Трутся topic simple machines. Методическая разработка занятия по английскому языку на тему "Машины и работа" (3 курс)

Easier - A simple machine is a device that helps make work easier; a device that makes it easier to move something. Some simple machines are a wheel, a pulley, a lever, a screw, and an inclined plane. Harder - Most machines consist of a number of elements, such as gears and ball bearings, that work together in a complex way. No matter how complex a machine, it is still based on the compounding of six types of simple machines. The six types of machines are the lever, the wheel and axle, the pulley, the inclined plane, the wedge, and the screw. Background Information for Simple Machines from National Museum of Science and Technology , Canada http://www.science-tech.nmstc.ca/english/schoolzone/Info_Simple_Machines.cfm Here you can find the answers to some commonly asked questions about simple machines. The Elements of Machines: Simple Machines from Leonardo"s Workshop http://www.mos.org/sln/Leonardo/InventorsToolbox.html Learn about devices that make work easier to do by providing some tradeoff between the force applied and the distance over which the force is applied. Also provides a brief introduction to uses of a gear, cam, crank and rod, chain and belt, and the ratchet. Levers from Beakman & Jax http://www.beakman.com/lever/lever.html Play with levers and find out how work from the fulcrum to the load to the effort. (Wait for second page to come) Marvelous Machines http://www.galaxy.net:80/~k12/machines/index.shtml This website provides a series of experiments about simple machines: levers, wheels and inclined planes. They were developed for third grade students. (Comes up slowly )
After exploring some or all of the websites below, complete one or more of these activities: Investigate Wheels with Your Bicycle. Go to PBS Teachersource"s website and use your bicycle to learn about the wheel. Find Out How Stuff Works. Check out How Stuff Works . Look for a device that uses a simple machine as part of how it works. Create a poster showing how it works. Gear Up with a Tricycle & Bicycle. Visit PBS Teachersource"s site and follow the procedures there to learn a lot more about gears. Complete a Simple Machines WebQuest. Follow or adapt the procedures found at one of these webQuest sites: 1) Exploring Simple Machines by Paula Markowitz (Grade 4) http://www.lakelandschools.org/EDTECH/Machines/Machines.htm 2) Simple Machines http://www.eng.iastate.edu/twt/Course/packet/labs/wheels&leverLab.htm 3) Simple Machines WebQuest (Grade 4-6) http://www.plainfield.k12.in.us/hschool/webq/webq8/jjquest.htm 4) Simple Machines http://www.beth.k12.pa.us/schools/wwwclass/mcosgrove/simple.htm 5) Simple Machines Webquest http://www.jsd.k12.ak.us/ab/el/simplemachines.html Complete an Online Simple Machines Activity. Learn more about simple machines by following the directions at A Time for Simple Machines . You may also want to test your knowledge at Gadget Anatomy . Complete Some Simple Machine Experiments. Find lots of experiments at sites like Marvelous Machines and Motion, Energy and Simple Machines .
Websites For Kids Simple Machine Page for Kids http://www.san-marino.k12.ca.us/~summer1/machines/simplemachines.html This is a page on simple machines for kids with pictures. Simple Machines (Part of a ThinkQuest project: E"Ville Mansion! ) http://library.thinkquest.org/3447/simpmach.htm Learn about four simple machines (Inclined planes, pulley systems, levers, and the wheel and axle). All are mechanisms that convert energy to a more useful form. More Simple Machine Websites Mechanisms and Simple Machines from Introduction to Mechanisms at Carnegie Mellon University http://www.cs.cmu.edu/People/rapidproto/mechanisms/chpt2.html Here is advanced level material that covers inclined planes, gears, pulleys, and more. Motion, Energy and Simple Machines by J.S. Mason http://www.necc.mass.edu/MRVIS/MR3_13/start.htm This site investigates Newton"s Laws of Motion and the concepts of potential and kinetic energy. The concepts of force, friction, energy transfer, and mechanical advantage are explored as you build simple machines and investigate there operation. Oh No Lego® Wedgies! from Weird Richard http://weirdrichard.com:80/wedge.htm Explore the wedge, the active twin of the inclined plane. It does useful work by moving. In contrast, the inclined plane always remains stationary. Related Websites from Weird Richard: 2) Ladies and Gentlemen...The Inclined Plane! http://weirdrichard.com/inclined.htm 3) Oh Goody, Even More on Gears! http://weirdrichard.com/gears.htm 3) Those Crazy Lego® Screws! http://weirdrichard.com/screw.htm This site houses a collection of over seventy photographs of common, everyday simple machines. Simple Machines Demo (Pulley and Levers) http://www.cwru.edu/artsci/phys/courses/demos/simp.htm This demonstration explores the mechanical advantage of pulleys and levers and evaluates the concept of torque. Spotlight on Simple Machines from "inQuiry Almanack " at Franklin Institute http://sln.fi.edu/qa97/spotlight3/spotlight3.html Here you learn about simple machines that make work easier: inclined plane, lever, wedge, screw, pulley, and the wheel and axle. Websites for Teachers A First-Class Job http://www.aimsedu.org/Activities/oldSamples/FirstClass/job1.html What happens when the position of the fulcrum on a first-class lever is changed? Bicycles by J.P. Crotty from Yale-New Haven Teachers Institute http://pclt.cis.yale.edu/ynhti/curriculum/units/1987/6/87.06.01.x.html#h This is the site of a narrative unit plan that begins with the circle and proceeds to investigation of simple machines using the bicycle. Sketching Gadget Anatomy at The Museum of Science http://www.mos.org/sln/Leonardo/SketchGadgetAnatomy.html The idea for this lesson is that close observation and sketching lead to a better understanding of how machines work. Simple Machines (Grades 3-4) by C. Huddle http://www.lerc.nasa.gov/WWW/K- 12/Summer_Training/KaeAvenueES/SIMPLE_MACHINES.html These activities are designed to give students experiences in using simple machines. Similar Websites: 2) Simple Machines (Grade 3) by L. Wilkins http://www.ed.uiuc.edu/ylp/Units/Curriculum_Units/95-96/Simple_Machines_LWilkins/identify_simple_machines.html 3) Simple Machines (Grades 4-8) by B. Campbell

