Точные методы исследования нелинейных сау. Статистические методы идентификации нелинейных систем. Дисперсионные оценки степени нелинейности объекта Методы анализа нелинейных автоматических систем

Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

где – начальные условия.

Если отклонения не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат - в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)


В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4)

где скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий получим уравнение


Это уравнение семейства гипербол при изменении A (рис 5).


Особая точка называется "седло". Уравнения асимптот (сепаратрис) при А = 0 имеют вид:

3. Пусть корни характеристического уравнения (3) имеют вид

Фазовая траектория имеет вид сворачивающейся спирали (рис. 6), а точка равновесия называется "устойчивый фокус".

4. Пусть корни характеристического уравнения (3) имеют вид


(12)

Переходный процесс представляет собой расходящиеся колебания, фазовая траектория – разворачивающаяся спираль. Особая точка называется "неустойчивый фокус" (рис. 7).

5. Пусть корни характеристического уравнения (3) имеют вид

(13)

Переходный процесс имеет апериодический характер. Особая точка называется "устойчивый узел" (рис. 8).


6. Пусть корни характеристического уравнения (3) имеют вид

(14)

Особая точка называется "неустойчивый узел" (рис. 9).

4. Методы построения фазовых портретов

Для построения фазовых портретов можно использовать различные методы: метод дифференциальных уравнений, метод изоклин, и др.

Метод дифференциальных уравнений . Сущность метода заключается в том, что по дифференциальным уравнениям отдельных участков нелинейного элемента строят соответствующие фазовые портреты на плоскости.

Метод изоклин – это метод линий постоянного наклона.

Пусть даны уравнения нелинейной системы:

(15)


где: – произвольные функции.

Чтобы получить фазовый портрет исключим время:

. (16)

Пусть , при этом – это уравнение линии в плоскости (x 0 y). Каждому значению константы с соответствует некоторая линия, обладающая следующим свойством: в каждой точке линии , т.е. если фазовая траектория пересекает изоклину, то она имеет постоянный наклон рис. 10.


Если провести достаточное число таких линий с соответствующими наклонами, то можно построить фазовый портрет системы. При этом точность зависит от числа изоклин. Направление движения определяется по правилу: если производная , x >0, то движение такое, что x возрастает.

5. Построение фазового портрета нелинейной системы

Рассмотрим релейную следящую систему, схема которой приведена на рис. 11.



x 1 НЭ У U пит Д ТГ P U 0




Если a¹b на вход НЭ с релейной характеристикой (рис. 12) подается сигнал При этом: b – угол поворота задающей оси; a – угол поворота отрабатывающего потенциометра.

z

– a 2 – a 1

Вследствие этого на двигатель подается напряжение ±, двигатель вращается в определенном направлении в соответствии с полярностью подаваемого напряжения до тех пор, пока оно не станет равным нулю.

Для улучшения качества переходного процесса в систему может быть включена отрицательная обратная связь по скорости двигателя с помощью тахогенератора (ТГ).

Запишем уравнения элементов системы. Для двигателя постоянного тока с независимым возбуждением

(17)

Так как поток возбуждения = const, то . Допустим, момент нагрузки мал, при этом =0.

Передаточную функцию для якорной цепи K 1 (p) можно получить из ее дифференциального уравнения

(18)

Для редуктора и угла поворота вала двигателя

(19)

Для тахогенератора

. (20)


На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13


Для построения фазового портрета необходимо записать систему дифференциальных уравнений.

Рассмотрим свободное движение системы (b=0) при этом x = a.

Дифференциальное уравнение нелинейной системы имеет вид

(21)

Представим уравнение в виде системы уравнений:

(22)

Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:

1) Пусть обратная связь по скорости – отсутствует (К = 0).

2) Характеристика нелинейного элемента однозначна (рис. 14).

При этом:

(23)

С учетом принятых допущений система уравнений упрощается.

(24)

Построим характеристику для каждой зоны.

Пусть – a £ x £ a, ¦(x) = 0.

При этом исходная система имеет вид:

(25)

Решение этого уравнения имеет вид , т.е. наклон фазовых траекторий всюду постоянный (отрицательный).

Определим равновесное состояние системы из условия:


(26)

Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т 1 при различных значениях начальных условий.

На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.

Пусть х > a, . При этом исходная система нелинейных уравнений имеет вид

(27)

где c i - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. , где определяется из выражения для

. (28)

Таким образом

. (29)

Задаваясь значениями , строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.

