Нахождения угла между прямой и плоскостью. Плоские и пространственные кривые линии. Определение угла между двумя плоскостями

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

Пусть задана некоторая прямоугольная система координат и прямая. Пустьи две различные плоскости, пересекающиеся по прямой и задаваемые соответственно уравнениямии. Эти два уравнения совместно определяют прямуюв том и только в том случае, когда они не параллельны и не совпадают друг с другом, т. е. нормальные векторы
и
этих плоскостей не коллинеарны.

Определение. Есликоэффициенты уравнений

не пропорциональны, то эти уравнения называются общими уравнениями прямой, определяемой как линия пересечения плоскостей.

Определение. Любой ненулевой вектор, параллельный прямой, называется направляющим вектором этой прямой.

Выведем уравнение прямой , проходящей через данную точку
пространства и имеющей заданный направляющий вектор
.

Пусть точка
 произвольная точка прямой . Эта точка лежит на прямой тогда и только тогда, когда вектор
, имеющий координаты
, коллинеарен направляющему вектору
прямой. Согласно (2.28) условие коллинеарности векторов
иимеет вид

. (3.18)

Уравнения (3.18) называются каноническими уравнениями прямой, проходящей через точку
и имеющей направляющий вектор
.

Если прямая задана общими уравнениями (3.17), то направляющий векторэтой прямой ортогонален нормальным векторам
и
плоскостей, задаваемых уравнениямии. Вектор
по свойству векторного произведения ортогонален каждому из векторови. Согласно определению в качестве направляющего векторапрямойможно взять вектор
, т. е.
.

Для нахождения точки
рассмотрим систему уравнений
. Так как плоскости, определяемые уравнениямии, не параллельны и не совпадают, то не выполняется хотя бы одно из равенств
. Это приводит к тому, что хотя бы один из определителей,
,
отличен от нуля. Для определенности будем считать, что
. Тогда, взяв произвольное значение, получим систему уравнений относительно неизвестныхи:

.

По теореме Крамера эта система имеет единственное решение, определяемое формулами

,
. (3.19)

Если взять
, то прямая, задаваемая уравнениями (3.17), проходит через точку
.

Таким образом, для случая, когда
, канонические уравнения прямой (3.17) имеют вид

.

Аналогично записываются канонические уравнения прямой (3.17) для случая, когда отличен от нуля определитель
или
.

Если прямая проходит через две различные точки
и
, то ее канонические уравнения имеют вид

. (3.20)

Это следует из того, что прямая проходит через точку
и имеет направляющий вектор.

Рассмотрим канонические уравнения (3.18) прямой. Примем каждое из отношений за параметр , т. е.
. Один из знаменателей этих дробей отличен от нуля, а соответствующий числитель может принимать любые значения, поэтому параметрможет принимать любые вещественные значения. Учитывая, что каждое из отношений равно, получимпараметрические уравнения прямой:

,
,
. (3.21)

Пусть плоскость задана общим уравнением, а прямая параметрическими уравнениями
,
,
. Точка
пересечения прямойи плоскостидолжна одновременно принадлежать плоскости и прямой. Это возможно только в том случае, когда параметрудовлетворяет уравнению, т. е.
. Таким образом, точка пересечения прямой и плоскости имеет координаты

,

,

.

П р и м е р 32. Составить параметрические уравнения прямой, проходящей через точки
и
.

Решение. За направляющий вектор прямой возьмем вектор

. Прямая проходит через точку, поэтому по формуле (3.21) искомые уравнения прямой имеют вид
,
,
.

П р и м е р 33. Вершины треугольника
имеют координаты
,
и
соответственно. Составить параметрические уравнения медианы, проведенной из вершины.

Решение. Пусть
 середина стороны
, тогда
,
,
. В качестве направляющего вектора медианы возьмем вектор
. Тогда параметрические уравнения медианы имеют вид
,
,
.

П р и м е р 34. Составить канонические уравнения прямой, проходящей через точку
параллельно прямой
.

Решение. Прямая задана как линия пересечения плоскостей с нормальными векторами
и
. В качестве направляющего вектораэтой прямой возьмем вектор
, т. е.
. Согласно (3.18) искомое уравнение имеет вид
или
.

3.8. Угол между прямыми в пространстве. Угол между прямой и плоскостью

Пусть две прямые ив пространстве заданы своими каноническими уравнениями
и
. Тогда один из угловмежду этими прямыми равен углу между их направляющими векторами
и
. Воспользовавшись формулой (2.22), для определения углаполучим формулу

. (3.22)

Второй угол между этими прямыми равен
и
.