Topics: Simple machine , Mechanical advantage , Force Pages: 5 (856 words) Published: September 22, 2013


Activity 1.1.2 Simple Machines Practice Problems Answer Key

Procedure
Answer the following questions regarding simple machine systems. Each question requires proper illustration and annotation, including labeling of forces, distances, direction, and unknown values. Illustrations should consist of basic simple machine functional sketches rather than realistic pictorials. Be sure to document all solution steps and proper units.

All problem calculations should assume ideal conditions and no friction loss.

Simple Machines – Lever
A first class lever in static equilibrium has a 50lb resistance force and 15lb effort force. The lever’s effort force is located 4 ft from the fulcrum.

1.Sketch and annotate the lever system described above.

2.What is the actual mechanical advantage of the system?

3.Using static equilibrium calculations, calculate the length from the fulcrum to the resistance force. FormulaSubstitute / SolveFinal Answer

A wheel barrow is used to lift a 200 lb load. The length from the wheel axle to the center of the load is 2 ft. The length from the wheel and axle to the effort is 5 ft.

4.Illustrate and annotate the lever system described above.

5.What is the ideal mechanical advantage of the system?
FormulaSubstitute / SolveFinal Answer

6.Using static equilibrium calculations, calculate the effort force needed to overcome the resistance force in the system. FormulaSubstitute / SolveFinal Answer

A medical technician uses a pair of four inch long tweezers to remove a wood sliver from a patient. The technician is applying 1 lb of squeezing force to the tweezers. If more than 1/5 lb of force is applied to the sliver, it will break and become difficult to remove.

7.Sketch and annotate the lever system described above.