Так как . Например, если , то a = 90°.

Пусть х < – a, . Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.


Рис. 14 Рис. 15

Снимем упрощение К = 0, т.е. рассмотрим влияние отрицательной обратной связи по скорости двигателя на характер фазовой траектории.

При этом уравнения имеют вид:

(30)

Пусть , при этом переключение будет происходить при условии (а не условии х = а), это уравнение линии (рис. 16)


При этом количество перерегулирований уменьшается; можно подобрать такой наклон, при котором нет переколебаний.

Рассмотрим фазовый портрет без ограничений. В системе без ограничений фазовый портрет можно представить на трехлистной поверхности с наклонными гранями (рис. 17.) При этом лист 2 соответствует зоне нечувствительности z=0, лист 1 соответствует отрицательным значениям z, а лист 3 положительным. Вследствие гистерезиса имеет место частичное наложение листов.

Рис. 16 Рис. 17

Исследуем систему. Исследуем влияние отрицательной обратной связи по скорости двигателя (т.е. влияние величины – К). Пусть значение К увеличивается, при этом наклон прямых уменьшается, и может получиться, что срез будет более пологим чем наклон характеристики в средней части. Это приводит к частым переключениям. Такой режим называется скользящим. Если зона очень узкая, то движение как бы соскальзывает к установившемуся режиму (рис. 18а).

Если изменить знак обратной связи с отрицательной связи на положительную связь, то при этом изменится наклон линий переключения, и количество колебаний будет увеличиваться, система будет "раскачиваться". Система работает, как генератор и может появиться либо замкнутый цикл – автоколебания, либо расходящийся переходный процесс (рис. 18б).


Достоинства метода: простота и наглядность для систем 2-го порядка; пригодность для любого типа нелинейных элементов.

Недостатки: метод громоздкий для систем выше 2-го порядка, поэтому при n >2 не применяется.

Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления

Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой "неустойчивый фокус". За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – "устойчивый фокус".

При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.

При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).

В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания



Пример 2. Пусть задана система с характеристикой нелинейного звена типа "зона нечувствительности" (рис. 21). Необходимо построить фазовый

портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.

Построим фазовый портрет

1) При – a < x < +a f(x) = 0, а система уравнений имеет вид



Фазовый портрет в этой области представляет семейство прямых с коэффициентом к = -1, а состояние равновесия устойчиво по Ляпунову и представляет отрезок оси y = 0 на интервале – a

2) При x > +a f(x) = x – a, а система уравнений имеет вид

и угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.

Таблица 1

Таблица 2

3) При x < – a f(x) = x + a, а система уравнений имеет вид

Пример 4. Для заданной системы (рис. 26) построить примерный фазовый портрет.



Исходную схему можно представить в виде (рис. 27).

Построим фазовый портрет.

1) При –1 < x < +1 f(x) = x, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле

2) При x > +1 f(x) = 1, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле и угол пересечения фазовой траекторией изоклины по формуле a = arctg c.

3) При x < -1 f(x) = -1.

Левая часть фазового портрета строится аналогично правой.

Литература

1. Атабеков Г.И., Тимофеев А.Б., Купалян С.Д., Хухриков С.С. Теоретические основы электротехники (ТОЭ). Нелинейные электрические цепи. Электромагнитное поле. 5-е изд. Изд-во: ЛАНЬ, 2005. – 432 с.

2. Гаврилов Нелинейные цепи в программах схемотехнического моделирования. Изд-во: СОЛОН-ПРЕСС, 2002. – 368 с.

3. Дорф Р., Бишоп Р. Автоматика. Современные системы управления. 2002 г. – 832 с.

4. Теория автоматического управления. Учеб. для вузов по спец. "Автоматика и телемеханика". В 2-х ч./ Н.А. Бабаков, А.А. Воронов и др.: Под ред. А.А. Воронова. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1986. – 367 с., ил.

5. Харазов В.Г. Интегрированные системы управления технологическими процессами: Справочник. Издательство: ПРОФЕССИЯ, ИЗДАТЕЛЬСТВО, 2009. – 550 с.

Критерий устойчивости Попова В.М.

(румынский ученый)

Это частотный метод исследования устойчивости НЛ САУ с однозначной нелинейностью, удовлетворяющей условию

Рассматривается устойчивость положения равновесия


Достаточные условия абсолютной устойчивости таких систем сформулированы Поповым В.М.

