Смежные пары. Смежные углы. Смежные углы – определение понятия

Рис. 4 Основные линии и плоскости наблюдателя

Для ориентирования в море принята система условных линий и плоскостей наблюдателя. На рис. 4 изображен земной шар, на поверхности которого в точке М располагается наблюдатель. Его глаз находится в точке А . Буквой е обозначена высота глаза наблюдателя над уровнем моря. Линия ZMn, проведенная через место наблюдателя и центр земного шара, называется отвесной или вертикальной линией. Все плоскости, проведенные через эту линию, называются вертикальными , а перпендикулярные ей - горизонтальными . Горизонтальная плоскость НН / , проходящая через глаз наблюдателя, называется плоскостью истинного горизонта . Вертикальная плоскость VV / , проходящая через место наблюдателя М и земную ось, называется плоскостью истинного меридиана. В пересечении этой плоскости с поверхностью Земли образуется большой круг РnQPsQ / , называемый истинным меридианом наблюдателя . Прямая, полученная от пересечения плоскости истинного горизонта с плоскостью истинного меридиана, называется линией истинного меридиана или полуденной линией N-S. Этой линией определяется направление на северную и южную точки горизонта. Вертикальная плоскость FF / , перпендикулярная плоскости истинного меридиана, называется плоскостью первого вертикала . В пересечении с плоскостью истинного горизонта она образует линию Е-W, перпендикулярную линии N-S и определяющую направления на восточную и западную точки горизонта. Линии N-S и Е-W делят плоскость истинного горизонта на четверти: NE, SE, SW и NW.

Рис.5. Дальность видимости горизонта

В открытом море наблюдатель видит вокруг судна водную поверхность, ограниченную малым кругом СС1 (рис. 5). Этот круг называется видимым горизонтом. Расстояние De от места судна М до линии видимого горизонта СС 1 называется дальностью видимого горизонта . Теоретическая дальность видимого горизонта Dt (отрезок AB) всегда меньше его действительной дальности De. Это объясняется тем, что из-за различной плотности слоев атмосферы по высоте луч света распространяется в ней не прямолинейно, а по кривой АС. В результате наблюдатель может видеть дополнительно некоторую часть водной поверхности, расположенную за линией теоретического видимого горизонта и ограниченную малым кругом СС 1 . Этот круг и является линией видимого горизонта наблюдателя. Явление преломления световых лучей в атмосфере называется земной рефракцией. Рефракция зависит от атмосферного давления, температуры и влажности воздуха. В одном и том же месте Земли рефракция может меняться даже на протяжении одних суток. Поэтому при расчетах берут среднее значение рефракции. Формула для определения дальности видимого горизонта:


В результате рефракции наблюдатель видит линию горизонта в направлении АС / (рис. 5), касательном к дуге АС. Эта линия приподнята на угол r над прямым лучом АВ. Угол r также называется земной рефракцией. Угол d между плоскостью истинного горизонта НН / и направлением на видимый горизонт называется наклонением видимого горизонта .

ДАЛЬНОСТЬ ВИДИМОСТИ ПРЕДМЕТОВ И ОГНЕЙ. Дальность видимого горизонта позволяет судить о видимости предметов, находящихся на уровне воды. Если предмет имеет определенную высоту h над уровнем моря, то наблюдатель может обнаружить его на расстоянии:

На морских картах и в навигационных пособиях приводится заранее вычисленная дальность видимости огней маяков Dk с высоты глаза наблюдателя 5 м. С такой высоты De равна 4,7 мили. При е , отличной от 5 м, следует вносить поправку. Её величина равна:

Тогда дальность видимости маяка Dn равна:

Дальность видимости предметов, расчитанная по данной формуле, называется геометрической, или географической. Вычисленные результаты соответствуют некоторому среднему состоянию атмосферы в дневное время суток. При мгле, дожде, снегопаде или туманной погоде видимость предметов, естественно, сокращается. Наоборот, при определенном состоянии атмосферы рефракция может быть очень большой, вследствие чего дальность видимости предметов оказывается значительно больше рассчитанной.

