Поэтому в отличие от изотопов всех остальных элементов изотопы водорода имеют специальные символы и названия. Водород с массовым числом 1 называют легким водородом, или протием (лат. Protium, от греческого protos - первый), обозначают символом Н, а его ядро называют протоном (см. ПРОТОН (элементарная частица)) , символ р. Водород с массовым числом 2 называют тяжелым водородом, дейтерием (см. ДЕЙТЕРИЙ) (лат Deuterium, от греческого deuteros - второй), для его обозначения используют символs 2 Н, или D (читается «де»), ядро d - дейтрон. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым водородом, или тритием (лат. Tritum, от греческого tritos - третий), символ 2 Н или Т (читается «те»), ядро t - тритон.
Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода 1s 1 . В соединениях проявляет степени окисления +1 и, реже, –1 (валентность I). Радиус нейтрального атома водорода 0,024 нм. Энергия ионизации атома 13,595 эВ, сродство к электрону 0,75 эВ. По шкале Полинга электроотрицательность водорода 2,20. Водород принадлежит к числу неметаллов.
В свободном виде - легкий горючий газ без цвета, запаха и вкуса.
История открытия
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) в 1766 исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона (см. ФЛОГИСТОН) помешала ему сделать правильные выводы. Французский химик А. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) совместно с инженером Ж. Менье (см. МЕНЬЕ Жан Батист Мари Шарль) , используя специальные газометры, в 1783 осуществил синтез воды, а затем и ее анализ, разложив водяной пар раскаленным железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из нее получен. В 1787 Лавуазье пришел к выводу, что «горючий воздух» представляет собой простое вещество, и, следовательно, относится к числу химических элементов. Он дал ему название hydrogene (от греческого hydor - вода и gennao - рождаю) - «рождающий воду». Установление состава воды положило конец «теории флогистона». Русское наименование «водород» предложил химик М. Ф. Соловьев (см. СОЛОВЬЕВ Михаил Федорович) в 1824. На рубеже 18 и 19 веков было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1.
Нахождение в природе
На долю водорода приходится около 1% массы земной коры (10-е место среди всех элементов). В свободном виде водород на нашей планете практически не встречается (его следы имеются в верхних слоях атмосферы), но в составе воды распространен на Земле почти повсеместно. Элемент водород входит в состав органических и неорганических соединений живых организмов, природного газа, нефти, каменного угля. Он содержится, разумеется, в составе воды (около 11% по массе), в различных природных кристаллогидратах и минералах, в составе которых имеется одна или несколько гидроксогрупп ОН.
Водород как элемент доминирует во Вселенной. На его долю приходится около половины массы Солнца и других звезд, он присутствует в атмосфере ряда планет.
Получение
Водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент - метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом:
CH 4 + H 2 O = CO + 3H 2 и CH 4 + 1/2 O 2 = CO 2 + 2H 2
Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешевой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка с соляной кислотой.
Физические и химические свойства
При обычных условиях водород - легкий (плотность при нормальных условиях 0,0899 кг/м 3) бесцветный газ. Температура плавления –259,15 °C, температура кипения –252,7 °C. Жидкий водород (при температуре кипения) обладает плотностью 70,8 кг/м 3 и является самой легкой жидкостью. Стандартный электродный потенциал Н 2 /Н - в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0 °C растворимость составляет менее 0,02 см 3 /мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо - в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143,06 МДж/кг.
Существует в виде двухатомных молекул Н 2 . Константа диссоциации Н 2 на атомы при 300 К 2,56·10 -34 . Энергия диссоциации молекулы Н 2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н 2 0,07414 нм.
Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин (см. СПИН) , то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н 2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н 2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н 2 и 25% п-Н 2 . Физические свойства п- и о-Н 2 немного различаются между собой. Так, если температура кипения чистого о-Н 2 20,45 К, то чистого п-Н 2 - 20,26 К. Превращение о-Н 2 в п-Н 2 сопровождается выделением 1418 Дж/моль теплоты.
В научной литературе неоднократно высказывались соображения о том, что при высоких давлениях (выше 10 ГПа) и при низких температурах (около 10 К и ниже) твердый водород, обычно кристаллизующийся в гексагональной решетке молекулярного типа, может переходить в вещество с металлическими свойствами, возможно, даже сверхпроводник. Однако пока однозначных данных о возможности такого перехода нет.
Высокая прочность химической связи между атомами в молекуле Н 2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (со взрывом) только с газообразным фтором:
H 2 + F 2 = 2HF + Q.
Если смесь водорода и хлора при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом происходит со взрывом, если в смесь этих газов внести катализатор - металлический палладий (или платину). При поджигании смесь водорода и кислорода (так называемый гремучий газ (см. ГРЕМУЧИЙ ГАЗ) ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде спокойно горит с выделением большого количества теплоты:
H 2 + 1/2O 2 = Н 2 О + 285,75 кДж/моль
С остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400 °C в присутствии катализатора - железа:
3H 2 + N 2 = 2NH 3 + Q.
Также только при нагревании водород реагирует с серой с образованием сероводорода H 2 S, с бромом - с образованием бромоводорода НBr, с иодом - с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором, кремнием, фосфором водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.
При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления –1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН 2 . Полимерный гидрид алюминия (AlH 3) x - один из самых сильных восстановителей - получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием, гафнием и др.) водород образует соединения переменного состава (твердые растворы).
Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо, никель, свинец, вольфрам, медь и др.). Так, при нагревании до температуры 400-450 °C и выше происходит восстановление железа водородом из его любого оксида, например:
Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.
Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем. Более активные металлы (в том числе и марганец) до металла из оксидов не восстанавливаются.
Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это - так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С 2 Н 4 , причем образуется этан С 2 Н 6:
С 2 Н 4 + Н 2 = С 2 Н 6 .
Взаимодействием оксида углерода(II) и водорода в промышленности получают метанол:
2Н 2 + СО = СН 3 ОН.
В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (см. ВОДОРОДНАЯ СВЯЗЬ) (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э"... Н... Э"", причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.
Применение
Водород используют при синтезе аммиака NH 3 , хлороводорода HCl, метанола СН 3 ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием (см. ГИДРИРОВАНИЕ) природных растительных масел получают твердый жир - маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода с водородом используют при сварке.
Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды - довольно энергоемкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500-600 °C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с ее помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты. Однако после Чернобыльской катастрофы развитие атомной энергетики повсеместно свертывается, так что указанный источник энергии становится недоступным. Поэтому перспективы широкого использования водорода как источника энергии пока сдвигаются по меньшей мере до середины 21-го века.
Особенности обращения
Водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий).
Биологическая роль
Биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности (см. КОМПЛЕМЕНТАРНОСТЬ) в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении «узнавания» на молекулярном уровне. Водород (ион Н +) принимает участие в важнейших динамических процессах и реакциях в организме - в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза (см. ГОМЕОСТАЗ) , в процессах мембранного транспорта. Таким образом, наряду с кислородом и углеродом водород образует структурную и функциональную основы явлений жизни.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "водород" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Водород 4, 4H Нейтронов 3 Протонов 1 Свойства нуклида Атомная масса 4,027810(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 5, 5H Нейтронов 4 Протонов 1 Свойства нуклида Атомная масса 5,035310(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 6, 6H Нейтронов 5 Протонов 1 Свойства нуклида Атомная масса 6,044940(280) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 7, 7H Нейтронов 6 Протонов 1 Свойства нуклида Атомная масса 7,052750(1080) … Википедия