1.Вводится передаточная функция

Предполагается, что
соответствует асимптотически устойчивой системе (проверяется по любому из критериев устойчивости).

2.Находится частотная характеристика
.

3.Строится видоизмененная частотная характеристика
,

которая определяется соотношением

Re
=Re
,

Im
= .

4.На комплексной плоскости строится
.

Критерий Попова:

Если через точку
на действительной оси можно провести прямую линию так, чтобы видоизмененная АФЧХ
лежала по одну сторону от этой прямой, то замкнутая НЛ САУбудет абсолютно устойчива.

Пример. Исследовать абсолютную устойчивость НЛ САУ со структурной схемой рис.1, если

Так как все в характеристическом уравнении 2-го порядка больше нуля, то
- асимптотически устойчива и, следовательно, условие (1) критерия устойчивости Попова выполняется.

Re
=Re
=

Im
=Im
=

Строим АФЧХ
.

Асимптотическая устойчивость для специального вида

нелинейных характеристик

1.Неоднозначная нелинейная характеристика

Состояние покоя будет абсолютно устойчивым, если

1.
соответствует асимптотически устойчивой системе.

2.

2.Система с релейной характеристикой

r =0 . Это частный случай рассмотренной выше характеристики.

Достаточное условие абсолютной устойчивости – вместо условия (2)

3.Нелинейность типа реле

1.
- асимптотически устойчива.

2.Im

Абсолютная устойчивость процессов

Рассмотрим теперь устойчивость не систем стабилизации (номинальный режим – состояние покоя), а случай, когда номинальный режим характеризуется входным сигналом
и выходным сигналом
, которые являютсяограниченными непрерывными функциями времени.

Будем предполагать, что нелинейный элемент имеет вид
, где
- непрерывная однозначная функция, удовлетворяющая условию

т.е. ограничена скорость изменения нелинейной характеристики. Это достаточно жесткое условие.

В этом случае для обеспечения абсолютной устойчивости ограниченного процесса
,
достаточно, чтобы выполнялись условия6

1.
- было асимптотически устойчива.

2.
.

В частном случае, когда r =0

или

Теория, связанная с развитием идей Попова еще не закончена, здесь возможны новые более сильные результаты. Сводка таких результатов на сегодняшний день имеется в книге Наумова «Нелинейные системы автоматического управления».

Приближенные методы исследования нелинейных сау

Метод гармонического баланса

При исследовании НЛ САУ иногда можно наблюдать появление периодических изменений выходной величины у(t ) даже в тех случаях, когда
Если при изучении САУ ограничитьсялинейной моделью с постоянными коэффициентами, то указанное явление (собственные колебания) может иметь место только при наличии в характеристическом уравнении чисто мнимых корней
.

Однако при таком объяснении малое изменение параметров системы «сдвинет» корень с мнимой оси налево или направо и собственные колебания либо затухают либо раскачиваются. На практике же в нелинейных системах периодические колебания выходного сигнала сохраняются при малых изменениях параметров системы.

Такого рода незатухающие колебания объясняются нелинейным характером системы. Они называются автоколебаниями.

Рассмотрим метод гармонического баланса, который позволяет по взаимному протеканию АФЧХ линейной части и и характеристики нелинейного элемента определить наличие или отсутствия автоколебаний.

Рассмотрим одноконтурную систему, в которой выделяется нелинейный элемент

(1)

и линейная часть с передаточной функцией
.

Предполагается:

1.
соответствует устойчивой системе,

2. нелинейная характеристика
- нечетная симметричная, т.е.

,

3.входной сигнал
, т.е. это система стабилизации.

Будем искать выходной сигнал у(t ) в виде

, (2)

где - амплитуда автоколебаний,

- частота автоколебаний.

и надо определить.

Гипотеза о синусоидальном характере у(t ) выглядит произвольной. Однако далее будут приведены условия, при выполнении которых эта гипотеза становится естественной.

Поскольку
,(3)

Пропустим сигнал
последовательно через нелинейный элемент и линейную часть и найдем уравнения, их которых можно будет определить амплитудуи частотуавтоколебаний в НЛ САУ.

Прохождение
через линейный элемент

Так как
-
периодическая функция, то сигнал
на выходе нелинейного элемента также будет периодической функцией, но отличной от синусоиды.