8.What is the actual mechanical advantage of the system?
FormulaSubstitute / SolveFinal Answer

9.Using static equilibrium calculations, calculate how far from the fulcrum the tweezers must be held to avoid damaging the sliver FormulaSubstitute / SolveFinal Answer

Simple Machines – Wheel and Axle
10. What is the linear distance traveled in one revolution of a 36 in. diameter wheel? FormulaSubstitute / SolveFinal Answer

An industrial water shutoff valve is designed to operate with 30 lb of effort force. The valve will encounter 200 lb of resistance force applied to a 1.5 in. diameter axle.

11.Sketch and annotate the wheel and axle system described above.

12.What is the required actual mechanical advantage of the system? FormulaSubstitute / SolveFinal Answer

13.What is the required wheel diameter to overcome the resistance force? FormulaSubstitute / SolveFinal Answer

Simple Machines – Pulley System
A construction crew lifts approximately 560 lb of material several times during a day from a flatbed truck to a 32 ft rooftop. A block and tackle system with 50 lb of effort force is designed to lift the materials.

14.What is the required actual mechanical advantage?
FormulaSubstitute / SolveFinal Answer

15.How many supporting strands will be needed in the pulley system? FormulaSubstitute / SolveFinal Answer

A block and tackle system with nine supporting strands is used to lift a metal lathe in a manufacturing facility. The motor being used to wind the cable in the pulley system can provide 100 lb of force.

16.What is the mechanical advantage of the system?
FormulaSubstitute / SolveFinal Answer

17.What is the maximum weight of the lathe?
FormulaSubstitute / SolveFinal Answer

Simple Machines – Inclined Plane
A civil engineer...

You May Also Find These Documents Helpful

    Essay about Simple Machines

    HanicalSimple Machines and its Mechanical Advantage What are Simple Machines ? What do we mean by Mechanical Advantage? Simple Machines * creates a greater output force than the input force Therefore since work is performed by applying a force over a distance, with the use of these machines we can do more work with lesser effort than working with our bare hands. In short, they make work easier. Mechanical Advantage * The Ratio between the input force and the output force. * The measure of the force amplification achieved by using a tool, mechanical device or machine system. Anyway what is input and output force? Input refers to the force you applied while output refers to the resultant force the object has from the input force. Example: I pushed a ball with 10 N of force, it is rolling with 10 N of force. I input 10 N into it, now it is outputting 10 N. The Six Classical Simple Machines The Lever(French word that means “to raise”) * A simple machine that allows you to gain a mechanical advantage in moving an object or in applying a force to an object. It is considered a "pure" simple machine because friction is not a factor to overcome, as in other simple machines . Part | Description | Fulcrum | Is where a solid board or rod can pivot...

    Simple Machines Essay

    ...Simple Machines Definitions: Machine - A device that makes work easier by changing the speed , direction, or amount of a force. Simple Machine - A device that performs work with only one movement. Simple machines include lever, wheel and axle, inclined plane, screw, and wedge. Ideal Mechanical Advantage (IMA)- A machine in which work in equals work out; such a machine would be frictionless and a 100% efficient IMA= De/Dr Actual Mechanical Advantage (AMA)- It is pretty much the opposite of IMA meaning it is not 100% efficient and it has friction. AMA= Fr/Fe Efficiency- The amount of work put into a machine compared to how much useful work is put out by the machine ; always between 0% and 100%. Friction- The force that resist motion between two surfaces that are touching each other. What do we use machines for? Machines are used for many things. Machines are used in everyday life just to make things easier. You use many machines in a day that you might take for granted. For example a simple ordinary broom is a machine . It is a form of a lever. Our country or world would never be this evolved if it wasn"t for machine . Almost every thing we do has a machine involved. We use machines ...