Условие параллельности прямых иравносильно условию коллинеарности векторов
и
и заключается в пропорциональности их координат, т. е. условие параллельности прямых имеет вид

. (3.23)

Если прямые иперпендикулярны, то их направляющие векторы ортогональны, т.е. условие перпендикулярности определяется равенством

. (3.24)

Рассмотрим плоскость , заданную общим уравнением, и прямую, заданную каноническими уравнениями
.

Угол между прямойи плоскостьюявляется дополнительным к углумежду направляющим вектором прямой и нормальным вектором плоскости, т. е.
и
, или

. (3.24)

Условие параллельности прямой и плоскостиэквивалентно условию перпендикулярности направляющего вектора прямой и нормального вектора плоскости, т. е. скалярное произведение этих векторов должно равняться нулю:

Если же прямая перпендикулярна плоскости, то направляющий вектор прямой и нормальный вектор плоскости должны быть коллинеарны. В этом случае координаты векторов пропорциональны, т. е.

. (3.26)

П р и м е р 35. Найти тупой угол между прямыми
,
,
и
,
,
.

Решение. Направляющие векторы этих прямых имеют координаты
и
. Поэтому один уголмежду прямыми определяется соотношением, т. е.
. Поэтому условию задачи удовлетворяет второй угол между прямыми, равный
.

3.9. Расстояние от точки до прямой в пространстве

Пусть
 точка пространства с координатами
, прямая, заданная каноническими уравнениями
. Найдем расстояниеот точки
до прямой.

Приложим направляющий вектор
к точке
. Расстояниеот точки
до прямойявляется высотой параллелограмма, построенного на векторахи
. Найдем площадь параллелограмма, используя векторное произведение:

С другой стороны, . Из равенства правых частей двух последних соотношений следует, что

. (3.27)

3.10. Эллипсоид

Определение. Эллипсоидом называется поверхность второго порядка, которая в некоторой системе координат определяется уравнением

. (3.28)

Уравнение (3.28) называется каноническим уравнением эллипсоида.

Из уравнения (3.28) следует, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат  центром симметрии. Числа
называются полуосями эллипсоида и представляют собой длины отрезков от начала координат до пересечения эллипсоида с осями координат. Эллипсоид представляет собой ограниченную поверхность, заключенную в параллелепипеде
,
,
.

Установим геометрический вид эллипсоида. Для этого выясним форму линий пересечения его плоскостями, параллельными координатным осям.

Для определенности рассмотрим линии пересечения эллипсоида с плоскостями
, параллельными плоскости
. Уравнение проекции линии пересечения на плоскость
получается из (3.28), если в нем положить
. Уравнение этой проекции имеет вид

. (3.29)

Если
, то (3.29) является уравнением мнимого эллипса и точек пересечения эллипсоида с плоскостью
нет. Отсюда и следует, что
. Если
, то линия (3.29) вырождается в точки, т. е. плоскости
касаются эллипсоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.30)

Тогда уравнение (3.29) принимает вид

, (3.31)

т. е. проекция на плоскость
линии пересечения эллипсоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.30). Так как линия пересечения поверхности плоскостями, параллельными координатным, представляет собой проекцию, «поднятую» на высоту, то и сама линия пересечения является эллипсом.

При уменьшении значенияполуосииувеличиваются и достигают своего наибольшего значения при
, т. е. в сечении эллипсоида координатной плоскостью
получается самый большой эллипс с полуосями
и
.

Представление об эллипсоиде можно получить и другим образом. Рассмотрим на плоскости
семейство эллипсов (3.31) с полуосямии, определяемыми соотношениями (3.30) и зависящими от. Каждый такой эллипс является линией уровня, т. е. линией, в каждой точке которой значениеодинаково. «Подняв» каждый такой эллипс на высоту, получим пространственный вид эллипсоида.

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям
и
.

Таким образом, эллипсоид представляет собой замкнутую эллиптическую поверхность. В случае
эллипсоид является сферой.

Линия пересечения эллипсоида с любой плоскостью является эллипсом, так как такая линия представляет собой ограниченную линию второго порядка, а единственная ограниченная линия второго порядка  эллипс.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Статья начинается с определение угла между прямой и плоскостью. В данной статье будет показано нахождение угла между прямой и плоскостью методом координат. Подробно будут рассмотрены решение примеров и задач.