Спектр
Спектр

Как известно, любая периодическая функция может быть представлена рядом Фурье:

(4)

Мы предполагаем, что свободный член в формуле (4) равен нулю. Это будет иметь место, например, когда характеристика нелинейного элемента удовлетворяет условию


, т.е это нечетная функция.

Здесь коэффициенты Фурье иопределяются:

,

(5)

Преобразуем (4) , умножив и поделив каждый член в правой части на
(6)


.

Напомним, что


(8)

Таким образом при прохождении сигала
через нелинейный элемент, на выходе нелинейного элемента сигал
содержит множество гармоник, кратных. (см. рисунок выше).

Прохождение сигнала
через линейную часть

Из теории линейных систем мы знаем, что если на вход линейного звена с передаточной функцией
, соответствующей устойчивой системе, подать гармонический сигналто в установившемся режиме на выходе этого звена будет сигнал.

Здесь
- модуль частотной характеристики
в точке,

аргумент
.

Используя эти соотношения, мы можем выписать выражения для
, пропуская по отдельности через линейную часть все составляющие ряда (8) и суммируя затем полученные выражения для

В силу линейности системы такая процедура законна.

Получим, полагая
:

Полученное выражение (9) для
имеет достаточно сложную структуру. Его можно существенно упростить, используягипотезу фильтра.

Изучая частотные характеристики типовых элементарных звеньев, мы видели, что их АЧХ стремятся к нулю при

Гипотеза фильтра состоит в том, что АЧХ в правой части (9) убывает с ростом частоты настолько быстро, что в (9) можно учитывать лишь первый член, соответствующий к=1 , и считать остальные члены пренебрежимо малыми. Другими словами – гипотеза фильтра – это гипотеза о том, что линейная часть САУ практически не пропускает высокочастотные колебания. Поэтому формула (9) (и в этом состоит приближенность метода) упрощается следующим образом:

Таким образом, при замыкании системы в предположении гипотезы фильтра мы получим баланс гармоник (отсюда и название метода – метод гармонического баланса)

Рассмотрим как с помощью метода гармонического баланса определить амплитуду а и частоту автоколебаний.

Введем понятие эквивалентной передаточной функции нелинейного элемента:

(11)

Если
(а это имеет место при однозначных симметричных нелинейных характеристиках), то

(12)

Характеристическое уравнение замкнутой САУ (рис.1) имеет вид:

или частотная характеристика

(13)

(14)

Представим

Тогда уравнение (14) перепишется:

=
(17)

Равенство (14) или (17) является основой графо-аналитического метода определения параметров автоколебаний а и .

На комплексной плоскости строится АФЧХ линейной части

и характеристика нелинейного элемента

Если кривые пересекаются, то в САУ существуют автоколебания.

Частота автоколебаний в точке пересечения кривых по
, а амплитуда- по
.

Рассмотрим подробнее выделенный участок

Мы знаем амплитуду и частоту точек, ближайших к точке пересечения кривых. Амплитуду и частоту в точке пересечения можно определить, например, методом деления отрезка пополам.

Метод гармонической линеаризации

Это очень эффективный приближенный метод определения периодических колебаний в НЛ САУ.

Для применения метода гармонической линеаризации нелинейности необходимо выполнение требования – линейная часть должна обладать свойствами фильтра, т.е. она не должна пропускать высокие частоты.

На практике это требование обычно выполняется.

Пусть имеется нелинейный элемент

(1)

Пусть
(2)

Тогда
(3)

Разложим (1) в ряд Фурье:

Напомним, нелинейная функция F (x ) , разложенная в ряд Фурье, имеет вид:

,

,
,

Тогда ряд Фурье для нашей нелинейности будет иметь вид:


++высшие гармоники (4)

Положим постоянную составляющую

Из уравнения (2):

Из уравнения (3):

Тогда уравнение (4) можно переписать:

,


В уравнении (5) пренебрегаем высокими частотами и в этом приближенность метода.

Таким образом, нелинейный элемент при
заменяется линеаризованным выражением (5), которое при выполнении гипотезы фильтра линейной части принимает вид:

(6)

Эта процедура называется гармонической линеаризацией.

Коэффициенты
и
припостоянных а и . В динамическом же режиме, когда изменяютсяа и , коэффициенты
и
будут изменяться. В этом отличие гармонической линеаризации от обычной. (При обычной линеаризации коэффициент линеаризованного уравненияК зависит от точки линеаризации). Зависимость коэффициентов линеаризации от а и позволяет применить к НЛ САУ (6) методы исследования линейных систем и анализировать свойства НЛ САУ, которые не могут быть обнаружены при обычной линеаризации.