    Simple Machine A machine with few Essay

    ... Simple Machine : A machine with few or no moving parts. Simple machines make work easier. Examples: Screw, Wheel and Axle, Wedge, Pulley, Inclined Plane, Lever Compound Machine : Two or more simple machines working together to make work easier. Examples: Wheelbarrow, Can Opener, Bicycle Inclined plane: A sloping surface, such as a ramp. Makes lifting heavy loads easier. The trade-off is that an object must be moved a longer distance than if it was lifted straight up, but less force is needed. Examples: Staircase, Ramp Lever: A straight rod or board that pivots on a point known as a fulcrum. Pushing down on one end of a lever results in the upward motion of the opposite end of the fulcrum. Examples: Door on Hinges, Seesaw, Hammer, Bottle Opener Pulley: A wheel that usually has a groove around the outside edge for a rope or belt. Pulling down on the rope can lift an object attached to the rope. Work is made easier because pulling down on the rope is made easier due to gravity. Examples: Flag Pole, Crane, Mini-Blinds Screw: An inclined plane wrapped around a shaft or cylinder. This inclined plane allows the screw to move itself or to move an object or material surrounding it when rotated. Examples: Bolt, Spiral Staircase Wedge: Two inclined planes joined back to back. Wedges are used to split things....

    Simple Machine Essay

    ...Simple Machine Joemarie A. Martinez 1-D CE Simple machine Simple machines make work easier by multiplying, reducing, or changing the direction of a force. The scientific formula for work is w = f x d, or, work is equal to force multiplied by distance. Simple machines cannot change the amount of work done, but they can reduce the effort force that is required to do the work! As you can see by this formula, if the effort force is reduced, distance is increased. These simple machines fall into two classes: (i) the inclined plane, wedge, screw characterized by the vector resolution of forces and movement along a line, and (ii) the lever, pulley, wheel and axle characterized by the equilibrium of torques and movement around a pivot. Wedges and screws are both a type of inclined plane; pulleys and wheels and axles are both a form of lever A simple machine is an elementary device that has a specific movement (often called a mechanism), which can be combined with other devices and movements to form a machine . Thus simple machines are considered to be the "building blocks" of more complicated machines . This analytical view of machines as decomposable into simple machines first arose in the Renaissance...

    Practice Acl Problem Answers Essay

    Chapter 7 ← Problem 7-43 - ACL Problem Solution a. There are 44 payroll transactions in the Payroll file. (This is determined by reading the number at the bottom of the screen.) b. The largest and smallest gross pay amounts for September are $4,395.83 and $1,278.33, respectively. (Use Quick Sort.) c. Total gross pay for September was $99,585.46. (Use the Total command.) d. The report on the following page shows gross pay by department. (Use the Summarize command on the Gross Pay column, save to a file, and print.) Note that this screenshot was produced using the “Screen” option in the Output tab of the Summarize window. Students’ hardcopy printouts will appear slightly different, but will contain the same departmental totals. e. There are no exceptions in the calculation of net pay for September. (Use the following Filter: Gross Pay – Taxes < > Net Pay.) f. There are no duplicate check numbers. (Use the Duplicates command on the check number column). There are four missing checks (#12389- #12392). The audit concern is that there may be unrecorded payroll transactions. (Use the Gaps command on the check number column.) Report for requirement d: Chapter 8 Problem 8-41 – ACL Problem Solution a. The following is a printout of the Statistics command for Inventory Value at Cost: Field: Value...

    Simple Regression Model Practice Problems Essay

    Chapter 4 Simple regression model Practice problems Use Chapter 4 Powerpoint question 4.1 to answer the following questions: 1. Report the Eveiw output for regression model . Please write down your fitted regression model. 2. Are the sign for consistent with your expectation, explain? 3. Hypothesize the sign of the coefficient and test your hypothesis at 5% significance level using t-table. 4. What percentage of variation in 30 year fixed mortgage rate is explained by this model? Why? Use Chapter 4 Powerpoint question 4.2 to answer the following questions: 5. Report the Eveiw output for regression model Based on the estimation period of 1986.01 – 1999.07. Please write down your fitted regression model. 6. Is Trend correlated with USPI? Set up the hypothesis testing at 5% significance level. 7. What percentage of variation in USPI is explained by this model? Why? 8. Based on your Eview model, report your forecast of USPI for the period of 1999.08-2000.07. Report RMSE. Use Chapter 4 Powerpoint question 4.3 to answer the following questions: 9. Report the Eveiw output for regression model USPIt = (USTBR)t + t based on the estimation period of 1986.01 – 1999.07. Please write down your fitted regression model. Dependent Variable: USPI | | | Method: Least Squares | | | Date: 01/24/11 Time: 16:46 | | | Sample:...