Yandex.RTB R-A-339285-1

Предварительно необходимо повторить понятие о прямой линии в пространстве и понятие плоскости. Для определения угла между прямой и плоскостью необходимый несколько вспомогательных определений. Рассмотрим эти определения подробно.

Определение 1

Прямая и плоскость пересекаются в том случае, когда они имеют одну общую точку, то есть она является точкой пересечения прямой и плоскости.

Прямая, пересекающая плоскость, может являться перпендикулярной относительно плоскости.

Определение 2

Прямая является перпендикулярной к плоскости , когда она перпендикулярна любой прямой, находящейся в этой плоскости.

Определение 3

Проекция точки M на плоскость γ является сама точка, если она лежит в заданной плоскости, либо является точкой пересечения плоскости с прямой, перпендикулярной плоскости γ , проходящей через точку M , при условии, что она не принадлежит плоскости γ .

Определение 4

Проекция прямой а на плоскость γ - это множество проекций всех точек заданной прямой на плоскость.

Отсюда получаем, что перпендикулярная к плоскости γ проекция прямой имеет точку пересечения. Получаем, что проекция прямой a – это прямая, принадлежащая плоскости γ и проходящая через точку пересечения прямой a и плоскости. Рассмотрим на рисунке, приведенном ниже.

На данный момент имеем все необходимые сведения и данные для формулировки определения угла между прямой и плоскостью

Определение 5

Углом между прямой и плоскостью называют угол между этой прямой и ее проекцией на эту плоскость, причем прямая не перпендикулярна к ней.

Определение угла, приведенное выше, помогает прийти к выводу о том, что угол между прямой и плоскостью представляет собой угол между двумя пересекающимися прямыми, то есть заданной прямой вместе с ее проекцией на плоскость. Значит, угол между ними всегда будет острым. Рассмотрим на картинке, приведенной ниже.

Угол, расположенный между прямой и плоскостью, считается прямым, то есть равным 90 градусов, а угол, расположенный между параллельными прямыми, не определяется. Бывают случаи, когда его значение берется равным нулю.

Задачи, где необходимо найти угол между прямой и плоскостью, имеет множество вариация решения. Ход самого решения зависит от имеющихся данных по условию. Частыми спутниками решения являются признаки подобия или равенства фигур, косинусы, синусы, тангенсы углов. Нахождение угла возможно при помощи метода координат. Рассмотрим его более детально.

Если в трехмерном пространстве вводится прямоугольная система координат О х у z , тогда в ней задается прямая a , пересекающая плоскость γ в точке M , причем она не перпендикулярна плоскости. Необходимо найти угол α , находящийся между заданной прямой и плоскостью.

Для начала необходимо применить определение угла между прямой и плоскостью методом координат. Тогда получим следующее.

В системе координат О х у z задается прямая a , которой соответствуют уравнения прямой в пространстве и направляющий вектор прямой пространства, для плоскости γ соответствует уравнение плоскости и нормальный вектор плоскости. Тогда a → = (a x , a y , a z) является направляющим вектором заданной прямой a , а n → (n x , n y , n z) - нормальным вектором для плоскости γ . Если представить, что у нас имеются координаты направляющего вектора прямой a и нормального вектора плоскости γ , тогда известны их уравнения, то есть заданы по условию, тогда есть возможность определения векторов a → и n → , исходя из уравнения.

Для вычисления угла необходимо преобразовать формулу, позволяющую получить значение этого угла при помощи имеющихся координат направляющего вектора прямой и нормального вектора.

Необходимо отложить векторы a → и n → , начиная от точки пересечения прямой a с плоскостью γ . Существуют 4 варианта расположения этих векторов относительно заданных прямых и плоскости. Рассмотри рисунок, приведенный ниже, на котором имеются все 4 вариации.

Отсюда получаем, что угол между векторами a → и n → имеет обозначение a → , n → ^ и является острым, тогда искомый угол α , располагающийся между прямой и плоскостью, дополняется, то есть получаем выражение вида a → , n → ^ = 90 ° - α . Когда по условию a → , n → ^ > 90 ° , тогда имеем a → , n → ^ = 90 ° + α .

Отсюда имеем, что косинусы равных углов являются равными, тогда последние равенства записываются в виде системы

cos a → , n → ^ = cos 90 ° - α , a → , n → ^ < 90 ° cos a → , n → ^ = cos 90 ° + α , a → , n → ^ > 90 °

Необходимо использовать формулы приведения для упрощения выражений. Тогда получим равенства вида cos a → , n → ^ = sin α , a → , n → ^ < 90 ° cos a → , n → ^ = - s i n α , a → , n → ^ > 90 ° .