Коэффициенты гармонической линеаризации

некоторых типовых нелинейностей

    Релейная характеристика


2.Релейная характеристика с зоной нечувствительности

,
Амплитуда колебаний

3.Релейная характеристика с петлей гистерезиса

,
,

4.Релейная характеристика с зоной нечувствительности и петлей гистерезиса

,


Теперь рассмотрим замкнутую систему.

,

Можно ввести понятие передаточной функции нелинейного элемента

,

.

Тогда характеристическое уравнение замкнутой САУ:

,

или

Когда в замкнутой системе возникают собственные незатухающие колебания постоянной амплитуды и частоты, то коэффициенты гармонической линеаризации становятся постоянными и САУ становится линейной. А в линейной системе наличие периодических незатухающих колебаний говорит о наличии у нее чисто мнимых корней.

Таким образом для определения периодических решений надо в характеристическое уравнение подставить
. Здесь- текущая частота, а- частота автоколебаний.

В этом уравнении неизвестными являются и.

Выделим в этом уравнении действительную и мнимую части.

Введем для частоты и амплитуды искомого периодического решения обозначения
,
.

Получим два уравнения с двумя неизвестными.

Решив эти уравнения, найдем и- амплитуду и частоту периодических решений в НЛ САУ.

С помощью этих уравнений можно определить не только и, но и построить зависимостьи, например, от коэффициента усиления САУК .

Тогда, считая К переменным, запишем:

Задаваясь К , находим и, т.е
и

Можно выбрать К так, чтобы

1. было бы мало,

2. было бы неопасно для САУ,

3.автоколебаний не было бы.

С помощью этих же уравнений можно на плоскости двух параметров (например, Т и К ) построить линии равных значений амплитуды и частоты автоколебаний. Для этого уравнения переписывают:

Задаваясь числовыми значениями , получим
и

По этим графикам можно выбирать Т и К.

Определение устойчивости решений в нелинейных САУ

Автоколебаниям в НЛ САУ должны соответствовать устойчивые периодические решения. Поэтому после нахождения амплитуды и частотыпериодических решений необходимо исследовать их на устойчивость.

Рассмотрим приближенный метод исследования устойчивости периодических решений в НЛ САУ с помощью годографа Михайлова.

Пусть НЛ САУ

,
.
- получена с помощью метода гармонической линеаризации.

Характеристическое уравнение замкнутой системы

Запишем уравнение характеристической кривой (годографа Михайлова), для чего подставим в него
.

- текущее значение частоты вдоль годографа Михайлова,

- частота гармонической линеаризации (автоколебаний).

Тогда для любых заданных постоянных икривая Михайлова будет иметь такой же вид, как и для обыкновенных линейных систем.

При периодических решениях, соответствующих и, годограф Михайлова будет проходить через начало координат (т.к. система находится на границе устойчивости).

Для определения устойчивости периодических решений дадим приращение

Если при
кривая Михайлова займет положение 1, а при

- положение 2, то периодическое решение устойчиво.

Если при
кривая займет положение 2, а при
- положение 1, то периодическое решение неустойчиво.

"Теория автоматического управления"

"Методы исследования нелинейных систем"


1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

где – начальные условия.

Если отклонения не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат - в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией. Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом. Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. При этом: U(t)=0, e(t)=– x(t)


В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4)

где скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

Рассмотрим несколько случаев

Файлов GB_prog.m и GB_mod.mdl, а анализ спектрального состава периодического режима на выходе линейной части – при помощи файлов GB_prog.m и R_Fourie.mdl. Cодержание файла GB_prog.m: %Исследование нелинейных систем методом гармонического баланса %Используемые файлы: GB_prog.m, GB_mod.mdl и R_Fourie.mdl. %Используемые обозначениЯ: НЭ – нелинейный элемент, ЛЧ – линейнаЯ часть. %Очистка всех...





Безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных. В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы...

Характеристика, показанная на рисунке 1.5 б – это трёхпозиционное реле, в котором дополнительная позиция за счёт нечувствительности. Уравнение такой характеристики

x вых

x вх

< a ,

x вых

B siqn(xвх )

x вх

> a .