    Problem Set 1 Answer Key Essay

    FBE 421 Prof. Briggs Problem Set #1 Please print out this document and clearly handwrite your answers to each of the questions below in the space provided. Show all your work accordingly. A. Calculate LTM (a) Revenue and (b) Net Income for Costco Wholesale (COST) using their latest financial statements as of 3Q2011. 77946+60737-53821=84,862 MM Revenue 1303+984-871= 1,416 MM Net-income B. Calculate Costco’s LTM (a) EBIT and (b) EBITDA. 2077+1677-1389=2,365 MM EBIT (2077+795)+(1677+582)-(1389+549)= 3192 MM EBITDA Name: Student ID: 1. C. Calculate Costco’s (a) Market Cap, (b) Total Debt and (c) Enterprise Value as of 3Q2011. a) 437,735,000 * 85.07 = 37.238 Bn b) 1+900+1,247=2.148 Bn c) 37.238+2.148+.578 (minority interest)-4.082= 35.882 Bn (35,882 MM) D. Calculate Costco’s (a) EV/Revenue and (b) EV/EBIT multiples. a) 35,882/84,862=.42x b) 35,882/2,365=15.17x 2. Explain the differences between a firm’s (a) market value, (b) enterprise value, and (c) book value. a) Market value, otherwise known as market capitalization, is the current value of the firm’s common equity on the open market. This is the value necessary to buy the entire firm’s equity. b) Enterprise value is the value of all the claims on the firm’s capital structure less cash. This includes the value of equity, preferred stock, debt, and minority interest less cash. This is the value necessary to purchase the entire firm. c) Book value is the value of a firm’s equity...

    Kinematics: Simple Machine and Prime Mover Essay

    Pure motion - motion considered abstractly, without reference to force or mass. Engineers use kinematics in machine design. Although hidden in much of modern technology, kinematic mechanisms are important components of many technologies such as robots, automobiles, aircraft, satellites, and consumer electronics, as well as biomechanical prostheses. In physics, kinematics is part of the teaching of basic ideas of dynamics; in mathematics, it is a fundamental part of geometric thinking and concepts of motion. The development of high-speed computers and robotics, and the growth of design synthesis theory and mechatronics have recently revived interest in kinematics and early work in machine design. Working in the decades following Ampère"s death, Franz Reuleaux (1829-1905) is considered the founder of modern kinematics. Reuleaux called it "the study of the motion of bodies of every kind…and the study of the geometric representation of motion" (Kinematics of Machinery 56). Kinematics flourished in the 19th century as machine inventors learned to transmit information and forces (power) from one element in the machine to another. Steam- and water-based machines revolutionized the l9th century, but both of those energy sources generate circular motions, creating the need to convert these steady circular motions into nonsteady linear and curvilinear motion for machine applications....

Topic 9 Simple Machines

A screwdriver is used to pry the lid off a can of paint. What type of lever is the screwdriver in this instance? 1st Class Lever 2nd Class Lever 3rd Class Lever It’s actually acting as an inclined plane. 10

12 3.0 8.3 25 75 10

29 1.7 3.5 28 350 10

Participant Scores 12 Jacob Joey Daniel David Nicole B.