Дальность видимого горизонта. Таблица 22 МТ-75:

Таблица вычислена по формуле:

Де = 2.0809 ,

Входя в табл. 22 MT-75 с высотой предмета h над уровнем моря, получают дальность видимости этого предмета с уровня моря. Если к полученной дальности прибавить дальность видимого горизонта, найденную в той же таблице по высоте глаза наблюдателя е над уровнем моря, то сумма этих дальностей составит дальность видимости предмета, без учета прозрачности атмосферы.

Для получения дальности радиолокационного горизонта Дp принято выбранную из табл. 22 дальность видимого горизонта увеличивать на 15%, тогда Дp=2.3930 . Эта формула справедлива для стандартных условий атмосферы: давление 760 мм, температура +15°C, градиент температуры - 0.0065 градуса на метр, относительная влажность, постоянная с высотой, 60%. Любое отклонение от принятого стандарт­ного состояния атмосферы обусловит частичное изменение дальности радиолокационного горизонта. Кроме того, эта дальность, т. е. расстоя­ние, с которого могут быть видны отраженные сигналы на экране радио­локатора, в значительной степени зависит от индивидуальных особенностей радиолокатора и отражающих свойств объекта. По этим причинам пользоваться коэффициентом 1.15 и данными табл. 22 следует с осторожностью.

Сумма дальностей радиолокационного горизонта антенны Лд и наблюдаемого объекта высотой А представит собой максимальное рас­стояние, с которого может вернуться отраженный сигнал.

Пример 1. Определить дальность обнаружения маяка высотой h=42 м от уровня моря с высоты глаза наблюдателя е=15.5 м.
Решение. Из табл. 22 выбирают:
для h = 42 м ..... . Дh = 13.5 мили;
для е = 15.5 м . . . . . . Де = 8.2 мили,
следовательно, даль­ность обнаружения маяка
Дп = Дh+Дe = 21.7 мили.

Дальность видимости предмета можно определить также по номограмме, помещенной на вкладыше (приложение 6). MT-75

Пример 2. Найти радиолокационную дальность объекта высотой h=122 м, если действующая высота радиолокационной антенны Hд= 18.3 м над уровнем моря.
Решение. Из табл. 22 выбирают дальности видимости объекта и антенны с уровня моря соответственно 23.0 и 8.9 мили. Суммируя эти дальности и умножая их на коэффициент 1.15, получают, что объект при стандартных условиях атмосферы, вероятно, будет обнаружен с расстояния 36.7 мили.


При геодезических работах, выполняемых на небольших по площади участках местности, уровенную поверхность принимают за горизонтальную плоскость. Такая замена влечет за собой некоторые искажения в длинах линий и высотах точек.
Рассмотрим при каких размерах участка этими искажениями можно пренебречь. Допустим, что уровенная поверхность является поверхностью шара радиуса R (рис.1.2). Заменим участок шара АоВоСо горизонтальной плоскостью АВС, касающейся шара в центре участка в точке В. Расстояние между точками В (Во) и Со равно г, центральный угол соответствующий данной дуге обозначим а, отрезок касательной

ВС = t, тогда в горизонтальном расстоянии между точками В (Во) и Со возникнет ошибка Ad = t - d. Из рис. 1.2 находим t = R tga и d = R a, где угол а выражен в радианах a = d / R, тогда A d =R(tga -a) а так как значение d незначительно по сравнению с R то угол настолько мал,
о

что приближенно можно принять tga -а = а /3. Применив формулу определения угла а, окончательно получаем: A d = R- а /3 = d /3R . При d = 10 км и R = 6371 км погрешность определения расстояния при замене сферической поверхности плоскостью составит 1 см.Учитывая реальную точность, с которой производят измерения на местности при геодезических работах, можно считать, что на участках радиусом 2025 км погрешность от замены уровенной поверхности плоскостью не имеет практического значения. Иначе обстоит дело с влиянием кривизны Земли на высоты точек. Из прямоугольного треугольника ОВС

(1.2)
откуда
(1.3) где р - отрезок отвесной линии ССо, выражающий влияние кривизны Земли на высоты точки С. Так как полученное значение р очень мало, по сравнению с R, то в знаменателе полученной формулы этой величиной можно пренебречь. Тогда получим