Характеристика, показанная на рисунке 1.5 в – это двухпозиционное реле с гистерезисом. Его ещё называют “реле с памятью”. Оно “помнит” своё предыдущее состояние и в пределах x вх < a сохраняет это своё значение. Уравне-

ние такой характеристики

xвых = b siqn(x − а)

x вх > 0 ,

xвых = b siqn(x + а)

x вх < 0 ,

x вых = + b

xвх > − a ;

x& вх < 0,

x вых = − b

xвх < a;

xвх > 0,

Характеристика, показанная на рисунке 1.5 г – это трёхпозиционное реле с гистерезисом, в котором дополнительная позиция за счёт зоны нечувствительности. Уравнение такой характеристики

x вых =

[ siqn(x − а2

) + siqn(x + а1 )]

x вх > 0 ,

x вых =

[ siqn(x + а2

) + siqn(x − а1 )]

x вх < 0 .

Из приведённых уравнений видно, что при отсутствии петли гистерезиса выходное воздействие реле зависит только от значения х вх или x вых = f (x вх ) .

При наличии петли гистерезиса значение x вых зависит ещё от производной по x вх или x вых = f (x вх ,x & вх ) , где x & вх характеризует наличие “памяти” у реле.

1.4 Анализ методов исследования нелинейных систем

Для решения задач анализа и синтеза нелинейной системы прежде всего необходимо построить ее математическую модель, которая характеризует связь выходных сигналов системы, с сигналами отражающих приложенные к системе воздействия. В результате получаем нелинейное дифференциальное уравнение высокого порядка, иногда с рядом логических соотношений. Современная вычислительная техника позволяет решать любые нелинейные уравнения и потребуется решить невероятно большое количество этих нелинейных дифференциальных уравнений. Затем выбрать наилучшее из них. Но при этом нельзя быть уверенным в том, что выбранное решение действительно оптимальное и неизвестно как улучшить выбранное решение. Поэтому одна из задач теории управления следующая .

Создание таких методов проектирования системы управления, которые позволяют определить наилучшую структуру и оптимальные соотношения параметров системы.

Для выполнения этой задачи нужны такие методы расчета, которые по-

зволяют в достаточно простом виде определяют математические связи параметров нелинейной системы с динамическими показателями процесса управ-

ления. И при этом без нахождения решения нелинейного дифференциального уравнения. Для решения поставленной задачи нелинейные характеристики реальных элементов системы заменяют некоторыми идеализированными приближенными характеристиками. Расчет нелинейных систем по таким характеристикам дает приближенные результаты, но главное в том, что полученные зависимости позволяют связать структуру и параметры системы с ее динамическими свойствами.

В простейших случаях и в основном для нелинейной системы второго порядка применяется метод фазовых траекторий , который позволяет наглядно показать динамику движения нелинейной системы при различных видах нелинейного звена с учетом начальных условий. Однако по этому методу трудно учесть различные внешние воздействия.

Для системы высокого порядка используется метод гармонической линеаризации . При обычной линеаризации нелинейная характеристика рассматривается как линейная и теряет некоторые свойства. При гармонической линеаризации специфические свойства нелинейного звена сохраняются. Но этот метод является приближенным. Он используется при выполнении ряда условий, которые будут показаны при расчете нелинейной системы по этому методу. Важное свойство этого метода в том, что он непосредственно связывает параметры системы с динамическими показателями процесса регулирования.

Для определения статистической ошибки регулирования при случайных воздействиях используют метод статистической линеаризации . Сущность этого метода в том, что нелинейный элемент заменяется эквивалентным линейным элементом, который одинаково с нелинейным элементом преобразует два первых статистических момента случайной функции: математическое ожидание (среднее значение) и дисперсию (или среднее квадратическое отклонение). Есть и другие методы анализа нелинейных систем. Например, метод малого параметра в форме Б.В. Булгакова. Асимптотический метод Н.М. Крылова и Н.Н. Боголюбова для анализа процесса во времени вблизи периодического решения. Графо-аналитический метод позволяет нелинейную задачу свести к линейной. Метод гармонического баланса , который использовал Л.С. Гольдфарб для анализа устойчивости нелинейных систем по критерию Найквиста. Графоаналитические методы , среди которых наибольшее распространение получил метод Д.А. Башкирова. Из всего многообразия методов исследования в данном учебном пособии будут рассмотрены: метод фазовых траекторий, метод точечных преобразований, метод гармонической линеаризации Е.П. Попова, графо-аналитический метод Л.С. Гольдфарба, критерий абсолютной устойчивости В.М. Попова, метод статистической линеаризации.