Проведя преобразования, система приобретает вид sin α = cos a → , n → ^ , a → , n → ^ < 90 ° sin α = - cos a → , n → ^ , a → , n → ^ > 90 ° ⇔ sin α = cos a → , n → ^ , a → , n → ^ > 0 sin α = - cos a → , n → ^ , a → , n → ^ < 0 ⇔ ⇔ sin α = cos a → , n → ^

Отсюда получим, что синус угла между прямой и плоскостью равен модулю косинуса угла между направляющим вектором прямой и нормальным вектором заданной плоскости.

Раздел нахождения угла, образованного двумя векторами, выявили, что этот угол принимает значение скалярного произведения векторов и произведения этих длин. Процесс вычисления синуса угла, полученного пересечением прямой и плоскости, выполняется по формуле

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Значит, формулой для вычисления угла между прямой и плоскостью с координатами направляющего вектора прямой и нормального вектора плоскости после преобразования получается вида

α = a r c sin a → , n → ^ a → · n → = a r c sin a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Нахождение косинуса при известном синусе позволительно, применив основное тригонометрическое тождество. Пересечение прямой и плоскости образует острый угол. Это говорит о том, что его значение будет являться положительным числом, а его вычисление производится из формулы cos α = 1 - sin α .

Выполним решение нескольких подобных примеров для закрепления материала.

Пример 1

Найти угол, синус, косинус угла, образованного прямой x 3 = y + 1 - 2 = z - 11 6 и плоскостью 2 x + z - 1 = 0 .

Решение

Для получения координат направляющего вектора необходимо рассмотреть канонические уравнения прямой в пространстве. Тогда получим, что a → = (3 , - 2 , 6) является направляющим вектором прямой x 3 = y + 1 - 2 = z - 11 6 .

Для нахождения координат нормального вектора необходимо рассмотреть общее уравнение плоскости, так как их наличие определяется коэффициентами, имеющимися перед переменными уравнения. Тогда получим, что для плоскости 2 x + z - 1 = 0 нормальный вектор имеет вид n → = (2 , 0 , 1) .

Необходимо перейти к вычислению синуса угла между прямой и плоскостью. Для этого необходимо произвести подстановку координат векторов a → и b → в заданную формулу. Получаем выражение вида

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2 = = 3 · 2 + (- 2) · 0 + 6 · 1 3 2 + (- 2) 2 + 6 2 · 2 2 + 0 2 + 1 2 = 12 7 5

Отсюда найдем значение косинуса и значение самого угла. Получим:

cos α = 1 - sin α = 1 - 12 7 5 2 = 101 7 5

Ответ: sin α = 12 7 5 , cos α = 101 7 5 , α = a r c cos 101 7 5 = a r c sin 12 7 5 .

Пример 2

Имеется пирамида, построенная при помощи значений векторов A B → = 1 , 0 , 2 , A C → = (- 1 , 3 , 0) , A D → = 4 , 1 , 1 . Найти угол между прямой A D и плоскостью А В С.

Решение

Для вычисления искомого угла, необходимо иметь значения координат направляющего вектора прямой и нормального вектора плоскости. для прямой A D направляющий вектор имеет координаты A D → = 4 , 1 , 1 .

Нормальный вектор n → , принадлежащий плоскости А В С, является перпендикулярным вектору A B → и A C → . Это подразумевает то, что нормальным вектором плоскости А В С можно считать векторное произведение векторов A B → и A C → . Вычислим это по формуле и получим:

n → = A B → × A C → = i → j → k → 1 0 2 - 1 3 0 = - 6 · i → - 2 · j → + 3 · k → ⇔ n → = (- 6 , - 2 , 3)

Необходимо произвести подстановку координат векторов для вычисления искомого угла, образованного пересечением прямой и плоскости. получим выражение вида:

α = a r c sin A D → , n → ^ A D → · n → = a r c sin 4 · - 6 + 1 · - 2 + 1 · 3 4 2 + 1 2 + 1 2 · - 6 2 + - 2 2 + 3 2 = a r c sin 23 21 2

Ответ: a r c sin 23 21 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Давайте повторим определение угла между прямой и плоскостью.

Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней , называется угол между прямой и ее проекцией на плоскость.