A single pulley is used to hoist a safe with a mass of 45. 0 kg
A single pulley is used to hoist a safe with a mass of 45.0 kg. If the machine is 100% efficient, what effort force will be required to hoist the safe? 45.0 N 90.0 N 205 N 266 N 441 N 10

A snow shovel is an example of which type of lever? (Hint: The handle of the shovel is the fulcrum.) 1st Class 2nd Class 3rd Class 10

How long must an inclined plane be to push a 100 kg object to a height of 2.0 meters using a force of 200 N? Friction can be ignored. 2.0 m 9.8 m 50 m 100 m 200 m 400 m 10

A wheel and axle machine requires an effort force of 5.0 N to lift a load with a mass of 5.1 kg. If the machine is ideal and has a wheel radius of 12 cm, what is the radius of the axle? 1.0 cm 1.2 cm 5.0 cm 10 cm 1.2 m 2.4 m 10

Participant Scores 28 Jacob Joey Daniel David Mackenzie

20 N 25 N 196 N 245 N 1960 N Answer Now 10

What force will be required to push a 500 N box to a height of 2.50 meters on a ramp that is 10.0 meters long and 85% efficient? 4.00 N 50.0 N 106 125 N 147 N 10

1 2 3 4 5 10

0.50 1.00 1.50 2.00 2.50 Answer Now 10

Participant Scores 44 Jacob Mackenzie 39 Nicole F. Joey Daniel

A ramp is 12 meters long and 3.0 meters high. It takes 145 N of force to push a 400 N crate up the ramp. Determine the efficiency of the ramp. .36 % .69 % 3.0 % 8.2 % 36 % 69 % 145 % 10

An object is placed 1. 75 meters from the fulcrum of a lever
An object is placed 1.75 meters from the fulcrum of a lever. The effort force is 0.50 meters from the fulcrum. What is the actual mechanical advantage if the lever is 95% efficient? .271 .286 .301 3.33 3.50 3.68 Answer Now 10

20% 31% 69% 80% 87% 96% Answer Now 10

Participant Scores 56 Jacob Mackenzie 51 Nicole F. Joey Daniel

A certain ramp is 10 meters long and is 50% efficient
A certain ramp is 10 meters long and is 50% efficient. It requires 25 N of force to push a 50 N crate up the ramp. How tall is the ramp? 1.0 m 2.0 m 2.5 m 3.5 m 4.0 m 5.0 m 22
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

Практическое занятие № 73

Тема: «Машины и механизмы»

Цель: Формирование знаний об устройстве машин и различных механизмов.

Совершенствование лексико-грамматических навыков по теме.

Активизация лексики по теме в аргументированных высказываниях.

Оборудование: 1. Учебники; 2. Раздаточный материал; 3. Интернет-ресурсы.

Задание 1. Прочитайте и переведите текст «Mechanisms and Simple Machines» (25 минут):

Mechanism : the fundamental physical or chemical processes involved in or responsible for an action, reaction or other natural phenomenon.

Machine : an assemblage of parts that transmit forces, motion and energy in a predetermined manner.

Simple Machine : any of various elementary mechanisms having the elements of which all machines are composed. Included in this category are the lever, wheel and axle, pulley, inclined plane, wedge and the screw.

The word mechanism has many meanings. In kinematics , a mechanism is a means of transmitting, controlling, or constraining relative movement. Movements which are electrically, magnetically, pneumatically operated are excluded from the concept of mechanism. The central theme for mechanisms is rigid bodies connected together by joints.

A machine is a combination of rigid or resistant bodies, formed and connected so that they move with definite relative motions and transmit force from the source of power to the resistance to be overcome. A machine has two functions: transmitting definite relative motion and transmitting force. These functions require strength and rigidity to transmit the forces.

The term mechanism is applied to the combination of geometrical bodies which constitute a machine or part of a machine. Amechanism may therefore be defined as a combination of rigid or resistant bodies, formed and connected so that they move with definite relative motions with respect to one another.

Although a truly rigid body does not exist, many engineering components are rigid because their deformations and distortions are negligible in comparison with their relative movements.

The similarity between machines and mechanisms is that

    they are both combinations of rigid bodies

    the relative motion among the rigid bodies are definite.