(1.4)
Для различных расстояний l определим поправки в высоты точек местности, значения которых представлены в табл. 1.1, из которой видно, что влияние кривизны Земли на высоты точек сказывается уже на расстоянии в 0,3 км. Это необходимо учитывать при производстве геодезических работ.
Таблица 1.1
Погрешности измерений высот точек на разных расстояниях


l, км

0,3

0,5

1,0

2,0

5,0

10,0

20,0

Р, м

0,01

0,02

0,08

0,31

1,96

7,85

33,40

Начальные сведения об углах

Пусть нам даны два произвольных луча. Наложим их начала друг на друга. Тогда

Определение 1

Углом будем называть два луча, которые имеют одно и тоже начало.

Определение 2

Точка, которая является началом лучей в рамках определения 3, называется вершиной этого угла.

Угол будем обозначать следующими тремя её точками: вершиной, точкой на одном из лучей и точкой на другом луче, причем вершина угла записывается в середине его обозначения (рис. 1).

Определим теперь, что такое величина угла.

Для этого необходимо выбрать какой-то «эталонный» угол, который мы будем принимать за единицу. Чаще всего таким углом является угол, который равен $\frac{1}{180}$ части развернутого угла. Такую величину называют градусом. После выбора такого угла мы проводим с ним сравнение углов, величину которого нужно найти.

Существуют 4 вида углов:

Определение 3

Угол называется острым, если он меньше $90^0$.

Определение 4

Угол называется тупым, если он больше $90^0$.

Определение 5

Угол называется развернутым, если он равен $180^0$.

Определение 6

Угол называется прямым, если он равен $90^0$.

Помимо таких видов углов, которые описаны выше, можно выделять виды углов по отношению их друг к другу, а именно вертикальные и смежные углы.

Смежные углы

Рассмотрим развернутый угол $COB$. Из его вершины проведем луч $OA$. Этот луч разделит первоначальный на два угла. Тогда

Определение 7

Два угла будем называть смежными, если одна пара их сторон является развернутым углом, а другая пара совпадает (рис. 2).

В данном случае углы $COA$ и $BOA$ являются смежными.

Теорема 1

Сумма смежных углов равняется $180^0$.

Доказательство.

Рассмотрим рисунок 2.

По определению 7, в нем угол $COB$ будет равняться $180^0$. Так как вторая пара сторон смежных углов совпадает, то луч $OA$ будет разделять развернутый угол на 2, следовательно

$∠COA+∠BOA=180^0$

Теорема доказана.

Рассмотрим решение задачи с помощью данного понятия.

Пример 1

Найти угол $C$ из рисунка ниже

По определению 7 получаем, что углы $BDA$ и $ADC$ являются смежными. Следовательно, по теореме 1, получим

$∠BDA+∠ADC=180^0$

$∠ADC=180^0-∠BDA=180〗0-59^0=121^0$

По теореме о сумме углов в треугольнике, будем иметь

$∠A+∠ADC+∠C=180^0$

$∠C=180^0-∠A-∠ADC=180^0-19^0-121^0=40^0$

Ответ: $40^0$.

Вертикальные углы

Рассмотрим развернутые углы $AOB$ и $MOC$. Совместим их вершины между собой (то есть наложим точку $O"$ на точку $O$) так, чтобы никакие стороны этих углов не совпали. Тогда

Определение 8

Два угла будем называть вертикальными, если пары их сторон являются развернутыми углами, а их величины совпадают (рис. 3).

В данном случае углы $MOA$ и $BOC$ являются вертикальными и углы $MOB$ и $AOC$ также вертикальные.

Теорема 2

Вертикальные углы равняются между собой.

Доказательство.

Рассмотрим рисунок 3. Докажем, к примеру, что угол $MOA$ равняется углу $BOC$.

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.

Сумма смежных углов равна 180°

Теорема 1. Сумма смежных углов равна 180°.