Пусть даны плоскость γ и прямая a, которая пересекает эту плоскость и не перпендикулярна к ней.

Построим угол между прямой a и плоскостью γ:

  1. Из любой удобной для нас точки прямой a опустим перпендикуляр к плоскости γ;
  2. Через точки оснований наклонной и перпендикуляра проведем прямую b . Прямая b - проекция прямой a на плоскость γ;
  3. Острый угол между прямыми a и b – это угол между прямой a и плоскостью γ, т.е. ∠(a;b)= ∠(a;γ) , где ∠(a;b) - угол между прямыми а и b; ∠(a;γ) - угол между прямой а и плоскостью γ.

Для решения задач с помощью метода координат нам необходимо вспомнить следующее:

3. Если известны координаты направляющего вектора { a 1 ; b 1 ; c 1 } и вектора нормали
{a; b; c}, то угол между прямой а и плоскостью γ вычисляется по формуле, которую сейчас выведем.

Нам известна формула нахождения угла между прямыми:

; (1)
∠(s; a) = 90°-∠(a;b), тогда cos∠(s;a) =cos (90°-∠(a;b))=sin ∠(a;b) ; (2)
Из (1) и (2) => ; (3)
, где – угол между векторами m и n; (4)
Подставляем (4) в (3) и т.к. ∠(a;b)= ∠(a;γ), то получаем:

4. Если координаты вектора нормали неизвестны, то нам необходимо знать уравнение плоскости.

Любая плоскость в прямоугольной системе координат может быть задана уравнением

ax + by + cz + d = 0,

где хотя бы один из коэффициентов a, b, c отличен от нуля. Эти коэффициенты и будут координатами вектора нормали, т.е. {a; b; c}.

Алгоритм решения задач на нахождение угла между прямой и плоскостью с помощью метода координат:

  1. Делаем рисунок, на котором отмечаем прямую и плоскость;
  2. Вводим прямоугольную систему координат;
  3. Находим координаты направляющего вектора по координатам его начала и конца;
  4. Находим координаты вектора нормали к плоскости;
  5. Подставляем полученные данные в формулу синуса угла между прямой и плоскостью;
  6. Находим значение самого угла.

Рассмотрим задачу:
1. В кубе ABCDA 1 B 1 C 1 D 1 найдите тангенс угла между прямой AC 1 и плоскостью BDD 1 .
Решение:


1. Введем прямоугольную систему координат с началом координат в точке D.
2. Найдем координаты направляющего вектора АС 1 . Для этого сначала определим координаты точек А и С 1:
А(0; 1; 0);
С 1 (1; 0; 1).
{1; -1; 1}.
3. Найдем координаты вектора нормали к плоскости BB 1 D 1 . Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости:
D(0; 0; 0);
D 1 (0; 0; 1);
В(1; 1; 0);
D: a⋅0+b⋅0+c⋅0+d=0;
D 1: a⋅0+b⋅0+c⋅1+d=0;
B: a⋅1+b⋅1+c⋅0+d=0.

Подставим в уравнение: a⋅x+(-a)⋅y+0⋅z+0 = 0;
a⋅x-a⋅y = 0; |:a
x-y = 0.
Т.о., вектор нормали к плоскости BDD 1 имеет координаты:
{1;-1; 0}.
4. Найдем синус между прямой АС 1 и плоскостью BDD 1:

5. Воспользуемся основным тригонометрическим тождеством и найдем косинус угла между прямой АС 1 и плоскостью BDD 1:

6. Найдем тангенс угла между прямой АС 1 и плоскостью BDD 1:

Ответ: .

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.

Решение:

1. Введем прямоугольную систему координат с началом координат в точке B.
2. Найдем координаты направляющего вектора BD . Для этого сначала определим координаты точек B и D:


3. Найдем координаты вектора нормали к плоскости SBC. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости SBC:

Как получили координаты точки S ?

Из точки S опустили перпендикуляр к плоскости основания ABC. Точку пересечения обозначили О. Точка О - проекция точки S на плоскость ABC. Ее координаты по осям х и у будут первыми двумя координатами точки S.

Узнав значение высоты пирамиды, мы нашли третью координату точки S (по оси z)

Треугольник SOB - прямоугольный, следовательно, по теореме Пифагора:



Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:

Получили систему из трех уравнений:


Подставим в уравнение:

Т.о., вектор нормали к плоскости SBD имеет координаты:

.
4. Найдем синус между прямой BD и плоскостью SBD.