Задание 2. Выполните пересказ текста (15 минут):

Задание 3. Объясните разницу между двумя рисунками (15 минут):

The difference between machine and mechanism is that machines transform energy to do work, while mechanisms so not necessarily perform this function. The term machinery generally means machines and mechanisms. Figure 1 shows a picture of the main part of a diesel engine. The mechanism of its cylinder-link-crank parts is a slider-crank mechanism , as shown in Figure 2 .

Рис.1. Cross section of a power cylinder in a diesel engine Рис.2. Skeleton outline

Задание 4. Объясните разницу между двумя рисунками (15 минут):

Рис.1. Gear train


Рис.2. Compound gears


Задание 5. Объясните, что изображено на этих схемах, составьте сообщение (20 минут):

Рис.1. Inclined plane

Рис.2 The screw jack


Критерии:

Оценка «5» - Поставленные задачи (составление аргументированных монологических высказываний, составление вопросов, чтение, перевод текста, ответы на вопросы) решены полностью, применение лексики адекватно коммуникативной задаче, грамматические ошибки либо отсутствуют, либо не препятствуют решению коммуникативной задачи

Оценка «4» - Коммуникативная задача решена полностью, но понимание текста незначительно затруднено наличием грамматических и/или лексических ошибок.

Оценка «3» - Коммуникативная задача решена, но понимание текста затруднено наличием грубых грамматических ошибок или неадекватным употреблением лексики.

Оценка «2» - Коммуникативная задача не решена ввиду большого количества лексико-грамматических ошибок или недостаточного объема текста.

1) Восковская А.С., Карпова Т.А. Английский язык. – Ростов н/Д: Феникс, 2014.

2)Агабекян И. Английский язык для СПО. – Ростов н/Дону: Феникс, 2012.

Контрольные вопросы :

1. What is this text about? 2.What do you think about it? 3.Can we start such production now? 4. What meanings has the word mechanism have?

Simple machines are extremely important to everyday life. They make stuff that is normally difficult a piece of cake. There are several types of simple machines. The first simple machine is a lever. A lever consists of a fulcrum, load, and effort force. A fulcrum is the support. The placing of the fulcrum changes the amount of force and distance it will take in order to move an object. The load is the applied force. The effort force is the force applied on the opposite side of the load.

Levers can be placed in three classes. The 1st class levers are objects like pliers where the fulcrum is at the center of the lever. The 2nd class of levers are objects that have the fulcrum on the opposite side of the applied force like a nutcracker. The 3rd and final class is objects like crab claws. These objects of the load at one end and the fulcrum on the other.

An inclined plane is another simple machine.

Inclined planes are also known as ramps. Ramps make a trade off between distance and force. No matter how steep the ramp, the work is still the same. A winding road on a mountain side is a good example of a ramp. Some simple machines are modified inclined planes. The wedge is one of those machines. One or two inclined planes make up a wedge. Saws, knives,needles, and axes are made from wedges. The screw is another modified inclined plane. Screws decrease the force but increase the distance. The ridges are called threads. A couple of simple machines are made with wheels. The wheel and axle is one of these machines.

These are made with a rod joined to the center of a wheel. They can either increase distance or force, depending on the size of the wheel. The pulley is another machine that uses wheels. The are a wheel with a groove in the center with a rope or chain stretched around it. The load attaches to one end and the effort is applied to the other on all pulleys. There are two types of pulleys. The fixed pulley stays in one place while the wheel spins. Movable pulleys attach to objects. Several pulleys can be used at one time. A good example of a pulley system is an escalator. Simple machines make up compound machines. We use these machines daily. Life would be difficult without simple machines.

Cite this page

Simple Machines. (2016, Dec 12). Retrieved from ">APA "Simple Machines." StudyMoose , 12 Dec 2016, ">MLA StudyMoose. (2016). Simple Machines . . Available at: ">Harvard "Simple Machines." StudyMoose, Dec 12, 2016. Accessed January 17, 2020.