Доказательство. Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Вертикальные углы равны

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 - смежные, углы 1 и 3 - вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

АН - перпендикуляр к прямой

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Чертежный угольник

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 - углы вертикальные; заключение - эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение - словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

Пример 1. Один из смежных углов равен 44°. Чему равен другой?

Решение. Обозначим градусную меру другого угла через x , тогда согласно теореме 1.
44° + х = 180°.
Решая полученное уравнение, находим, что х = 136°. Следовательно, другой угол равен 136°.

Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?

Решение. Углы COD и АОВ вертикальные, следовательно, по теореме 1.2 они равны, т. е. ∠ АОВ = 45°. Угол АОС смежный с углом COD, значит, по теореме 1.
∠ АОС = 180° - ∠ COD = 180° - 45° = 135°.

Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.

Решение. Обозначим градусную меру меньшего угла через х. Тогда градусная мера большего угла будет Зх. Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.
Значит, смежные углы равны 45° и 135°.

Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.

Решение. Пусть условию задачи отвечает рисунок 2. Вертикальные углы COD к АОВ равны (теорема 2), значит, равны и их градусные меры. Поэтому ∠ COD = ∠ АОВ = 50° (их сумма по условию 100°). Угол BOD (также и угол АОС) смежный с углом COD, и, значит, по теореме 1
∠ BOD = ∠ АОС = 180° - 50° = 130°.

В процессе изучения курса геометрии понятия “угол”, “вертикальные углы”, “смежные углы” встречаются достаточно часто. Понимание каждого из терминов поможет разобраться в поставленной задаче и правильно ее решить. Что такое смежные углы и как их определять?

Смежные углы – определение понятия

Термин “смежные углы” характеризует два угла, образованных общим лучом и двумя дополнительными полупрямыми, лежащими на одной прямой. Все три луча выходят из одной точки. Общая полупрямая является одновременно стороной как одного, так и второго угла.

Смежные углы – основные свойства

1. Исходя из формулировки смежных углов, нетрудно заметить, что сумма таких углов всегда образует развернутый угол, градусная мера которого равна 180°:

  • Если μ и η являются смежными углами, то μ + η = 180°.
  • Зная величину одного из смежных углов (например, μ), можно легко вычислить градусную меру второго угла (η), используя выражение η = 180° – μ.

2. Данное свойство углов позволяет сделать следующий вывод: угол, являющийся смежным прямому углу, также будет прямым.

3. Рассматривая тригонометрический функции (sin, cos, tg, ctg), основываясь на формулах приведения для смежных углов μ и η справедливо следующее:

  • sinη = sin(180° – μ) = sinμ,
  • cosη = cos(180° – μ) = -cosμ,
  • tgη = tg(180° – μ) = -tgμ,
  • ctgη = ctg(180° – μ) = -ctgμ.


Смежные углы – примеры

Пример 1

Задан треугольник с вершинами M, P, Q – ΔMPQ. Найти углы, смежные углам ∠QMP, ∠MPQ, ∠PQM.

  • Продлим каждую из сторон треугольника прямой.
  • Зная о том, что смежные углы дополняют друг друга до развернутого угла, выясняем, что:

смежным для угла ∠QMP будет ∠LMP,

смежным для угла ∠MPQ будет ∠SPQ,

смежным для угла ∠PQM будет ∠HQP.


Пример 2

Величина одного смежного угла составляет 35°. Чему равна градусная мера второго смежного угла?

  • Два смежных угла в сумме образуют 180°.
  • Если ∠μ = 35°, то смежный ему ∠η = 180° – 35° = 145°.

Пример 3

Определить величины смежных углов, если известно, что градусная мера одного из низ втрое больше градусной меры другого угла.

  • Обозначим величину одного (меньшего) угла через – ∠μ = λ.
  • Тогда, согласно условию задачи, величина второго угла будет равна ∠η = 3λ.
  • Исходя из основного свойства смежных углов, μ + η = 180° следует

λ + 3λ = μ + η = 180°,

λ = 180°/4 = 45°.

Значит первый один угол ∠μ = λ = 45°, а второй угол ∠η = 3λ = 135°.


Умение апеллировать терминологией, а также знание основных свойств смежных углов поможет справиться с решением многих геометрических задач.